
Emergent Solutions to High-Dimensional
Multi-Task Reinforcement Learning

Stephen Kelly skelly@cs.dal.ca
Department of Computer Science, Dalhousie University, 6050 University Avenue,
Halifax, NS, B3H 4R2, Canada

Malcolm I. Heywood mheywood@cs.dal.ca
Department of Computer Science, Dalhousie University, 6050 University Avenue, Hal-
ifax, NS, B3H 4R2, Canada

Abstract
Algorithms that learn through environmental interaction and delayed rewards, or
reinforcement learning, increasingly face the challenge of scaling to dynamic, high-
dimensional, and partially observable environments. Significant attention is being
paid to frameworks from deep learning, which scale to high-dimensional data by
decomposing the task through multi-layered neural networks. While effective, the
representation is complex and computationally demanding. In this work we propose
a framework based on Genetic Programming which adaptively complexifies policies
through interaction with the task. We make a direct comparison with several deep
reinforcement learning frameworks in the challenging Atari video game environment
as well as more traditional reinforcement learning frameworks based on a priori en-
gineered features. Results indicate that the proposed approach matches the quality
of deep learning while being a minimum of three orders of magnitude simpler with
respect to model complexity. This results in real-time operation of the champion RL
agent without recourse to specialized hardware support. Moreover, the approach is
capable of evolving solutions to multiple game titles simultaneously with no addi-
tional computational cost. In this case, agent behaviours for an individual game as
well as single agents capable of playing all games emerge from the same evolutionary
run.

Keywords
Emergent modularity, cooperative coevolution, genetic programming, reinforcement
learning, multi-task learning.

1 Introduction

Reinforcement Learning (RL) is an area of machine learning in which an agent develops
a decision making policy through direct interaction with a task environment. Specifi-
cally, the agent observes the environment and suggests an action based on the observa-
tion, repeating the process until a task end state is encountered. The end state provides
a reward signal that characterizes quality of the policy, or the degree of success/failure.
The policy’s objective is therefore to select actions that maximize this long-term reward.

In real-world applications of RL, the agent is likely to observe the environment
through a high-dimensional sensory interface (e.g. a video camera). This potentially
implies that: (1) RL agents need to be able to assess large amounts of ‘low-level’ in-
formation; (2) complete information about the environment is often not available from
a single observation, and; (3) extended interactions and sparse rewards are common,

c©2018 by the Massachusetts Institute of Technology Evolutionary Computation 26(3): xxx-xxx

S. Kelly and M. I. Heywood

requiring the agent to make thousands of decisions before receiving enough feedback
to assess the quality of the policy. That said, the potential applications for RL are vast
and diverse, from autonomous robotics (Kober and Peters (2012)) to video games (Szita
(2012)), so motivating research into RL frameworks that are general enough to be ap-
plied to a variety of environments without the use of application specific features.

Addressing dynamic, high-dimensional, and partially observable tasks in RL has
recently received significant attention on account of: (1) the availability of a convenient
video game emulator supporting hundreds of titles, such as the Arcade Learning En-
vironment (ALE) (Bellemare et al. (2012a)); and, (2) human competitive results from
deep learning, e.g. (Mnih et al. (2015)). ALE defines state, ~s(t), in terms of direct screen
capture, while actions are limited to those of the original Atari console. Thus, learning
agents interact with games via the same interface experienced by human players. In
sampling 49 game titles, each designed to be interesting and challenging for human
players, task environments with a wide range of properties are identified. As such,
each game title requires a distinct RL policy that is capable of maximizing the score
over the course of the game.

In this work, we introduce a genetic programming (GP) framework that specif-
ically addresses challenges in scaling RL to real-world tasks while maintaining min-
imal model complexity. The algorithm uses emergent modularity (Nolfi (1997)) to
adaptively complexify policies through interaction with the task environment. A team
of programs represents the basic behavioural module (Lichodzijewski and Heywood
(2008b)), or a mapping from state observation to an action. In sequential decision-
making tasks, each program within a team defines a unique bidding behaviour (Sec-
tion 3.2), such that programs cooperatively select one action from the team relative to
the current state observation at each time step.

Evolution begins with a population of simple teams, Figure 1(a), which are then
further developed by adding, removing, and modifying individual programs. This
work extends previous versions of an earlier (symbiotic) approach to GP teaming (Li-
chodzijewski and Heywood (2011); Doucette et al. (2012); Kelly et al. (2012); Kelly and
Heywood (2014b,a)) to enable emergent behavioural modularity from a single cycle of
evolution by adaptively recombining multiple teams into variably deep/wide directed
graph structures, or Tangled Program Graphs (TPG)1, Figure 1(b). The behaviour of each
program, complement of programs per team, complement of teams per graph, and the
connectivity within each graph are all emergent properties of an open-ended evolu-
tionary process. The benefits of this approach are twofold:

1. A single graph of teams, or policy graph, may eventually evolve to include hun-
dreds of teams, where each represents a simple, specialized behaviour (Figure
1(b)). However, mapping a state observation to an action requires traversing only
one path through the graph from root (team) to leaf (action). Thus, the representa-
tion is capable of compartmentalizing many behaviours and recalling only those
relevant to the current environmental conditions. This allows TPG to scale to com-
plex, high dimensional task environments while maintaining a relatively low com-
putational cost per decision.

2. The programs in each team will collectively index a small, unique subset of the
state space. As multi-team policy graphs emerge, only specific regions of the state
space that are important for decision making will be indexed by the graph as a

1Source code is available at https://web.cs.dal.ca/˜mheywood/Code/index.html

2 Evolutionary Computation Volume 26, Number 3

Emergent High-Dimensional Multi-Task Reinforcement Learning

whole. Thus, emergent modularity allows the policy to simultaneously decom-
pose the task spatially and behaviourally, detecting important regions of the state
space and optimizing the decisions made in different regions. This minimizes the
requirement for a priori crafting task specific features, and lets TGP perform both
feature construction and policy discovery simultaneously.

Unlike deep learning, the proposed Tangled Program Graph framework takes an
explicitly emergent, developmental approach to policy identification. Our interest is
whether we can construct policy graph topologies ‘bottom-up’ that match the quality
of deep learning solutions without the corresponding complexity. Specifically, deep
learning assumes that the neural architecture is designed a priori, with the same archi-
tecture employed for each game title. Thus, deep learning always performs millions

(b) Evolved policy(a) Initial Policy

{ }

Atari Joystick Position

Program

Team

Root Team

Figure 1: TPG Policies. Decision making in each time step (frame) begins at the root
team (black node) and follows the edge with the winning program bid (output) until
an atomic action (Atari Joystick Position) is reached. The initial population contains
only single-team polices (a). Multi-team graphs emerge as evolution progresses (b).

Evolutionary Computation Volume 26, Number 3 3

S. Kelly and M. I. Heywood

of calculations per decision. TPG, on the other hand, has the potential to tune policy
complexity to each task environment, or game title, requiring only ≈ 1000 calculations
per decision in the most complex case, and ≈ 100 calculations in the simpler cases.

In short, the aim of this work is to demonstrate that much simpler solutions can be
discovered to dynamic, high-dimensional, and partially observable environments in RL
without making any prior decisions regarding model complexity. As a consequence,
the computational costs typically associated with deep learning are avoided without
impacting on the quality of the resulting policies, i.e. the cost of training and deploying
a solution is now much lower. Solutions operate in real-time without any recourse to
multi-core or GPU hardware platforms, thus potentially simplifying the developmen-
tal/deployment overhead in posing solutions to challenging RL tasks.

Relative to our earlier work, we: 1) extend the single title comparison of 20 ti-
tles with two comparator algorithms (Kelly and Heywood (2017a)) to include all 49
Atari game titles and eight comparator algorithms (Section 5); and 2) demonstrate that
multi-task performance can be extended from 3 to at least 5 game titles per policy and,
unlike the earlier work, does not necessitate a Pareto objective formulation (Kelly and
Heywood (2017a)), just elitism (Section 7).

2 Background

2.1 Task Environment

The Arcade Learning Environment or ALE (Bellemare et al. (2012a)) is an Atari 2600
video game emulator designed specifically to benchmark RL algorithms. The ALE al-
lows RL agents to interact with hundreds of classic video games using the same inter-
face as experienced by human players. That is, an RL agent is limited to interacting
with the game using state, ~s(t), as defined by the game screen, and 18 discrete (atomic)
actions, i.e. the set of Atari console paddle directions including ‘no action’, in combi-
nation with / without the fire button. Each game screen is defined by a 210× 160 pixel
matrix with 128 potential colours per pixel, refreshed at a frame rate of 60 Hz. In prac-
tice, the raw screen frames are preprocessed prior to being presented to an RL agent
(see Section 2.2 for a summary of approaches assumed to date, and Section 4.1 for the
specific approach assumed in this work).

Interestingly, important game entities often appear intermittently over sequential
frames, creating visible screen flicker. This is a common technique game designers
used to work around memory limitations in the original Atari hardware. However, it
presents a challenge for RL because it implies that Atari game environments are par-
tially observable. That is to say, a single frame rarely depicts the complete game state.

In addition, agents stochastically skip screen frames with probability p = 0.25,
with the previous action being repeated on skipped frames (Bellemare et al. (2012a);
Hausknecht and Stone (2015)). This is a default setting in ALE, and aims to limit arti-
ficial agents to roughly the same reaction time as a human player as well as introduc-
ing an additional source of stochasticity. A single episode of play lasts a maximum of
18, 000 frames, not including skipped frames.

2.2 RL under ALE tasks

Historically, approaches to RL have relied on a priori designed task specific state rep-
resentations (attributes). This changed with the introduction of the Deep Q-Network
or DQN (Mnih et al. (2015)). DQN employs a deep convolutional neural network ar-
chitecture to encode a representation directly from screen capture (thus a task specific
representation). A multi-layer perceptron is simultaneously trained from this repre-

4 Evolutionary Computation Volume 26, Number 3

Emergent High-Dimensional Multi-Task Reinforcement Learning

sentation to estimate a value function (the action selector) through Q-learning. Image
preprocessing was still necessary and took the form of down sampling the original
210× 160 RGB frame data to 84× 84 and extracting the luminance channel. Moreover,
a temporal sliding window was assumed in which the input to the first convolution
layer was actually a sequence of the four most recently appearing frames. This reduced
the partial observability of the task, as all the game state should now be visible.

In assuming Q-learning, DQN is an off-policy method, for which one of the most
critical elements is support for replay memory. As such, performance might be sen-
sitive to the specific content of this memory (the ‘memories’ replayed are randomly
sampled). The General Reinforcement Learning Architecture (or Gorila) extended the
approach of DQN with a massively parallel distributed infrastructure (100’s of GPUs)
to support the simultaneous development of multiple DQN learners (Nair et al. (2015)).
The contributions from the distributed learners periodically update a central ‘parame-
ter server’ that ultimately represents the solution. Gorila performed better than DQN
on most game titles, but not in all cases, indicating that there are possibly still sensitiv-
ities to replay memory content.

Q-learning is also known to potentially result in action values that are excessively
high. Such ‘overestimations’ were recently shown to be associated with inaccuracies in
the action values, where this is likely to be the norm during the initial stages of train-
ing (van Hasselt et al. (2016)). The solution proposed by van Hasselt et al. (2016) for
addressing this issue was to introduce two sets of weights, one for action selection and
one for policy evaluation. This was engineered into the DQN architecture by associ-
ating the two roles with DQN’s online network and target network respectively.2 The
resulting Double DQN framework improved on the original DQN results for more than
half of the 49 game titles from the ALE task.

