"Humies" Competition GECCO 2018

Emergent solutions to high dimensional multi-task reinforcement learning

Stephen Kelly & Malcolm Heywood

Why does the result qualify as human competitive?

Visual RL dominated by Deep learning

- DQN (2015)
 - Visual RL on Atari Learning Environment (49 titles)
 - Q-learning with Deep learning
 - Cropped visual image (84 × 84)
 - Frame stacking (removes the interleaving of sprites & stochastic properties)
 - "able to surpass the performance of all previous algorithms and achieve a level comparable to that of a professional human games tester across a set of 49 games" [Nature (2015) Vol. 518]
- Gorila (2015), Double Q (2016), Dueling DL (2016), AC3 (2016), Noisy DQN (2017), Distributional DQN (2017), Rainbow (2018)
- One policy per game title
- Learning parameters and DNN topology identified a priori

Visual RL Compared to 'human' 100 (algorithm – rnd)/(Human – rnd)

Visual RL and Multi-task learning

- Multiple game titles played by single agent
- Single title DQN provides the baseline
- Best DNN result needs prior knowledge regarding parameters and topology
- Constitutes an example of a task pertaining to 'Artificial General Intelligence'

Multi-title TPG versus Single-title DQN

Why [is our entry] 'best' in comparison to other entries?

- Single title task
 - TPG provides solutions competitive with human and DQN
 - Agents have to be competitive over multiple game titles
- Multi-title task
 - TPG multi-task solution is competitive with DQN trained under single title setting
 - DNN state-of-the-art in single task does not address
 Multi-title task
- TPG for Single title task a special case of TPG for Multititle task

The 'icing on the cake'

- TPG addresses multiple issues simultaneously:
 - Complexity of topology is emergent and:
 - Highly modular
 - Unique to the task
 - Explicitly reflects a decomposition of the task
 - No image specific instructions just:
 - Four 2 Argument operators {+, −, ×, ÷}
 - Three 1 Argument operators {log, exp, cosine}
 - One conditional operator
 - TPG highly efficient computationally
 - Some examples...

- Entire champion policy graph
- Visited per decision during test

Emergent discovery of Multi-title solutions

Run time complexity

DQN

- ≈1.6 million weights in MLP
- ≈3.2 million convolution operations in DNN
- 3.2 GHz Intel i7-4700s
 - 5 decisions per second
- GPU acceleration
 - 330 decisions per second

TPG

- Single title
 - 71 2346 Instructions (avg)
- Multi title
 - 413 869 Instructions (avg)
- 2.2 GHz Intel E5-2650
 - Single title:
 - 758-2853 decisions per sec.
 - Multi-title
 - 1832-2922 decisions per sec.

Questions?