
JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, MONTH 20XX 1

APPENDIX A
IMPLEMENTATION DETAILS AND SOFTWARE
AVAILABILITY

A.1 FG-EA Details

The internal details of FG-EA are summarized in the
diagram in Fig. 1. The population size, GenSize, set to
N for generation 0, decreases by 10% over the previous
generation. The decrease aims to address the aging prob-
lem observed in GP. Regularly decreasing population
size over generations introduces selection pressure in
a population and avoids meaningless computations in
later generations [6].

The first population, generation 0, consists of N =
15, 00 trees (features) generated at random. Features in
subsequent generations are evolved by applying muta-
tion and crossover over selected parent features. The
parent features are obtained from a hall of fame, which
keeps track of the fittest features in each generation. A
surrogate fitness function estimates the fitness of each
feature in a generation. The top ℓ features of a generation
are copied over to a growing hall of fame. Then, m
features are selected at random from the hall of fame
to serve as parents for the next generation.

The process of evolving features continues for NrGens
generations. This parameter is set to 25 in our application
on the DNA splice site prediction problem. This upper
bound is sufficient, as our results show convergence of
fitness values after 20 generations.

A.1.1 Generating Random Initial Features

Generation 0 consists of N = 15, 000 features, a choice
is warranted by the complexity of the feature space. The
trees representing features are generated using the well-
known ramped half-and-half generative method [5]. The
ramped half-and-half method incorporates both the Full
and Grow techniques in order to obtain a mixture of
fully-balanced trees and bushy trees with each technique
is employed with equal probability of 0.5 [5]. A maxi-
mum initial tree depth D is set a priori to a small value (5
in our case, as proposed in [5] and employed by many
GP algorithms [6]). Terminal nodes include characters
from the DNA alphabet and sequence positions (as
described in the paper).

Closure

GP relies on the principle of closure, which specifies that
all trees generated are both syntactically and semanti-
cally correct. FG-EA employs strongly typed GP (STGP)
in order to place additional type constraints on the nodes
and specify which nodes may link with other nodes [8].
STGP allows the mutation and crossover operators to
generate syntactically and semantically correct trees.

A.1.2 Genetic Operators

Given a set of m features extracted from the hall of
fame to serve as parents in a generation, the rest of

GenSize− m features are generated using the mutation
and crossover operators. Three breeding pipelines are
employed, mutation, mutation-ERC, and crossover, as
illustrated in the GP diagram in Fig. 1. Two types of
mutations are possible in S-expressions, one that replaces
an entire subtree, and another that replaces only ERCs.
These three pipelines are executed in parallel in order
to obtain new offspring until the goal population size is
reached. As the mutation and mutation-ERC pipelines
run, they each have a Pm probability of performing a
mutation on a selected parent. As the crossover pipeline
runs, it has a Pc probability of carrying out a crossover
on a selected parent. In our implementation, Pm = 0.5
and Pc = 0.9. These are standard values in GP imple-
mentations [5]. As these pipelines are independent of
one another, the probabilities do not have to sum to 1.

Mutation-ERC

A parent is selected using tournaments of size 7. With
probability 0.1, a terminal node is selected in its tree. A
non-terminal node is selected with probability 0.9. If the
selected node is a terminal, hence an ERC, a new ERC is
generated according to a Gaussian probability over the
range of values of the ERC selected for replacement. If
the selected node is a non-terminal, only the ERCs of the
subtree rooted at the node are replaced. New values are
generated for each ERC as above.

Mutation

After a node is selected for replacement, the mutation
pipeline proceeds differently from the mutation-ERC
pipeline. When the selected node is a terminal, the node
is replaced with another ERC as in the mutation-ERC
pipeline. Otherwise, the selected node is replaced with
a semantically-correct tree with the same return type
as the subtree chosen for replacement. Such a tree is
generated using the standard GP Grow technique under
the maximum depth restriction (17 in our experiments).
The Grow technique is attempted a maximum of 5 times
in order to obtain a tree that satisfies the return type
constraint. This ensures that closure is maintained.

Crossover

The tournament selection scheme is carried out twice
to obtain two individuals from a population. Once two
parents are selected, their crossover proceeds as in the
standard Koza-style subtree crossover [5]. Two subtrees,
one from each parent, are selected at random. A random
node is then chosen in each subtree. If the selected nodes
have the same return type, and swapping the subtrees
rooted at these nodes will not violate the maximum
depth constraint, then the swap is performed. Otherwise,
the process begins anew for a maximum of 5 times.
While the crossover can result in two individuals, only
one is maintained in FG-EA.

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, MONTH 20XX 2

Fig. 1. The diagram summarizes the main steps in our FG-EA algorithm. Features/individuals are evolved until a
maximum number Gen Max of generations has been reached. The mutation and crossover operators detailed below
are employed to obtain new features in a generation. Top features of a generation are contributed to a growing hall of
fame which then in turn contributes randomly selected features to seed the next generation.

Fig. 3. Crossover: the subtrees at the crossover points are swapped to obtain a new individual.

Bloat Control

A common issue in GP is the unconstrained growth
of individuals (trees) without improvements to perfor-
mance. This growth, referred to as bloat, may be limited
by genetic operators that restrict the maximum depth
of an individual. In addition, parsimony pressure can
be applied to penalize the fitness of larger individuals.
FG-EA employs parsimony pressure via lexicographic
tournament selection which, given multiple individuals
with the same fitness, chooses the individual with the
smaller depth [5].