Most recently, on-policy methods (e.g., Sarsa) have appeared in which multiple
independent policies are trained in parallel (Mnih et al. (2016)). Each agents’ experi-
ence of the environment is entirely independent (no attempt is made to enforce the
centralization of memory/experience). This means that the set of RL agents collec-
tively experience a wider range of states. The resulting evaluation under the Atari task
demonstrated significant reductions to computational requirements3 and better agent
strategies. That said, in all cases, the deep learning architecture is specified a priori and
subject to prior parameter tuning on a subset of game titles.

Neuro-evolution represents one of the most widely investigated techniques within
the context of agent discovery for games. Hausknecht et al. (2014) performed a com-
parison of different neuro-evolutionary frameworks under two state representations:
game title specific objects versus screen capture. Preprocessing for screen capture took
the form of down sampling the original 210 × 160 RGB frame data to produce eight
‘substrates’ of dimension 16 × 21 = 336; each substrate corresponding to one of the
eight colours present in a SECAM representation (provided by the ALE). If the colour
is present in the original frame data, it appears at a corresponding substrate node.
Hausknecht et al. (2014) compared Hyper-NEAT, NEAT and two simpler schemes for
evolving neural networks under the suite of Atari game titles. Hyper-NEAT provides
a developmental approach for describing large neural network architectures efficiently,
while NEAT provides a scheme for discovering arbitrary neural topologies as well as
weight values, beginning with a single fully connected neuron. NEAT was more ef-

2The ‘online’ network in DQN maintains the master copy of the MLP, whereas the target network is
updated during ‘experience replay’ (Mnih et al. (2015)).

3A 16 core CPU as opposed to a GPU.

Evolutionary Computation Volume 26, Number 3 5

S. Kelly and M. I. Heywood

fective under the low dimensional object representation, whereas Hyper-NEAT was
preferable for the substrate representation.

Finally, Liang et al. (2016) revisit the design of task specific state information using
a hypothesis regarding the action of the convolutional neuron in deep learning. This re-
sulted in a state space in the order of 110 million attributes when applied to Atari screen
capture, but simplified decision making to a linear model. Thus, an RL agent could be
identified using the on-policy Temporal Difference method of Sarsa. In comparison to
deep learning, the computational requirements for training and deployment are con-
siderably lower, but the models produced are only as good as the ability to engineer
appropriate attributes.

2.3 Multi-task RL under ALE

The approaches reviewed in Section 2.2 assumed that a single RL policy was trained
on each game title. Conversely, multi-task RL (MTRL) attempts to take this further and
develop a single RL agent that is able to play multiple game titles. As such, MTRL is a
step towards ’artificial general intelligence’, and represents a much more difficult task
for at least two reasons: 1) RL agents must not ‘forget’ any of their policy for playing a
previous game while learning a policy for playing a new game, and; 2) during test, an
RL agent must be able to distinguish between game titles without recourse to additional
state information.

To date, two deep learning approaches have been proposed for this task. Parisotto
et al. (2015) first learn each game title independently and then use this to train a single
architecture for playing multiple titles. More recently Kirkpatrick et al. (2016) proposed
a modification to Double DQN in which subsets of weights (particularly in the MLP)
are associated with different tasks and subject to lower learning rates than weights
not already associated with previously learned tasks. They were able to learn to play
up to 6 game titles at a level comparable with the original DQN (trained on each title
independently), albeit when the game titles are selected from the set of games for which
DQN was known to perform well on.

3 Tangled Program Graphs

Modular task decomposition through teaming has been a recurring theme with ge-
netic programming. Previous studies examined methods for combining the contribu-
tion from individual team members (Brameier and Banzhaf (2001)), enforcing island
models (Imamura et al. (2003)), or interchanging team-wise versus individual-wise se-
lection (Thomason and Soule (2007)). A common limitation of such schemes was a re-
quirement to pre-specify the number of programs appearing within a team. Moreover,
even when team complement is evolved in an open ended way, it has previously been
necessary to define fitness at both the level of the individual program and team (e.g.
Wu and Banzhaf (2011)). Such limitations need to be addressed in order to facilitate
completely open ended approaches to evolution.

3.1 Evolving Teams of Programs

Enabling the evolution of the number and complement of programs per team in an
open manner was previously addressed in part through the use of a bidding metaphor
(Lichodzijewski and Heywood (2008a)), in which case programs represent action, a,
and context, p, independently. That is, each program defines the context for a single
discrete action, or a ∈ {A} where A denotes the set of task specific atomic actions. Ac-
tions are assigned to the program at initialization and potentially modified by variation

6 Evolutionary Computation Volume 26, Number 3

Emergent High-Dimensional Multi-Task Reinforcement Learning

Algorithm 1 Example program in which execution is sequential. Programs may include
two-argument instructions of the form R[x] ← R[x] ◦ R[y] in which ◦ ∈ {+,−, x,÷};
single-argument instructions of the form R[x] ← ◦(R[y]) in which ◦ ∈ {cos, ln, exp};
and a conditional statement of the the form IF (R[x] < R[y]) THEN R[x]← −R[x]. R[x]
is a reference to an internal register, while R[y] may reference internal registers or state
variables.

1: R[0]← R[0]−R[3]
2: R[0]← R[0]÷R[7]
3: R[1]← Log(R[0])
4: IF (R[0] < R[1]) THEN R[0]← −R[0]
5: RETURN R[0]

operators during evolution. A linear program representation is assumed4 in which a
register level transfer language supports the 4 arithmetic operators, cosine, logarith-
mic, the exponential operation, and a conditional statement (see Algorithm 1). The
linear representation facilitates skipping ‘intron’ code, where this can potentially rep-
resent 60 − 70% of program instructions (Brameier and Banzhaf (2007)). Naturally,
determining which of the available state variables are actually used in the program,
as well as the number of instructions and their operations, are both emergent proper-
ties of the evolutionary process. After execution, register R[0] represents the ‘bid’ or
‘confidence’ for the program’s action, a, relative to the currently observed state, ~s(t). A
team maps each state observation, ~s(t), to a single action by executing all team mem-
bers (programs) relative to ~s(t), and then choosing the action of the highest bidder. If
programs were not organized into teams, in which case all programs within the same
population would compete for the right to suggest their action, it is very likely that de-
generate individuals (programs that bid high for every state), would disrupt otherwise
effective bidding strategies.

Adaptively building teams of programs is addressed here through the use of a
symbiotic relation between a team population and a program population; hereafter
‘TeamGP’ (Lichodzijewski and Heywood (2008b)). Each individual of the team popu-
lation represents an index to some subset of the program population (See Figure 2(a)).
Team individuals therefore assume a variable length representation in which each indi-
vidual is stochastically initialized with [2, ..., ω] pointers to programs from the program
population. The only constraint is that there must be at least two different actions in-
dexed by the complement of programs within the same team. The same program may
appear in multiple teams, but must appear in at least one team to survive between
consecutive generations.

Performance (i.e. fitness) is only expressed at the level of teams, and takes the form
of the task dependent objective(s). After evaluating the performance of all teams, the
worst Rgap teams are deleted from the team population. After team deletion, any pro-
gram that fails to be indexed by any team must have been associated with the worst
performing teams, hence is also deleted. This avoids the need to make arbitrary deci-
sions regarding the definition of fitness at the team versus program level (which gener-
ally take the form of task specific heuristics, thus limiting the applicability of the model
to specific application domains). Following the deletion of the worst teams, new teams
are introduced by sampling, cloning, and modifyingRgap surviving teams. Naturally, if

4Any GP representation could be employed, the important innovation is that context and action are rep-
resented independently.

Evolutionary Computation Volume 26, Number 3 7

S. Kelly and M. I. Heywood

{ }
{ }

{ }

Team
Population

Program
Population

Atari
Joystick
Positions

t
1

t
2

(a) TeamGP

{ } { } { } { }{ }

t
3

t
4 t

5

(b) TeamGP to TPG

Figure 2: Subplot (a) Illustration of the symbiotic relation between Team and Program
populations. Task fitness is only expressed at the level of a team. Each team defines
a unique set of pointers to some subset of individuals from the program population.
Multiple programs may have the same action as the associated context for the action
is defined by the program. Legal teams must sample at least two different actions.
Subplot (b) atomic action mutated into an index to a team. There is now one less root
team in the Team population.

there is a performance benefit in smaller/larger teams and/or different program com-
plements, this will be reflected in the surviving team–program complements (Lichodz-
ijewski and Heywood (2010)), i.e. team–program complexity is a developmental trait.

3.2 Evolving Graphs of Teams

Evolution begins with a program population in which program actions are limited to
the task specific (atomic) actions (Figures 1(a) and 2(a)). In order to provide for the
evolution of hierarchically organized code under a completely open ended process of
evolution (i.e. emergent behavioural modularity), program variation operators are al-
lowed to introduce actions that index other teams within the team population. To do
so, when a program’s action is modified, it has a probability (patomic) of referencing
either a different atomic action or another team. Thus, variation operators have the
ability to incrementally construct multi-team policy graphs (Figures 1(b) and 2(b)).

Each vertex in the graph is a team, while each team member, or program, repre-
sents one outgoing edge leading either to another team or an atomic action. Decision-
making in a policy graph begins at the root team, where each program in the team will
produce one bid relative to the current state, ~s(t). Graph traversal then follows the
program / edge with the largest bid, repeating the bidding process for the same ~s(t) at
every team / vertex along the path until an atomic action is encountered. Thus, given
some state of the environment at time step t, the policy graph computes one path from
root to atomic action, where only a subset of programs in the graph (i.e those in teams
along the path) require execution. Algorithm 2 details the process for evaluating the
TPG individual, which is repeated at every frame, ~s(t), until an end-of-game state is
encountered and fitness for the policy graph can be determined.

As multi-team policy graphs emerge, an increasingly tangled web of connectivity
develops between the team and program populations. The number of unique solu-
tions, or policy graphs, at any given generation is equal to the number of root nodes
(i.e. teams that are not referenced as any program’s action) in the team population.

8 Evolutionary Computation Volume 26, Number 3

Emergent High-Dimensional Multi-Task Reinforcement Learning

Algorithm 2 Selecting an action through traversal of a policy graph. P is the current
program population. A is the set of atomic actions. tmi is the current team (initially a
root node). ~s(t) is the state observation at time t. V is the set of teams visited relative to
state ~s(t) (i.e. initialize V = ∅ when ~s(t) is first encountered). First, all programs in tmi

are executed relative to the current state ~s(t) (Lines 3,4). The algorithm then considers
each program in order of bid (highest to lowest, Line 6). If the program has an atomic
action, the action is returned (Line 7). Otherwise, if the program’s action points to a
team that has not yet been visited, the procedure is called recursively (Line 9) until an
action is returned (Line 7). Thus, while a policy graph may contain cycles, they are not
followed during traversal. In order to ensure an atomic action is always found, team
variation operators are constrained such that each team maintains at least one program
that has an atomic action.

1: procedure SELECTACTION(tmi, ~s(t), V)
2: V = V ∪ tmi . add tmi to visited teams
3: for all pi ∈ tmi do
4: bid(pi) = exec(pi, ~s(t)) . run program on ~s(t) and save result
5: tm′i = sort(tmi) . sort programs by bid, highest to lowest
6: for all pi ∈ tm′i do
7: if action(pi) ∈ A then return action(pi) . atomic action reached
8: else if action(pi) /∈ V then
9: return SELECTACTION(action(pi), ~s(t), V) . follow graph edge

Only these root teams are candidates to have their fitness evaluated, and are subject to
modification by the variation operators.

In each generation, Rgap of the root teams are deleted and replaced by offspring of
the surviving roots. The process for generating team offspring uniformly samples and
clones a root team, then applies mutation-based variation operators to the cloned team
which remove, add, and mutate some of its programs.

The team generation process introduces new root nodes until the number of roots
in the population reaches Rsize. The total number of sampling steps for generating
offspring fluctuates, as root teams (along with the lower policy graph) are sometimes
‘subsumed’ by a new team. Conversely, graphs can be separated, for example through
program action mutation, resulting in new root nodes / policies. This implies that after
initialization, both team and program population size varies. Furthermore, while the
number of root teams remains fixed, the number of teams that become ‘archived’ as
internal nodes (i.e. a library of reusable code) fluctuates.

Limiting evaluation, selection, and variation to root teams only has 2 critical bene-
fits: 1) The cost of evaluation and the size of the search space remains low because only
a fraction of the team population (root teams) represent unique policies to be evalu-
ated and modified in each generation; 2) Since only root teams are deleted, introduced,
or modified, policy graphs are incrementally developed from the bottom up. As such,
lower-level complex structures within a policy graph are protected as long as they con-
tribute to an overall strong policy.

In summary, the teaming GP framework of Lichodzijewski and Heywood (2010) is
extended to allow policy graphs to emerge, defining the inter-relation between teams.
As programs composing a team typically index different subsets of the state space (i.e.,
the screen in the case of ALE), the resulting policy graph will incrementally adapt,

Evolutionary Computation Volume 26, Number 3 9

S. Kelly and M. I. Heywood

indexing more or less of the state space and defining the types of decisions made in
different regions. Finally, Kelly et al. (2018) provide an additional pictorial summary of
the TPG algorithm.

3.2.1 Neutrality test
When variation operators introduce changes to a program, there is no guarantee that
the change will: 1) result in a behavioural change, and 2) even if a behavioural change
results, it will be unique relative to the current set of programs. Point 1 is still useful as
it results in the potential for multiple code changes to be incrementally built up before
they appear, or neutral networks (Brameier and Banzhaf (2007)). However, this can also
result in wasted evaluation cycles because there is no functional difference relative to
the parent. Given that fitness evaluation is expensive, we therefore test for behavioural
uniqueness. Specifically, 50 of the most recent state observations are retained in a global
archive, or ~s(t) ∈ {tlast − 49, ..., tlast}. When a program is modified or a new program
is created, its bid for each state in the archive is compared against the bid of every pro-
gram in the current population. As long all 50 bid values from the new program are
not within τ of all bids from any other program in the current population, the new pro-
gram is accepted. If the new program fails the test, then another instruction is mutated
and the test repeated. We note that such a process has similarities with the motivation
of novelty search (Lehman and Stanley (2011)), i.e. a test for different outcomes. How-
ever, as this process appears at a program, there is no guarantee that this will result
in any novel behaviour when it appears in a team and it is still fitness at the level of
team/agents that determines survival.

4 Experimental Methodology

For comparative purposes, evaluation of TPG will assume the same general approach
as established in the original DQN evaluation (Mnih et al. (2015)). Thus, we assume
the same subset of 49 Atari game titles and, post training, test the champion TPG agent
under 30 test episodes initialized with a stochastically selected number of initial no-op
actions (described in Section 5.1). This will provide us with the widest range of previ-
ous results for comparative purposes.5 Five independent TPG runs are performed per
game title, where this appears to reflect most recent practice for deep learning results.6

The same parameterization for TPG was used for all games (Section 4.2). The only
information provided to the agents was the number of atomic actions available for each
game, the preprocessed screen frame during play (Section 4.1), and the final game score.
Each policy graph was evaluated in 5 game episodes per generation, up to a maximum
of 10 game episodes per lifetime. Fitness for each policy graph is simply the average
game score over all episodes. A single champion policy for each game was identified
as that with the highest training reward at the end of evolution.

4.1 State space screen capture

Based on the observation that the visual input has a lot of redundant information (i.e.
visual game content is designed for maximizing entertainment value, as opposed to
a need to convey content with a minimal amount of information), we adopt a quanti-
zation approach to preprocessing. The following 2-step procedure is applied to every
game frame:

5An alternative test scenario has also appeared in which the RL agent takes over from game state identified
by a human player in an attempt to introduce further diversity into RL agent start state selection (Nair et al.
(2015); Mnih et al. (2016)).

6The original DQN results only reflected a single run per title (Mnih et al. (2015)).

10 Evolutionary Computation Volume 26, Number 3

Emergent High-Dimensional Multi-Task Reinforcement Learning

1. A checkered pattern mask is used to sample 50% of the pixels from the raw game
screen (Figure 3(b)). Each remaining pixel assumes the 8-colour SECAM encoding.
The SECAM encoding is provided by ALE as an alternative to the default NTSC
128-colour format. Uniformly skipping 50% of the raw screen pixels improves the
speed of feature retrieval while having minimal effect on the final representation,
since important game entities are usually larger than a single pixel.

2. The frame is subdivided into a 42 × 32 grid.7 Each grid tile is described by a
single byte, in which each bit encodes the presence of one of eight SECAM colours
within that tile. The final quantized screen representation includes each tile byte
as a decimal value, so defining a state state space ~s(t) of 42 × 32 = 1, 344 decimal
features in the range of 0−255, visualized in Figure 3(c) for the game Up ’N Down
at time step (frame) t.

(a) Raw Game Screen (b) 50% pixel resolution, SECAM encoded

(c) Decimal State Variables

Figure 3: Screen quantization steps, reducing the raw Atari pixel matrix (a) to 1344
decimal state variables (c) using a checkered subsampling scheme (c).

This state representation is inspired by the Basic method defined in Bellemare et al.
(2012a). Note, however, that this method does not use a priori background detection or
pairwise combinations of features.

In comparison to the DQN approach (Mnih et al. (2015); Nair et al. (2015)), no at-
tempt is made to design out the partially observable properties of game content (see
discussion of Section 2.2). Moreover, the deep learning architecture’s three layers of
convolution filters reduce the down sampled 84 × 84 = 7, 056 pixel space to a dimen-

7Implies that the original 210× 160 screen is divided by 5.

Evolutionary Computation Volume 26, Number 3 11

S. Kelly and M. I. Heywood

sion of 3, 136 before applying a fully connected multi-layer perceptron (MLP).8 It is the
combination of convolution layer and MLP that represents the computational cost of
deep learning. Naturally, this imparts a fixed computational cost of learning as the
entire DQN architecture is specified a priori (Section 6.3).

In contrast, TPG evolves a decision making agent from a 1, 344 dimensional space.
In common with the DQN approach, no feature extraction is performed as part of the
preprocessing step, just a quantization of the original frame data. Implicit in this is an
assumption that the state space is highly redundant. TPG therefore perceives the state
space, ~s(t) (Figure 3(c)), as read-only memory. Each TPG program then defines a po-
tentially unique subset of inputs from ~s(t) for incorporation into their decision making
process. The emergent properties of TPG are then required to develop the complexity of
a solution, or policy graph, with programs organized into teams and teams into graphs.
Thus, rather than assuming that all screen content contributes to decision-making, the
approach adopted by TPG is to adaptively subsample from the quantized image space.
The specific subset of state variables sampled within each agent policy is an emergent
property, discovered through interaction with the task environment alone. The impli-
cations of assuming such an explicitly emergent approach on computational cost will
be revisited in Section 6.3.

4.2 TPG Parameterization

Deploying population based algorithms can be expensive on account of the number of
parameters and inter-relation between different parameters. In this work, no attempt
has been made to optimize the parameterization, Table 1, instead we carry over a ba-
sic parameterization from experience with evolving single teams under a supervised
learning task (Lichodzijewski and Heywood (2010)).

Three basic categories of parameter are listed: Neutrality test (Section 3.2.1), Team
population, and Program population (Figure 2). In the case of the Team population,
the biggest parameter decisions are the population size (how many teams to simul-
taneously support), and how many candidate solutions to replace at each generation
(PopGap). The parameters controlling the application of the variation operators com-
mon to earlier instances of TeamGP (pmd, pma, pmm, pmn) also assume the values used
under supervised learning tasks (Lichodzijewski and Heywood (2010)). Conversely,
patomic represents a parameter specific to TPG, where this defines the relative chance of
mutating an action to an atomic action versus a pointer to a team (Section 3.2).

Likewise, the parameters controlling properties of the Program population as-
sume values used for TeamGP as applied to supervised learning tasks for all but
maxProgSize. In essence this has been increased to the point where it is unlikely to
be encountered during evolution. The caption of Algorithm 1 summarizes the instruc-
tion set and representation adopted for programs.

The computational limit for TPG is defined in terms of a computational resource
time constraint. Thus, experiments ran on a shared cluster with a maximum runtime
of 2 weeks per game title. The nature of some games allowed for > 800 generations,
while others limited evolution to a few hundred. No attempt was made to parallelize
execution within each run (i.e. the TPG code base executes as a single thread), the
cluster merely enabled each run to be made simultaneously. Incidentally, the DQN
results required 12–14 days per game title on a GPU computing platform (Nair et al.
(2015)).

8For a tutorial on estimating the size of filters in deep learning architectures see http://cs231n.
github.io/convolutional-networks/

12 Evolutionary Computation Volume 26, Number 3

Emergent High-Dimensional Multi-Task Reinforcement Learning

Table 1: Parameterization of TPG.
Neutrality test (Section 3.2.1)

Number of historical samples in diversity test 50
Threshold for bid uniqueness (τ) 10−4

Team population
Number of (root) teams in initial population (Rsize) 360

Number of root nodes that can be replaced per generation (Rgap) 50%
Probability of deleting or adding a program (pmd, pma) 0.7

Max. initial team size (ω) 5
Prob. of creating a new program (pmm) 0.2

Prob. of changing a program action (pmn) 0.1
Prob. of defining an action as a team or atomic action (patomic) 0.5

Program population
Total number of registers per program (numRegisters) 8

Max. number of instructions a program may take (maxProgSize) 96
Prob. of deleting or adding an instruction within a program (pdelete, padd) 0.5

Prob. of mutating a instruction within a program (pmutate) 1.0
Prob. of swapping a pair of instructions within a program (pswap) 1.0

5 Single-Task Learning

This section documents TPG’s ability to build decision-making policies in the ALE from
the perspective of domain-independent AI, that is, discovering policies for a variety of
ALE game environments with no task-specific parameter tuning. Before presenting de-
tailed results, we provide an overview of training performance for TPG on the suite of
49 ALE titles common to most benchmarking studies (Section 2.2). Figure 4 illustrates
average TPG training performance (across the 5 runs per game title) as normalized rel-
ative to DQN’s test score (100%) and random play (0%), Mnih et al. (2015). The random
agent simply selects actions with uniform probability at each game frame9. Under test
conditions, TPG exceeds DQN’s score in 27 games (Figure 4(a)), while DQN maintains
the highest score in 21 games (Figure 4(b)). Thus, TPG and DQN are broadly compa-
rable from a performance perspective, each matching/beating the other in a subset of
game environments. Indeed, there is no statistical difference between TPG and DQN
test scores over all 49 games, Section 5.1. However, TPG produces much simpler solu-
tions in all cases, largely due to its emergent modular representation, which automat-
ically scales through interaction with the task environment. That is to say, concurrent
to learning a strategy for gameplay, TPG explicitly answers the question of: 1) what to
index from the state representation for each game; and, 2) what components from other
candidate policies to potentially incorporate within a larger policy. Conversely, DQN as-
sumes a particular architecture, based on a specific deep learning–MLP combination,
in which all state information always contributes.

5.1 Competency under the Atari Learning Environment

The quality of TPG policies is measured under the same test conditions as used for
DQN, or the average score over 30 episodes per game title with different initial condi-

9Normalized score is calculated as 100 × (TPG score - random play score)/(DQN score - random play
score). Normalizing scores makes it possible to plot TPG’s progress relative to multiple games together
regardless of the scoring scheme in different games, and facilitates making a direct comparison with DQN.