A.1.3 Fitness Function

As noted earlier, to keep the computation time rea-
sonable, FG-EA uses a surrogate fitness function given

by: Fitness(f) =
C+,f

C+
∗ IG(f) (see paper for a de-

scription of each component in this equation). IG is
often employed as a criterion of a feature’s goodness
in machine learning [12]. The IG of a feature f with
respect to a class attribute ci (ci ∈ {+,−} in binary
classification) is the reduction in uncertainty about the
value of ci when f is known. Given m class attributes:
IG(f) = −

∑m

i=1
P (ci) · log(P (ci)) + P (f) ·

∑m

i=1
p(ci|f) ·

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, MONTH 20XX 3

Fig. 2. Mutation: a randomly selected subtree is replaced
with a random Grow-generated tree.

logP (ci|f) + P (f̄) ·
∑m

i=1
P (ci|f̄) · log(P (ci|f̄ . The IG

component of the fitness function plays a dual role. First,
it eliminates features with IG 0 which do not help the
accuracy and precision over the training set. Second,
it helps eliminate individuals, such as (NOT (Matches
’AAAAAA’)), that are formed by negation of other junk
individuals. Employing IG in the fitness function is also
useful in employing feature reduction at the very end
only over the fittest features.

While the goal is to maximize the above fitness func-
tion, the Koza fitness for GP aims minimization [5].
Therefore, we define the Koza fitness of a feature f
as Koza(f) = 1/(Fitness(f)). Before selecting the fittest
individuals to seed the next generation (as detailed
below), FG-EA converts the Koza fitness back into the
GP-adjusted fitness 1/(1 + Koza(f)). Note that the GP-
adjusted fitness takes values in [0, 1].

A.1.4 Hall of Fame and Selecting Elites

The ℓ = 250 fittest individuals of a generation are added
to a hall of fame, which keeps the fittest individuals of
each generation. Maintaining a hall of fame guarantees
that fit individuals will not be lost or changed through
genetic operators. Keeping these individuals in a hall of
fame guarantees optimal performance [1]. We employ
a hall of fame for two reasons. First, the hall of fame
serves as an external memory of the best individuals
and allows maintaining diversity in the solution space.
Second, the hall of fame represents the solution space
at the end of a generational run. Promoting ℓ = 250
fittest individuals from each generation to the hall of
fame results in 6, 250 unique individuals in the hall of
fame when FG-EA terminates. A generation seeds its
population with m = 100 randomly chosen individuals

from the current set of features in the hall of fame.
This mechanism allows seeding a generation with 100
fit diverse individuals.

A.2 SVM Details

SVMs [10] continue to be popular and successful in a
wide variety of binary classification problems. When
explicit features are needed, as is the case in this paper,
design problems can be summarized in following three
steps: (1) map sequence data into a Euclidean vector
space; (2) select a kernel function to map the vector
space into a higher dimensional and more effective Eu-
clidean space; and (3) tune parameters for the kernel and
other SVM parameters (e.g., cost function) to improve
performance. The kernel choice is problem-specific and
generally determined experimentally.The experiments
reported here use a Radial Basis kernel function (RBF),
except for worm sequences where LibLinear’s fast linear
kernel is used. Tuning of the kernel parameters and the
SVM cost function is performed through the standard
grid search mechanism [9].

A.3 Software Availability

FG-EA was implemented using the standard GP algo-
rithms provided in ECJ [7]. The code was modified to
maintain a “hall of fame,” a set of the top features
generated. In general, default settings were used, as
detailed above. RFE was implemented using Weka [11].
Sequence matching and pattern recognition were im-
plemented using BioJava [4]. SVM training and classi-
fication was implemented using LibSVM [3] for most
experiments. LibLinear [2] was used for the worm data
sets. Software and documentation are made available at
http://www.cs.gmu.edu/∼ashehu/?q=OurTools.

REFERENCES

[1] C. D. Dosin and R. K. Belew. New methods of competitive
coevolution. Evol. Comput., 5(1):1–29, 1997.

[2] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin.
LIBLINEAR: A library for large linear classification. J. Mach. Learn.
Res., 9:1871–1874, 2008.

[3] R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using
the second order information for training SVM. J. Mach. Learn.
Res., 6(1532-4435):1889–1918, 2005.

[4] R. C. Holland, T. A. Down, M. Pocock, A. Prlic, D. Huen,
K. James, S. Foisy, A. Draeger, A. Yates, M. Heuer, and M. J.
Schreiber. BioJava: an open-source framework for bioinformatics.
Bioinformatics, 24(18):2096–2097, 2008.

[5] J. Koza. On the Programming of Computers by Means of Natural
Selection. MIT Press, Boston, MA, 1992.

[6] S. Luke, G. C. Balan, and L. Panait. Population implosion in
genetic programming. in genetic and evolutionary computation.
In Genetic and Evolutionary Computation Conference, 2003.

[7] S. Luke, L. Panait, G. Balan, S. Paus, Z. Skolicki, E. Popovici,
K. Sullivan, J. Harrison, J. Bassett, R. Hubley, A. Chircop, J. Comp-
ton, W. Haddon, S. Donnelly, B. Jamil, and J. O’Beirne. ECJ: A
java-based evolutionary computation research, 2010.

[8] D. J. Montana. Strongly typed genetic programming. Evolutionary
Computation, 3(2):199–230, 1993.

[9] C. Staelin. Parameter selection for support vector machines, 2002.
[10] V. N. Vapnik. Statistical learning theory. Wiley & Sons, New York,

NY, 1998.

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, MONTH 20XX 4

[11] Waikato Machine Learning Group. Weka, 2010.
[12] Y. Yang and J. O. Pedersen. A comparative study on feature

selection in text categorization. In Intl. Conf. on Mach. Learn., pages
412–420. Morgan Kaufmann Publishers, 1997.