Evolutionary Computation Volume 26, Number 3 13

S. Kelly and M. I. Heywood

● Alien

●

Asteroids

●

●●

● Bowling

●

●

●

●

●

●

●

●

●

●

●

●

●

Ms. Pac−Man
●

●

●

●

●

●

●

0 200 400 600 800

1

5
10

50
100

500
1000

5000

%
 D

Q
N

 L
ev

el

Generation
(a)

●

Amidar
●

●

●

●

●

●

●

●

●

●

●

● Q*Bert

●

●

●

●

Space Invaders

●

●

● Video Pinball

●

0 200 400 600 800

Generation
(b)

Figure 4: TPG training curves, each normalized relative to DQN’s score in the same
game (100%) and random play (0%). (a) shows curves for the 27 games in which TPG
ultimately exceeded the level of DQN under test conditions. (b) shows curves for the 21
games in which TPG did not reach DQN level during test. Note that in several games,
TPG began with random policies (generation 1) that exceeded the level of DQN. Note
that these are training scores averaged over 5 episodes in the given game title, and are
thus not as robust as DQN’s test score used for normalization. Also, these policies were
often degenerate. For example, in Centipede, it is possible to get a score of 12,890 by
selecting the ‘up-right-fire’ action in every frame. While completely un-interesting, this
strategy exceeds the test score reported for DQN (8,390) and the reported test score for
a human professional video game tester (11,963) Mnih et al. (2015). Regardless of their
starting point, TPG policies improve throughout evolution to become more responsive
and interesting. Note also that in Video Pinball, TPG exceeded DQN’s score during
training but not under test. Curve for Montezuma’s Revenge not pictured, a game in
which neither algorithm scores any points.

tions and a maximum of 18,000 frames per game (Mnih et al. (2015); Nair et al. (2015)).
Diverse initial conditions are achieved by forcing the agent to select ‘no action’ for the
first no-op frames of each test game, where no-op ∈ [0, 30], selected with uniform proba-
bility at the start of each game10. Since some game titles derive their random seed from
initial player actions, the stochastic no-op ensures a different seed for each test game.
Stochastic frame skipping, discussed in Section 2.1, implies variation in the random
seeds and a stochastic environment during gameplay. Both frame skipping and no-op
are enforced in this work to ensure a stochastic environment and fair comparison to
DQN. Likewise, the available actions per game is also assumed to be known.11

10Some game titles will be more affected than others. For example, titles such as Ms. Pac-Man play a song
for the first ≈ 70 games frames while the agent’s actions are ignored (thus no-op has no effect), while the
agent takes control immediately in other game titles.

11The study of Liang et al. (2016) question this assumption, but find that better performance resulted when
RL agents were constructed with the full action space.

14 Evolutionary Computation Volume 26, Number 3

Emergent High-Dimensional Multi-Task Reinforcement Learning

Two sets of comparator algorithm are considered:

• Screen capture state: construct models from game state, ~s(t), defined in terms of
some form of screen capture input.12 These include the original DQN deep learn-
ing results (Mnih et al. (2015)), DQN as deployed through a massive distributed
search (Nair et al. (2015)), double DQN (van Hasselt et al. (2016)), and hyper-NEAT
(Hausknecht et al. (2014)). While the original DQN report emphasized compari-
son with a human professional game tester (Mnih et al. (2015)), we avoid such a
comparison here primarily because the human results are not reproducible.

• Engineered features: define game state, ~s(t), in terms of features designed a priori;
thus, significantly simplifying the task of finding effective policies for game play,
but potentially introducing unwanted biases. Specifically, the Hyper-NEAT and
NEAT results use hand crafted ‘Object’ features specific to each game title in which
different ‘substrates’ denote the presence and location of different classes of object
(see Hausknecht et al. (2014) and the discussion of Section 2.2). The Blob-PROST
results assume features designed from an attempt to reverse engineer the process
performed by DQN (Liang et al. (2016)). The resulting state space is a vector of
≈ 110× 106 attributes from which a linear RL agent is constructed (Sarsa). Finally,
the best performing Sarsa RL agent (Conti-Sarsa) is included from the DQN study
(Mnih et al. (2015)) where this assumes the availability of ‘contingency awareness’
features (Bellemare et al. (2012b)).

In each case TPG based on screen capture will be compared to the set of compara-
tor models across a common set of 49 Atari game titles. Statistical significance will
be assessed using the Friedman test, where this is a non-parametric form of ANOVA
(Demšar (2006); Japkowicz and Shah (2011)). Specifically, parametric hypothesis tests
assume commensurability of performance measures. This would imply that averaging
results across multiple game titles makes sense. However, given that the score step
size and types of property measured in each title are typically different, then averaging
Null test performance across multiple titles is no longer commensurable. Conversely,
the Friedman test establishes whether or not there is a pattern to the ranks. Rejecting
the Null hypothesis implies that there is a pattern, and the Nemenyi post hoc test can
be applied to assess the significance (Demšar (2006); Japkowicz and Shah (2011)).

In the case of RL agents derived from screen capture state information (Table 7,
Appendix A), the Friedman test returns a χ2

F = 21.41 which for the purposes of the
Null hypothesis has an equivalent value from the F-distribution of FF = 5.89 (Demšar
(2006)). The corresponding critical value F (α = 0.01, 4, 192) is 3.48, hence the Null hy-
pothesis is rejected. Applying the post hoc Nemenyi test (α = 0.05) provides a critical
difference of 0.871. Thus, relative to the best ranked algorithm (Gorila), only Hyper-
NEAT is explicitly identified as outside the set of equivalently performing algorithms
(or 2.63 + 0.871 < 3.87). This conclusion is also borne out by the number of game titles
that each RL agent provides best case performance; Hyper-NEAT provides 4 best case
game titles, whereas TPG, Double DQN and Gorila return at least 11 best title scores
each (Table 7, Appendix A).

Repeating the process for the comparison of TPG13 to RL agents trained under
hand crafted features (Table 8), the Friedman test returns a χ2

F = 80.59 and an equiva-
lent value from the F-distribution of FF = 33.52. The critical value is unchanged as the

12Reviewed in Section 2.2 for comparator algorithms and detailed in Section 4.1 for TPG.
13TPG still assumes screen capture state.

Evolutionary Computation Volume 26, Number 3 15

S. Kelly and M. I. Heywood

number of models compared and game titles is unchanged, hence the Null hypothesis
is rejected. Likewise the critical difference from the post hoc Nemenyi test (α = 0.05) is
also unchanged 0.871. This time only the performance of the Conti-Sarsa algorithm is
identified as significantly worse (or 2.16 + 0.871 < 4.76).

In summary, these results mean that despite TPG having to develop all the archi-
tectural properties of a solution, TPG is still able to provide an RL agent that performs
as well as current state-of-the-art. Conversely, DQN assumes a common pre-specified
deep learning topology consisting of millions of weights. Likewise, Hyper-NEAT as-
sumes a pre-specified model complexity of ≈ 900, 000 weights, irrespective of game
title. As will become apparent in the next section, TPG is capable of evolving policy
complexities that reflect the difficulty of the task.

6 Simplicity Through Emergent Modularity

The simplest decision making entity in TPG is a single team of programs (Figure 1(a)),
representing a stand-alone behaviour which maps quantized pixel state to output (ac-
tion). Policies are initialized in their simplest form: as a single team with between 2
and ω programs. Each initial team will subsample a typically unique portion of the
available (input) state space. Throughout evolution, search operators will develop
team/program complement and may incrementally combine teams to form policy
graphs. However, policies will only complexify when/if simpler solutions are out-
performed. Thus, solution complexity is an evolved property driven by interaction
with the task environment. By compartmentalizing decision-making over multiple in-
dependent modules (teams), and incrementally combining modules into policy graphs,
TPG is able to simultaneously learn which regions of the input space are important for
decision making and discover an appropriate decision making policy.

6.1 Behavioural Modularity

Emergent behavioural modularity in the development of TPG solutions can be visual-
ized by plotting the number of teams incorporated into the champion policy graph as
a function of generation, Figure 5(a). Development is non-monotonic, and the speci-
ficity of team compliment as a function of game environment is readily apparent. For
example, a game such as Asteroids may see very little in the way of increases to team
complement as generations increase. Conversely, Ms. Pac-Man, which is known to be
a complex task (Pepels and Winands (2012); Schrum and Miikkulainen (2016)), saw the
development of a policy graph incorporating ≈ 200 teams. Importantly, making a de-
cision in any single time step requires following one path from the root team to atomic
action. Thus, the cost in mapping a single game frame to an atomic action is not lin-
early correlated to the graph size. For example, while the number of teams in the Alien
policy was ≈ 60, on average only 4 teams were visited per graph traversal during test
(See black squares in Figure 5(a)). Indeed, while the total number of teams in champion
TPG policy graphs ranges from 7 (Asteroids) to 300 (Bowling), the average number of
teams visited per decision is typically less than 5, Figure 5(a).

6.2 Evolving Adapted Visual Fields

Each Atari game represents a unique graphical environment, with important events
occurring in different areas of the screen, at different resolutions, and from different
perspectives (e.g. global maze view versus first-person shooter). Part of the challenge
with high-dimensional visual input data is determining what information is relevant
to the task. Naturally, as TPG policy graphs develop, they will incrementally index

16 Evolutionary Computation Volume 26, Number 3

Emergent High-Dimensional Multi-Task Reinforcement Learning

● Alien

● Asteroids

●

●

●

● Bowling

● Boxing

●

●

●

●

●

●

●

●●

●

●

●

Ms. Pac−Man

●

●

●

●

●

●

●

● Rand

0 200 400 600 800

1

2

5

10

20

50

100

200

N
um

be
r

of
 T

ea
m

s

Generation

● Entire champion policy graph
Visited per decision during test

(a)

● Alien

●

Asteroids

●

●

●

● Bowling

● Boxing

●

●

●

● ●

●

●

●

●

●

●

●

Ms. Pac−Man

●

●

●

●

●

●

●

0 200 400 600 800

0

20

40

60

80

100

P
ro

po
rt

io
n

of
 S

en
so

r
S

pa
ce

 In
de

xe
d

Generation

● Entire champion policy graph
Average single decision during test

(b)

Figure 5: Emergent Modularity. (a) Development of the number of teams per cham-
pion policy graph as a function of generation and game title. The run labeled ‘Rand’
reflects the number of teams per policy when selection pressure is removed, confirm-
ing that module emergence is driven by selective pressure rather than drift or other
potential biases. Black circles indicate the total number of teams in each champion
policy, while black squares indicate the average number of teams visited to make each
single decision during test. (b) Development of the proportion of input space indexed
by champion policies. Black circles indicate the total proportion indexed by each cham-
pion policy, while black squares indicate the average proportion observed to make each
single decision during test. For clarity only the 27 game titles with TPG agent perfor-
mance ≥ DQN are depicted.

more of the state space. This is likely one reason why they grow more in certain envi-
ronments. Figure 5(b) plots the proportion of input space indexed by champion policy
graphs throughout development, where this naturally correlates with the policy graph
development shown in Figure 5(a). Thus, the emergent developmental approach to
model building in TPG can also be examined from the perspective of the efficiency
with which information from the state space, ~s(t) is employed. In essence, TPG policies
have the capacity to develop their own Adapted Visual Fields (AVF). While the propor-
tion of the visual field (input space) covered by a policy’s AVF ranges from about 10%
(Asteroids) to 100% (Bowling), the average proportion required to make each decision
remains low, or less than 30% (See black squares Figure 5(b)).

Figure 6 provides an illustration of the AVF as experienced by a single TPG team
(c) versus the AVF for an entire champion TPG policy graph (d) in the game “Up ‘N
Down”. This is a driving game in which the player steers a Dune Buggy along a track
that zig-zags vertically up and down the screen. The goal is to collect flags along the
route and avoid hitting other vehicles. The player can smash opponent cars by jumping
on them using the joystick fire button, but looses a turn upon accidentally hitting a car
or jumping off the track. TPG was able to exceed the level of DQN in Up and Down
(test games consistently ended due to the 18,000 frame limit rather than agent error)

Evolutionary Computation Volume 26, Number 3 17

S. Kelly and M. I. Heywood

(a) Raw Game Screen (b) Preprocessed Screen

(c) Single Team AVF (d) Policy AVF

Figure 6: Adapted Visual Field (AVF) of champion TPG policy graph in Up ’N Down.
Black regions indicate areas of the screen not indexed. (a) shows the raw game screen.
(b) shows the preprocessed state space, where each decimal state variable (0-255) is
mapped to a unique colour. (c) shows the AVF for a single team along the active path
through the policy graph at this time step, while (d) shows the AVF for the policy
graph as a whole. Both AVFs exhibit patterns of sensitivity consistent with important
regularities of the environment, specifically the zig-zagging track.

with a policy graph that indexed only 42% of the screen in total, and an average 12%
of the screen per decision (See column %SP in Table 3). The zig-zagging patterns that
constitute important game areas are clearly visible in the policy’s AVF. In this case, the
policy learned a simplified sensor representation well tailored to the task environment.
It is also apparent that in the case of the single TPG team, the AVF does not index state
information from a specific local region, but instead samples from a diverse spatial
range across the entire image (Figure 6(c)).

In order to provide more detail, column %SP Table 3, gives the percent of state
space (screen) indexed by the policy as a whole. Maze tasks, in which the goal involves
directing an avatar through a series of 2-D mazes (eg. Bank Heist, Ms. Pac-Man, Ven-
ture) typically require near-complete screen coverage in order to navigate all regions
of the maze, and relatively high-resolution is important to distinguish various game
entities from maze walls. However, while the policy as a whole may index most of the
screen, the modular nature of the representation implies that no more than 27% of the
indexed space is considered before making each decision (Table 3, Column %SP), sig-
nificantly improving the run-time complexity of the policy. Furthermore, adapting the
visual field implies that extensive screen coverage is only used when necessary. Indeed,
in 10 of the 27 games for which TPG exceeded the score of DQN, it did so while index-

18 Evolutionary Computation Volume 26, Number 3

Emergent High-Dimensional Multi-Task Reinforcement Learning

ing less that 50% of the screen, further minimizing the number of instructions required
per decision.

In summary, while the decision-making capacity of the policy graph expands
through environment-driven complexification, the modular nature of a graph repre-
sentation implies that the cost of making each decision, as measured by the number of
teams/programs which require execution, remains relatively low. Section 6.3 investi-
gates the issue of computational cost to build solutions, and Section 6.4 will consider
the cost of decision making post training.

6.3 Computational Cost

The budget for model building in DQN was to assume a fixed number of decision
making frames per game title (50 million). The cost of making each decision in deep
learning is also fixed a priori, a function of the preprocessed image (Section 6.3) and
the complexity of a multi-layer preceptron (MLP). Simply put, the former provides an
encoding of the original state space into a lower dimensional space, the latter represents
the decision making mechanism.

As noted in Section 4.2, TPG runs are limited to a fixed computational time of 2
weeks per game title. However, under TPG the cost of decision making is variable as
solutions do not assume a fixed topology. We can now express computational cost in
terms of the cost to reach the DQN performance threshold (27 game titles), and the
typical cost over the two week period (remaining 21 game titles). Specifically, let T be
the generation at which a TPG run exceed the performance of DQN. P (t) denotes the
number of policies in the population at generation t. Let i(t) be the average number
of instructions required by each policy to make a decision, and let f(t) be the total
number of frames observed over all policies at generation t, then the total number
of operations required by TPG to discover a decision-making policy for each game is∑T

t=1 P (t)×i(t)×f(t). When viewed step-wise, this implies that computational cost can
increase or decrease relative to the previous generation, depending on the complexity
of evaluating TPG individuals (which are potentially all unique topologies).

Figure 7 plots the number of instructions required for each game over all decision
making frames observed by agents during training. Figure 7(a) characterizes computa-
tional cost in terms of solutions to the 27 game titles that reached the DQN performance
threshold, i.e. the computational cost of reaching the DQN performance threshold.
Conversely, Figure 7(b) illustrates the computational cost for games that never reached
the DQN performance threshold, i.e. terminated at the 2-week limit. As such this is
representative of the overall cost of model building in TPG for the ALE task given a
two week computational budget. In general, cost increases with an increasing number
of (decision making) frames, but the cost benefit of the non-monotonic, adaptive nature
of the policy development is also apparent.

It is also readily apparent that TPG typically employed more than the DQN budget
for decision making frames (5 × 107). However, the cost of model construction is also
a function of the operations per decision. For example, the parameterization adopted
by DQN results in an MLP hidden layer consisting of 1, 605, 632 weights, or a total
computational cost in the order of 0.8 × 1014 over all 50, 000, 000 training frames. The
total cost of TPG model building is 4 × 1011 in the worst case (Figure 7(a)). Thus, the
cost of the MLP step, without incorporating the cost of performing the deep learning
convolution encoding (> 3 million calculations at layer 1 for the parameterization of
Mnih et al. (2015)), exceeds TPG by several orders of magnitude. Moreover, this does
not reflect the additional cost of performing a single weight update.

Evolutionary Computation Volume 26, Number 3 19

S. Kelly and M. I. Heywood

5 × 106 5 × 107 5 × 108 1010

100

101

102

103

104

105

106

●

●

● 4 × 1011

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

TPG

0.8 × 1014DQN

O
pe

ra
tio

ns

Frame

(a)

5 × 106 5 × 107 5 × 108 1010

●

●

●

●

●

●

0.9 × 1012●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

TPG

0.8 × 1014DQN

Frame

(b)

Figure 7: Number of operations per frame (y-axis) over all game frames observed dur-
ing training (x-axis). (a) shows the subset of games up to the point where TPG exceeded
DQN test score. (b) shows games for which TPG did not reach DQN test score. Black
diamonds denote the most complex cases, with text indicating the cumulative number
of operations required to train each algorithm up to that point. DQN’s architecture is
fixed a priori, thus cumulative computational cost at each frame is simply a sum over
the number of operations executed up to that frame. TPG’s complexity is adaptive, thus
produces a unique development curve and max operations for each game title. Frame
limit for DQN was 50 million (5 × 107). Frame limit for TPG, imposed by a cluster
resource time constraint of 2 weeks, is only reached in (b).

6.4 Cost of real-time decision making

Table 2 summarizes the cost / resource requirement when making decisions post train-
ing, i.e. the cost of deploying an agent. Liang et al. (2016) report figures for the memory
and wall clock time on a 3.2GHz Intel Core i7-4790S CPU. Computational cost for DQN
is essentially static due to a fixed architecture being assumed for all games. Blob-PROST
complexity is a function of the diversity of colour pallet in the game title. Apparently
the 9GB figure was the worst case, with 3.7GB representing the next largest memory
requirement. It is apparent that TPG solutions are typically 2 to 3 orders of magnitude
faster than DQN and an order of magnitude faster than Blob-PROST.

TPG model complexity is an evolved trait (Section 6) and only a fraction of the
resulting TPG graph is ever visited per decision. Table 3 provides a characterization of
this in terms of three properties of champion teams (as averaged over the 5 champions
per game title, one champion per run):

• Teams (Tm) – both the average total number of teams per champion and corre-
sponding average number of teams visited per decision.

• Instructions per decision (Ins) – the average number of instructions executed per
agent decision. Note that as a linear genetic programming representation is as-
sumed, most intron code can be readily identified and skipped for the purposes

20 Evolutionary Computation Volume 26, Number 3

Emergent High-Dimensional Multi-Task Reinforcement Learning

Table 2: Wall clock time for making each decision and memory requirement. † Values
for TPG reflect the memory utilized to support the entire population whereas only one
champion agent is deployed post training, i.e. tens to hundreds of kilobytes. TPG
wall-clock time is measured on a 2.2GHz Intel Xeon E5-2650 CPU.

Method Decisions per sec Frames per sec Memory

DQN 5 20 9.8 GB
Blob-PROST 56 – 300 280 – 1500 50MB – 9GB

TPG 758 – 2853 3032 – 11412 118MB – 146MB†

of program execution (Brameier and Banzhaf (2007)). Thus, ‘Ins’ reflects the code
actually executed.

• Proportion of visual field (%SP) – the proportion of the state space (Section 4.1)
indexed by the entire TPG graph versus that actually indexed per decision. This
reflects the fact that GP individuals, unlike deep learning or Blob-PROST, are never
forced to explicitly index all of the state space. Instead the parts of the state space
utilized per program is an emergent property (discussed in detail in Section 6.2).

It is now apparent that on average only 2.2 teams require evaluation per decision
(parenthesis value in Tm column, Table 3). This also means that decisions are typically
made on the basis of 3 − 27% of the available state space (parenthesis value in %SP
column, Table 3). Likewise, the number of instructions executed is strongly dependent
on the game title. The TPG agent for Time Pilot executed over a thousand instructions
per action, whereas the TPG agent for Asteroids only executed 96. In short, rather
than having to assume a fixed decision making topology with hundreds of thousands
of parameters, TPG is capable of discovering emergent representations appropriate for
each task.

7 Multi-Task Learning

Up to this point we have demonstrated the ability of TPG to build strong single-task
decision-making policies, where a unique policy graph was trained from scratch for
each Atari game title. This section reports on TPG’s ability to learn multiple tasks si-
multaneously, or Multi-task Reinforcement Learning (MTRL). MTRL operates with the
same state representation as single-task learning. That is, state variables consist of raw
screen capture with no additional information regarding which game is currently being
played. Furthermore, the full Atari action set is available to agents at all times.

When the TPG population is trained on multiple Atari games simultaneously, a
single run can produce multiple champion policies, one for each game title, that match
or exceed the level of play reported for DQN. In some cases, a multi-task policy (i.e. a
single policy graph capable of playing multiple titles) also emerges that plays all games
at the level of DQN. Furthermore, the training cost for TPG under MTRL is no greater
than task-specific learning, and the complexity of champion multi-task TPG policies is
still significantly less than task-specific solutions from deep learning.

7.1 Task Groups

While it is possible to categorize Atari games by hand in order to support incremental
learning Braylan et al. (2015), no attempt was made here to organize game groups based

Evolutionary Computation Volume 26, Number 3 21

S. Kelly and M. I. Heywood

Table 3: Characterizing overall TPG complexity. Tm denotes the total number of teams
in champions versus the average number of teams visited per decision (value in paren-
thesis). Ins denotes the average number of instructions executed to make each decision.
%SP denotes the total proportion of the state space covered by the policy versus (value
in parenthesis).

Title Tm Ins %SP Title Tm Ins %SP

Alien 67(4) 498 68(13) Amidar 132(6) 1066 87(23)
Assault 37(4) 420 50(14) Asterix 77(5) 739 73(20)
Asteroids 7(2) 96 10(4) Atlantis 39(4) 939 64(22)
Bank Heist 94(3) 532 75(15) Battle Zone 15(2) 191 24(6)
Beam Rider 115(4) 443 83(13) Bowling 300(4) 927 100(26)
Boxing 102(6) 1156 79(26) Breakout 6(3) 158 8(6)
Centipede 36(4) 587 48(18) C. Command 49(4) 464 54(15)
Crazy Climber 150(3) 1076 99(28) Demon Attack 19(3) 311 26(8)
Double Dunk 10(2) 98 20(3) Enduro 24(3) 381 37(10)
Fishing Derby 33(3) 472 50(15) Freeway 18(4) 296 26(11)
Frostbite 45(4) 434 53(13) Gopher 4(2) 156 8(5)
Gravitar 49(4) 499 62(14) H.E.R.O 96(5) 979 75(24)
Ice Hockey 29(4) 442 39(14) James Bond 41(4) 973 59(22)
Kangaroo 52(4) 877 64(21) Krull 62(4) 376 58(10)
Kung-Fu Master 31(2) 137 44(5) M’s Revenge 403(2) 722 100(22)
Ms. Pac-Man 197(5) 603 95(19) Name This Game 93(3) 361 77(13)
Pong 12(4) 283 20(10) Private Eye 71(7) 761 64(17)
Q*Bert 255(8) 2346 99(46) River Raid 7(3) 286 15(9)
Road Runner 86(7) 1169 74(27) Robotank 42(2) 252 47(8)
Seaquest 58(4) 579 60(15) Space Invader 68(4) 624 65(17)
Star Gunner 17(4) 516 35(15) Tennis 3(2) 71 5(3)
Time Pilot 189(5) 1134 95(27) Tutankham 36(2) 464 58(14)
Up and Down 28(3) 425 42(12) Venture 77(6) 1262 74(23)
Video Pinball 38(3) 399 55(13) Wizard of Wor 23(4) 433 36(12)
Zaxxon 81(4) 613 68(16)

on perceived similarity or multi-task compatibility. Such a process would be labour
intensive and potentially misleading, as each Atari game title defines its own graphical
environment, colour scheme, physics, objective(s), and scoring scheme. Furthermore,
joystick actions are not necessarily correlated between game titles. For example, the
’down’ joystick position generally causes the avatar to move vertically down the screen
in maze games (eg. Ms. Pac-Man, Alien), but might be interpreted as ’pull-up’ in flying
games (Zaxxon), or even cause a spaceship avatar to enter hyperspace, disappearing
and reappearing at a random screen location (Asteroids).

In order to investigate TPG’s ability to learn multiple Atari game titles simultane-
ously, a variety of task groupings, i.e. specific game titles to be learned simultaneously,
are created from the set of games for which single-task runs of TPG performed well.
Relative to the four comparison algorithms which use a screen capture state repre-
sentation, TPG achieved the best reported test score in 15 of the 49 Atari game titles
considered (Table 7, Appendix A). Thus, task groupings for MTRL can be created in
an unbiased way by partitioning the list of 15 titles in alphabetical order. Specifically,
Table 4 identifies 5 groups of 3 games each and 3 groups of 5 games each.

22 Evolutionary Computation Volume 26, Number 3

Emergent High-Dimensional Multi-Task Reinforcement Learning

Table 4: Task groups used in multi-task reinforcement learning experiments. Each
group represents a set of games to be learned simultaneously. See Section 7.1.

3-Title Groups Game 5-Title Groups

3.1
Alien

5.1
Asteroids

Bank Heist

3.2
Battle Zone

Bowling
Centipede

5.23.3
Chopper Command

Fishing Derby
Frostbite

3.4
Kangaroo

Krull

5.3
Kung-Fu Master

3.5
Ms. Pac-Man
Private Eye
Time Pilot

7.2 Task Switching

As in single-task learning, each policy is evaluated in 5 episodes per generation. How-
ever, under MTRL, new policies are first evaluated in one episode under each game title
in the current task group. Thereafter, the game title for each training episode is selected
with uniform probability from the set of titles in the task group. The maximum training
episodes for each policy is 5 episodes under each game title. For each consecutive block
of 10 generations, one title is selected with uniform probability to be the active title for
which selective pressure is applied. Thus, while a policy may store the final score from
up to 5 training episodes for each title, fitness at any given generation is the average
score over up to 5 episodes in the active title only. Thus, selective pressure is only ex-
plicitly applied relative to a single game title. However, stochastically switching the
active title at regular intervals throughout evolution implies that a policy’s long-term
survival is dependent on a level of competence in all games.

7.3 Elitism

There is no multi-objective fitness component in the formulation of MTRL proposed
in this work. However, a simple form of elitism is used to ensure the population as
a whole never entirely forgets any individual game title. As such, the single policy
with the best average score in each title is protected from deletion, regardless of which
title is currently active for selection. Note that this simple form of elitism does not
protect multi-task policies, which may not have the highest score for any single task,
but are able to perform relatively well on multiple tasks. Failing to protect multi-task
policies became problematic under the methodology of our first MTRL study (Kelly
and Heywood (2017b)). Thus, a simple form of multi-task elitism is employed in this
work. The elite multi-task team is identified in each generation using the following
2-step procedure:

1. Normalize each policy’s mean score on each task relative to the rest of the current

Evolutionary Computation Volume 26, Number 3 23

S. Kelly and M. I. Heywood

population. Normalized score for team tmi on task tj , or scn(tmi, tj), is calculated
as (sc(tmi, tj) − scmin(tj))/(scmax(tj) − scmin(tj)), where sc(tmi, tj) is the mean
score for team tmi on task tj and scmin,max(tj) are the population-wide min and
max mean scores for task tj .

2. Identify the multi-task elite policy as that with the highest minimum normalized
score over all tasks. Relative to all root teams in the current population, R, the elite
multi-task team is identified as tmi ∈ R | ∀tmk ∈ R : min(scn(tmi, t{1..n}) >
min(scn(tmk, t{1..n}), where min(scn(tmi, t{1..n}) is the minimum normalized
score for team tmi over all tasks in the game group and n denotes the number
of titles in the group.

Thus, in each generation, elitism identifies 1 champion team for each game title and 1
multi-task champion, where elite teams are protected from deletion in that generation.

7.4 Parameterization

The parameterization used for TPG under multi-task reinforcement learning is identical
to that described in Table 1 with the exception ofRsize parameter, or the number of root
teams to maintain in the population. Under MTRL, the population size was reduced to
90 (1/4 of the size used under single-task learning) in order to speed up evolution and
allow more task switching cycles to occur throughout the given training period14. A
total of 5 independent runs were conducted for each task group in Table 4. Multi-task
elite teams represent the champions from each run at any point during development.
Post training, the final champions from each run are subject to the same test procedure
as identified in Section 4 for each game title.

7.5 MTRL Performance

Figure 8 reports the MTRL training and test performance for TPG relative to game
group 5.3, where all TPG scores are normalized relative to scores reported for DQN in
(Mnih et al. (2015)). By generation ≈ 750, the best multi-task policy is able to play all 5
game titles at the level reported for DQN15. Under test, the multi-task champion (ie. a
single policy that plays all game titles at a high level) exceeds DQN in 4 of the 5 games,
while reaching over 90% of DQN’s score in the remaining title (Krull), Figure 8(b). Note
that in the case of task group 5.3, only one run produced a multi-task policy capable of
matching DQN in all 5 tasks.

While the primary focus of MTRL is to produce multi-task policies, a byproduct
of the methodology employed here (i.e. task-switching and elitism rather than multi-
objective methods) is that each run also produces high-quality single-task policies (i.e.
policies that excel at one game title). Test results for these game-specific specialists,
which are simply the 5 elite single-task policies at the end of evolution, is reported in
Figure 8(c). While not as proficient as policies trained on a single task (Section 5.1), at
least one single-task champion emerges from MTRL in task group 5.3 that matches or
exceeds the score from DQN in each game title.

Table 5 provides a summary overview of test scores for the champion multi-task
and single-task policy relative to each game group. Test scores that match or exceed
that of DQN are highlighted in grey. For the 3-title groups, TPG produced multi-task

14As under single-task experiments, the computational limit for MTRL is defined in terms of a computa-
tional time constraint. Experiments ran on a shared cluster with a maximum runtime of 1 week per run.

15Note that training scores reported for TPG in Figure 8(a) are averaged from a max of 5 episodes in each
game title, and are thus not as robust as the test scores reported in Figure 8(b)

24 Evolutionary Computation Volume 26, Number 3

Emergent High-Dimensional Multi-Task Reinforcement Learning

champions capable of playing all 3 game titles in groups 3.2, 3.4, and 3.5, while the
multi-task champions learned 2/3 titles in group 3.1 and only 1/3 titles in group 3.3.
For the 5-title groups, TPG produced multi-task champions capable of playing all 5 ti-

0 200 400 600 800

1

5

10

50

100

500

1000

Generation

%
 D

Q
N

 L
ev

el

Krull
Kung−Fu Master
Ms. Pac−Man
Private Eye
Time Pilot

(a) MTRL Train

●

●

●

●

●

Kru
ll

Kun
g−

Fu
M

as
te

r

M
s.

Pac
−M

an

Priv
at

e
Eye

Tim
e

Pilo
t

25

50

100

300

500

%
 D

Q
N

 L
ev

el

(b) Multi-Task Test

●

●

●

●

●

Kru
ll

Kun
g−

Fu
M

as
te

r

M
s.

Pac
−M

an

Priv
at

e
Eye

Tim
e

Pilo
t

25

50

100

300

500

(c) Single-Task Test

Figure 8: TPG multi-task reinforcement learning results for game group 5.3. Each run
identifies one elite multi-task policy per generation. The training performance of this
policy relative to each game title is plotted in (a), where each curve represents the mean
score in each game title for the single best multi-task policy over all 5 independent runs.
Note that multi-task implies that the scores reported at each generation are all from the
same policy. Test scores for the final multi-task champion from each of 5 runs is plotted
in (b), with the single best in black. Test scores for the single-task champions from each
run are plotted in (c). Note that single-task implies the scores are potentially all from
different policies. All TPG scores are normalized relative to DQN’s score in the same
game (100%) and a random agent (0%). Training scores in (a) represent the policy’s
average score over a max of 5 episodes in each title. Test scores in (b) and (c) are the
average game score over 30 test episodes in the given game title (The line connecting
points in (b) emphasizes that scores are from the same multi-task policy). DQN scores
are from (Mnih et al. (2015)).

Evolutionary Computation Volume 26, Number 3 25

S. Kelly and M. I. Heywood

Table 5: Summary of multi-task learning results over all task groups. MT and ST report
test scores for the single best multi-task (MT) and single-task (ST) policy for each game
group over all 5 independent runs. Scores that match or exceed the test score reported
for DQN in (Mnih et al. (2015)) are highlighted in grey (The MT score for Krull in group
5.3 is 90% of DQN’s score, and is considered a match).

MT ST Group Game Group MT ST

864 1494.3
3.1

Alien

5.1

346.7 759
2176 2151 Asteroids 1707 2181.3
1085 1085 Bank Heist 724 724
36166 37100

3.2
Battle Zone 11800 30466.7

197 197 Bowling 107 212
13431.2 22374.6 Centipede

5.2

9256.9 20480.2
3173.3 3266.7

3.3
Chopper Command 1450 2716.7

-66.6 -38.4 Fishing Derby 24.967 27.7
2900.7 4216 Frostbite 2087.3 4283.3
11200 10940

3.4
Kangaroo 11200 11893.3

4921.3 17846.7 Krull

5.3

3644.3 6099.7
25600 42480 Kung-Fu Master 25393.3 34273.3
3067.7 3164.7

3.5
Ms. Pac-Man 3312.3 3430

14665 14734.7 Private Eye 4000 15000
7846.7 8193.3 Time Pilot 7270 8570

tles in group 5.3, 4/5 titles in group 5.2, and 3/5 titles in group 5.1. It seems that Alien
and Chopper Command are two game titles that TPG had difficulty learning under the
MTRL methodology adopted here (neither multi-task or single-task policies emerged
for either game title). Interestingly, while Fishing Derby was difficult to learn when
grouped with Frostbite and Chopper Command (group 3.3), adding 2 additional game
titles to the task switching procedure (i.e. group 5.2) seems to have been helpful to
learning Fishing Derby. Note that test scores from policies developed under the MTRL
methodology are generally not as high as scores achieved through single-task learning
for the same game titles (Section 5.1). This is primarily due to the extra challenge of
learning multiple task simultaneously. However, it is important to note that the popu-
lation size for MTRL experiments was 1/4 of that used for single-task experiments and
the computational budget for MTRL was half that of single-task experiments. Indeed,
the MTRL results here represent a proof of concept for TPG’s multi-task ability rather
than an exhaustive study of its full potential.

7.6 Modular Task Decomposition

Problem decomposition takes place at two levels in TPG: 1) Program-level, in which
individual programs within a team each define a unique context for deploying a single
action; and 2) Team-level, in which individual teams within a policy graph each define
a unique program complement, and therefore represent a unique mapping from state
observation to action. Moreover, since each program typically indexes only a small
portion of the state space, the resulting mapping will be sensitive to a specific region
of the state space. This section examines how modularity at the team-level supports the

26 Evolutionary Computation Volume 26, Number 3

Emergent High-Dimensional Multi-Task Reinforcement Learning

development of multi-task policies.
As TPG policy graphs develop, they will subsume an increasing number of stand-

alone decision-making modules (teams) into a hierarchical decision-making structure.
Recall from Section 3.2 that only root teams are subject to modification by variation op-
erators. Thus, teams that are subsumed as interior nodes of a policy graph undergo no
modification. This property allows a policy graph to avoid (quickly) unlearning tasks
that were experienced in the past under task switching but are not currently the ac-
tive task. This represents an alternative approach to avoiding ”catastrophic forgetting“
(Kirkpatrick et al. (2016)) during the continual, sequential learning of multiple tasks.
The degree to which individual teams specialize relative to each objective experienced
during evolution, i.e. the game titles in a particular game group, can be characterized
by looking at which teams contribute to decision-making at least once during test, rel-
ative to each game title.

Figure 9 shows the champion multi-task TPG policy graph from the group 3.2
experiment. The Venn diagram indicates which teams are visited at least once while
playing each game, over all test episodes. Naturally, the root team contributes to every
decision (Node marked ABC in the graph, center of Venn diagram). 5 teams contribute
to playing both Bowling and Centipede (Node marked AB in the graph), while the
rest of the teams specialize for a specific game title (Node marked A in the graph). In
short, both generalist and specialist teams appear within the same policy and collectively
define a policy capable of playing multiple game titles.

Centipede (C)

Bowling (B)Battle Zone (A)

4 05

2

0 0
1

{ }

Atari Joystick Position

Program

Team

Figure 9: Champion multi-task TPG policy graph from the group 3.2 experiment.
Decision-making in a policy graph begins at the root node (ABC) and follows one path
through the graph until an atomic action (joystick position) is reached (See Algorithm
2). Venn diagram indicates which teams are visited while playing each game, over all
test episodes. Note that only graph nodes (teams and programs) that contributed to
decision-making during test are shown.

Evolutionary Computation Volume 26, Number 3 27

S. Kelly and M. I. Heywood

7.6.1 Complexity of Multi-Task Policy Graphs
Table 6 reports the average number of teams, instructions, and proportion of state space
contributing to each decision for the multi-task champion during test. Interestingly,
even for an evolved multi-task policy graph (i.e post-training), the number of instruc-
tions executed depends on the game in play, for example, ranging from 200 in Kangaroo
to 512 in Kung-Fu Master for the Group 3.4 champion. While the complexity/cost of
decision-making varies depending on the game in play, the average number of instruc-
tions per decision for the group 5.3 champion is 610, not significantly different from
the average of 602 required by task-specific policies when playing the same games (See
Table 3). Furthermore, the group 5.3 champion multi-task policy averaged 1832 - 2342
decisions per second during test, which is significantly faster than single-task policies
from both DQN and Blob-PROST (See Table 2). Finally, as the parametrization for TPG
under MTRL is identical to task-specific experiments with a significantly smaller pop-
ulation size (90 vs. 360), and the number of generations is similar in both cases16, we
can conclude that the cost of development is not significantly greater under MTRL.

Table 6: Complexity of champion multi-task policy graphs from each game group in
which all tasks were covered by a single policy. The cost of making each decision is
relative to the average number of teams visited per decision (Tm), average number
of instructions executed per decision (Ins), and proportion of state space indexed per
decision (%SP). TPG wall-clock time is measured on a 2.2GHz Intel Xeon E5-2650 CPU.

Group Title Tm Ins %SP Decisions per sec

3.2
Battle Zone 3 413 11 2687
Bowling 4 499 15 2922
Centipede 2 595 15 2592

3.4
Kangaroo 2 200 6 3141
Krull 2 394 11 2502
Kung-Fu Master 2 512 12 2551

3.5
Ms. Pac-Man 3 532 14 2070
Private Eye 4 804 18 1857
Time Pilot 5 869 19 1982

5.3

Krull 5 782 18 1832
Kung-Fu Master 2 455 13 2342
Ms. Pac-Man 5 673 16 1989
Private Eye 3 481 13 2192
Time Pilot 4 657 16 2306

8 Conclusion

Applying RL directly to high-dimensional decision making tasks has previously been
demonstrated using both neuro-evolution and multiple deep learning architectures.
To do so, neuro-evolution assumed an a priori parameterization for model complexity
whereas deep learning had the entire architecture pre-specified. Moreover, evolving
the deep learning architectures only optimizes the topology. The convolution operation

16MTRL runs lasted 200 - 750 generations, which is roughly the range of generations reached for the
single-task runs (See Figure4(a))

28 Evolutionary Computation Volume 26, Number 3

Emergent High-Dimensional Multi-Task Reinforcement Learning

central to providing the encoded representation remains, and it is this operation that
results in the computational overhead of deep learning architectures. In this work, an
entirely emergent approach to evolution, or Tangled Program Graphs, is proposed in
which solution topology, state space indexing, and the types of action actually utilized
are all evolved in an open ended manner.

We demonstrate that TPG is able to evolve solutions to a suite of 49 Atari game
titles that generally match the quality of those discovered by deep learning at a frac-
tion of the model complexity. To do so, TPG begins with single teams of programs and
incrementally discovers a graph of interconnectivity, potentially linking hundreds of
teams by the time competitive solutions are found. However, as each team can only
have one action (per state), very few of the teams composing a TPG solution are eval-
uated in order to make each decision. This provides the basis for efficient real-time
operation without recourse to specialized computing hardware. We also demonstrate
a simple methodology for multi-task learning with the TPG representation, in which
the champion agent can play multiple games titles from direct screen capture, all at
the level of deep learning, without incurring any additional training cost or solution
complexity.

Future work is likely to continue investigating Multi-Task RL under increasingly
high-dimensional task environments. One promising development is that TPG seems
to be capable of policy discovery in VizDoom and ALE directly from the frame buffer
(i.e. without the quantization procedure in Section 4.1), for example (Kelly et al. (2018);
Smith and Heywood (2018)). That said, there are many more open issues, such as
finding the relevant diversity mechanisms for tasks such as Montezuma’s Revenge and
providing efficient memory mechanisms that would enable agents to extend beyond
the reactive models they presently assume.

Acknowledgements

S. Kelly gratefully acknowledges support from the Nova Scotia Graduate Scholarship
program. M. Heywood gratefully acknowledges support from the NSERC Discovery
program. All runs were completed on cloud computing infrastructure provided by
ACENET, the regional computing consortium for universities in Atlantic Canada. The
TPG code base is not in any way parallel, but in adopting ACENET the five indepen-
dent runs for each of the 49 games were conducted in parallel.

References
Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2012a). The arcade learning environ-

ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research.

Bellemare, M. G., Veness, J., and Bowling., M. (2012b). Investigating contingency awareness
using atari 2600 games. In Proceedings of the AAAI Conference on Artificial Intelligence, pages
864–871.

Brameier, M. and Banzhaf, W. (2001). Evolving teams of predictors with linear genetic program-
ming. Genetic Programming and Evolvable Machines, 2(4):381–407.

Brameier, M. and Banzhaf, W. (2007). Linear Genetic Programming. Springer, 1st edition.

Braylan, A., Hollenbeck, M., Meyerson, E., and Miikkulainen, R. (2015). Reuse of neural modules
for general video game playing. arXiv preprint arXiv:1512.01537.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine
Learning Research, 7(1):1–30.

Evolutionary Computation Volume 26, Number 3 29

S. Kelly and M. I. Heywood

Doucette, J. A., Lichodzijewski, P., and Heywood, M. I. (2012). Hierarchical task decomposition
through symbiosis in reinforcement learning. In Proceedings of the ACM Genetic and Evolutionary
Computation Conference, pages 97–104.

Hausknecht, M., Lehman, J., Miikkulainen, R., and Stone, P. (2014). A neuroevolution approach
to general Atari game playing. IEEE Transactions on Computational Intelligence and AI in Games,
6(4):355–366.

Hausknecht, M. and Stone, P. (2015). The impact of determinism on learning atari 2600 games.
In Workshop at the AAAI Conference on Artificial Intelligence.

Imamura, K., Soule, T., Heckendorn, R. B., and Foster, J. A. (2003). Behavioural diversity and
probabilistically optimal GP ensemble. Genetic Programming and Evolvable Machines, 4(3):235–
254.

Japkowicz, N. and Shah, M. (2011). Evaluating Learning Algorithms. Cambridge University Press.

Kelly, S. and Heywood, M. I. (2014a). Genotypic versus behavioural diversity for teams of pro-
grams under the 4-v-3 keepaway soccer task. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 3110–3111.

Kelly, S. and Heywood, M. I. (2014b). On diversity, teaming, and hierarchical policies: Observa-
tions from the keepaway soccer task. In European Conference on Genetic Programming, volume
8599 of LNCS, pages 75–86. Springer.

Kelly, S. and Heywood, M. I. (2017a). Emergent tangled graph representations for atari game
playing agents. In European Conference on Genetic Programming, volume 10196 of LNCS, pages
64–79.

Kelly, S. and Heywood, M. I. (2017b). Multi-task learning in atari video games with emergent
tangled program graphs. In Proceedings of the ACM Genetic and Evolutionary Computation Con-
ference.

Kelly, S., Lichodzijewski, P., and Heywood, M. I. (2012). On run time libraries and hierarchical
symbiosis. In IEEE Congress on Evolutionary Computation, pages 3245–3252.

Kelly, S., Smith, R., and Heywood, M. I. (2018). Emergent policy discovery for visual reinforce-
ment learning through tangled program graphs: A tutorial. In Genetic Programming Theory and
Practice XVI. Springer.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N. C., Veness, J., Desjardins, G., Rusu, A. A., Mi-
lan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., Hassabis, D., Clopath, C., Kumaran,
D., and Hadsell, R. (2016). Overcoming catastrophic forgetting in neural networks. CoRR,
abs/1612.00796.

Kober, J. and Peters, J. (2012). Reinforcement learning in robotics: A survey. In Wiering, M. and
van Otterio, M., editors, Reinforcement Learning, pages 579–610. Springer.

Lehman, J. and Stanley, K. O. (2011). Abandoning objectives: Evolution through the search for
novelty alone. Evolutionary Computation, 19(2):189–223.

Liang, Y., Machado, M. C., Talvitie, E., and Bowling, M. (2016). State of the art control of Atari
games using shallow reinforcement learning. In Proceedings of the ACM International Conference
on Autonomous Agents and Multiagent Systems, pages 485–493.

Lichodzijewski, P. and Heywood, M. I. (2008a). Coevolutionary bid-based genetic program-
ming for problem decomposition in classification. Genetic Programming and Evolvable Machines,
9:331–365.

Lichodzijewski, P. and Heywood, M. I. (2008b). Managing team-based problem solving with
symbiotic bid-based genetic programming. In Proceedings of the ACM Genetic and Evolutionary
Computation Conference, pages 863–870.

30 Evolutionary Computation Volume 26, Number 3

Emergent High-Dimensional Multi-Task Reinforcement Learning

Lichodzijewski, P. and Heywood, M. I. (2010). Symbiosis, complexification and simplicity under
GP. In Proceedings of the ACM Genetic and Evolutionary Computation Conference, pages 853–860.

Lichodzijewski, P. and Heywood, M. I. (2011). The Rubik cube and GP temporal sequence learn-
ing: an initial study. In Genetic Programming Theory and Practice VIII, chapter 3, pages 35–54.
Springer.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Harley, T., Lillicrap, T. P., Silver, D., and
Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning. In Inter-
national Conference on Machine Learning.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou,
I., King, H., Kumaran, D., Wierstra, D., Legg, S., and Hassabis, D. (2015). Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533.

Nair, A., Srinivasan, P., Blackwell, S., Alcicek, C., Fearon, R., de Maria, A., Panneershelvam, V.,
Suleyman, M., Beattie, C., Petersen, S., Legg, S., Mnih, V., Kavukcuoglu, K., and Silver, D.
(2015). Massively parallel methods for deep reinforcement learning. In International Conference
on Machine Learning – Deep Learning Workshop.

Nolfi, S. (1997). Using emergent modularity to develop control systems for mobile robots. Adap-
tive behavior, 5(3-4):343–363.

Parisotto, E., Ba, L. J., and Salakhutdinov, R. (2015). Actor-mimic: Deep multitask and transfer
reinforcement learning. CoRR, abs/1511.06342.

Pepels, T. and Winands, M. H. M. (2012). Enhancements for monte-carlo tree search in ms pac-
man. In IEEE Symposium on Computational Intelligence in Games, pages 265–272.

Schrum, J. and Miikkulainen, R. (2016). Discovering multimodal behavior in ms. pac-man
through evolution of modular neural networks. IEEE Transactions on Computational Intelligence
and AI in Games, 8(1):67–81.

Smith, R. J. and Heywood, M. I. (2018). Scaling tangled program graphs to visual reinforcement
learning in vizdoom. In European Conference on Genetic Programming, volume 10781 of LNCS,
pages 135–150. Springer.

Szita, I. (2012). Reinforcement learning in games. In Wiering, M. and van Otterio, M., editors,
Reinforcement Learning, pages 539–577. Springer.

Thomason, R. and Soule, T. (2007). Novel ways of improving cooperation and performance in
ensemble classifiers. In Proceedings of the ACM Genetic and Evolutionary Computation Conference,
pages 1708–1715.

van Hasselt, H., Guez, A., and Silver, D. (2016). Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, pages 2094–2100.

Wu, S. and Banzhaf, W. (2011). Rethinking multilevel selection in genetic programming. In
Proceedings of the ACM Genetic and Evolutionary Computation Conference, pages 1403–1410.

A Comparator tables

Test performance over all 49 game titles is split between two comparator groups (Sec-
tion 5.1), those assuming screen capture state information (Table 7) and those assuming
hand crafted state (Table 8). TPG uses screen capture state in both cases.

Evolutionary Computation Volume 26, Number 3 31

S. Kelly and M. I. Heywood

Table 7: Average game score of best agent under test conditions for TPG along with
comparator algorithms in which screen capture represent state information. Figures in
bold represent best score on each game title. Source information for comparitor algo-
rithms is as follows: DQN (Mnih et al. (2015)), Gorila (Nair et al. (2015)), Double DQN
(van Hasselt et al. (2016)), Hyper-NEAT (Hausknecht and Stone (2015)).

Game TPG DQN Gorila Double DQN Hyper-NEAT

Alien 3,382.7 3,069.3 2,621.53 2,907.3 1,586
Amidar 398.4 739.5 1,189.7 702.1 184.4
Assault 2,422 3,359.6 1,450.4 5,022.9 912.6
Asterix 2,400 6,011.7 6,433.3 15,150 2,340
Asteroids 3,050.7 1,629.3 1,047.7 930.3 1,694
Atlantis 89,653 85,950 100,069 64,758 61,260
Bank Heist 1,051 429.7 609 728.3 214
Battle Zone 47,233.4 26,300 25,266.7 25,730 36,200
Beam Rider 1,320.8 6,845.9 3,302.9 7,654 1,412.8
Bowling 223.7 42.4 54 70.5 135.8
Boxing 76.5 71.8 94.9 81.7 16.4
Breakout 12.8 401.2 402.2 375 2.8
Centipede 34,731.7 8,309.4 8,432.3 4,139.4 25,275.2
C. Command 7,070 6,686.7 4,167.5 4,653 3,960
Crazy Climber 8,367 114,103.3 85,919.1 101,874 0
Demon Attack 2,920.4 9,711.2 13,693.1 9,711.9 3,590
Double Dunk 2 -18.1 -10.6 -6.3 2
Enduro 125.9 301.8 114.9 319.5 93.6
Fishing Derby 49 -0.8 20.2 20.3 -49.8
Freeway 28.9 30.3 11.7 31.8 29
Frostbite 8,144.4 328.3 605.2 241.5 2,260
Gopher 581.4 8,520 5,279 8,215.4 364
Gravitar 786.7 306.7 1,054.6 170.5 370
H.E.R.O 16,545.4 19,950.3 14,913.9 20,357 5,090
Ice Hockey 10 -1.6 -0.6 -2.4 10.6
James Bond 3,120 576.7 605 438 5,660
Kangaroo 14,780 6,740 2,547.2 13,651 800
Krull 12,850.4 3,804.7 7,882 4,396.7 12,601.4
Kung-Fu Master 43,353.4 23,270 27,543.3 29,486 7,720
M’s Revenge 0 0 4.3 0 0
Ms. Pac-Man 5,156 2,311 3,233.5 3,210 3,408
Name This Game 3,712 7,256.7 6,182.2 6,997.1 6,742
Pong 6 18.9 18.3 21 -17.4
Private Eye 15,028.3 1,787.6 748.6 670.1 10,747.4
Q*Bert 2,245 10,595.8 10,815.6 14,875 695
River Raid 3,884.7 8,315.7 8,344.8 12,015 2,616
Road Runner 27,410 18,256.7 51,008 48,377 3,220
Robotank 22.9 51.6 36.4 46.7 43.8
Seaquest 1,368 5,286 13,169.1 7,995 716
Space Invader 1,597.2 1,975.5 1,883.4 3,154 1,251
Star Gunner 1,406.7 57,996.7 19,145 65,188 2,720
Tennis 0 -1.6 10.9 1.7 0
Time Pilot 13,540 5,946.7 10,659.3 7,964 7,340
Tutankham 128 186.7 245 190.6 23.6
Up and Down 34,416 8,456.3 12,561.6 16,769.9 43,734
Venture 576.7 380 1,245 0 1,188
Video Pinball 37,954.4 42,684.1 157,550.2 70,009 0
Wizard of Wor 5,196.7 3,393.3 13,731.3 5,204 3,360
Zaxxon 6,233.4 4,976.7 7,129.3 10,182 3,000

Avg. Rank (Ri) 2.74 3.11 2.63 2.64 3.87

32 Evolutionary Computation Volume 26, Number 3

Emergent High-Dimensional Multi-Task Reinforcement Learning

Table 8: Average game score of best agent under test conditions for TPG (screen cap-
ture) along with comparator algorithms based on prior object/feature identification. Fig-
ures in bold represent best score on each game title. Source information for comparitor
algorithms is as follows: Blob-PROST (Liang et al. (2016)), Hyper-NEAT (Hausknecht
and Stone (2015)), NEAT (Hausknecht and Stone (2015)), Conti-Sarsa (Mnih et al.
(2015))

Game TPG Blob-PROST Hyper-NEAT NEAT Conti-Sarsa

Alien 3,382.7 4,886.6 2,246 4,320 103.2
Amidar 398.4 825.6 218.8 325.2 183.6
Assault 2,422 1,829.3 2,396 2,717.2 537
Asterix 2,400 2,965.5 2,550 1,490 1,332
Asteroids 3,050.7 2,229.9 220 4,144 89
Atlantis 89,653 42,937.7 44,200 126,260 852.9
Bank Heist 1,051 793.6 1,308 380 67.4
Battle Zone 47,233.4 37,850 37,600 45,000 16.2
Beam Rider 1,320.8 2,965.5 1,443.2 1,900 1,743
Bowling 223.7 91.1 250.4 231.6 36.4
Boxing 76.5 98.3 91.6 92.8 9.8
Breakout 12.8 190.3 40.8 43.6 6.1
Centipede 34,731.7 21,137 33,326.6 22,469.6 4,647
C. Command 7,070 4,898.9 8,120 4,580 16.9
Crazy Climber 8,367 81,016 12,840 25,060 149.8
Demon Attack 2,920.4 2,166 3,082 3,464 0
Double Dunk 2 -4.1 4 10.8 -16
Enduro 125.9 299.1 112.8 133.8 159.4
Fishing Derby 49 -28.8 -37 -43.8 -85.1
Freeway 28.9 32.6 29.6 30.8 19.7
Frostbite 8,144.4 4,534 2,226 1,452 180.9
Gopher 581.4 7,451.1 6,252 6,029 2,368
Gravitar 786.7 1,709.7 1,990 2,840 429
H.E.R.O 16,545.4 20,273.1 3,638 3,894 7,295
Ice Hockey 10 22.8 9 3.8 -3.2
James Bond 3,120 1,030.5 12,730 2,380 354.1
Kangaroo 14,780 9,492.8 4,880 12,800 8.8
Krull 12,850.4 33,263.4 23,890.2 20,337.8 3,341
Kung-Fu Master 43,353.4 51,007.6 47,820 87,340 29,151
M’s Revenge 0 2,508.4 0 340 259
Ms. Pac-Man 5,156 5,917.9 3,830 4,902 1,227
Name This Game 3,712 7,787 8,346 7,084 2,247
Pong 6 20.5 4 15.2 -17.4
Private Eye 15,028.3 100.3 15,045.2 1,926.4 86
Q*Bert 2,245 14,449.4 810 1,935 960.3
River Raid 3,884.7 14,583.3 4,736 4,718 2,650
Road Runner 27,410 41,828 14,420 9,600 89.1
Robotank 22.9 34.4 42.4 18 12.4
Seaquest 1,368 2,278 2,508 944 675.5
Space Invader 1,597.2 889.8 1,481 1,481 267.9
Star Gunner 1,406.7 1,651.6 4,160 9,580 9.4
Tennis 0 0 0.2 1.2 0
Time Pilot 13,540 5,429.5 15,640 14,320 24.9
Tutankham 128 217.7 110 142.4 98.2
Up and Down 34,416 41,257.8 6,818 10,220 2,449
Venture 576.7 1,397 400 340 0.6
Video Pinball 3,794.4 21,313 82,646 253,986 19,761
Wizard of Wor 5,196.7 5,681.2 3,760 17,700 36.9
Zaxxon 6233.4 11,721.8 4,680 6,460 21.4

Avg. Rank (Ri) 2.81 2.16 2.81 2.47 4.76
Evolutionary Computation Volume 26, Number 3 33

