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Abstract —Associating functional information with biological sequences remains a challenge for machine learning methods. The
performance of these methods often depends on deriving predictive features from the sequences sought to be classified. Feature
generation is a difficult problem, as the connection between the sequence features and the sought property is not known a priori. It is
often the task of domain experts or exhaustive feature enumeration techniques to generate a few features whose predictive power is
then tested in the context of classification. This paper proposes an evolutionary algorithm to effectively explore a large feature space
and generate predictive features from sequence data. The effectiveness of the algorithm is demonstrated on an important component of
the gene-finding problem, DNA splice site prediction. This application is chosen due to the complexity of the features needed to obtain
high classification accuracy and precision. Our results test the effectiveness of the obtained features in the context of classification by
Support Vector Machines and show significant improvement in accuracy and precision over state-of-the-art approaches.

Index Terms —Evolutionary computation, genetic programming, feature extraction and construction, classifier design and evaluation,
data mining, DNA splice sites.
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1 INTRODUCTION

P REDICTING information such as protein crystalliz-
ability, enzymatic activity, subcellular localization,

and DNA splice sites continues to spur research in
machine learning [36], [51], [34], [15], [16], [20], [18],
[19], [17]. Inferring that a biological sequence exhibits a
certain property is difficult when no a priori information
is available on what gives rise to the sought property.
Sequence-based classification aims to discover signals or
features hidden in the sequence data that correlate with
the sought property and discriminate between sequences
that contain the property and those that do not.

Sequence-derived features can be global or local. For
instance, biological insight that certain biophysical prop-
erties allow proteins to operate in certain cellular envi-
ronments resulted in the discovery of amino-acid compo-
sition as a global feature strongly correlated with subcel-
lular localization [12]. Biological insight can also reveal
local features like the sequence motifs documented in the
PROSITE database [9] that correlate well with protein
domains, families, folds, and functional sites [41].

Insight from biological experts in a particular problem
domain is difficult to translate into meaningful features
when a combination of local and global features are
needed. Many problems call for complex features [51],
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[34], [15], [16], [20], [18], [19], [17]. For instance, work
in [15] shows that different types of features are needed
to obtain high accuracy and precision in DNA splice
site prediction. In absence of biological insight to guide
feature generation and faced with the intractability of
enumeration on a large number of features, both the
number of feature types considered and the complexity
of designed features are limited. Reduction techniques,
such as Information Gain, Chi-Square, Mutual Infor-
mation [31], and KL-distance [24], are additionally em-
ployed to further reduce the size of the feature set [16].

It is important to propose feature generation methods
that are not limited by biological insight, the considered
types of features, or the ability to enumerate features.
The dilemma, of course, is that, by expanding the scope
and complexity of the feature generation process, one is
invariably confronted with an NP-hard problem [40].

A variety of general purpose search techniques are
effective for NP-hard problems. In this paper we explore
the use of evolutionary algorithms (EAs) to search a
large and complex feature space. The goal is to obtain
features from sequence data that can significantly im-
prove the classification accuracy of a Support Vector
Machine (SVM). The proposed approach is evaluated on
the difficult problem of DNA splice site prediction.

The basic idea is as follows. For most problem do-
mains, there is some information on the basic building
blocks of effective features. With DNA sequences, obvi-
ous blocks are k-mers (sequences of k nucleotides) and
positional information. The goal is to construct effec-
tive classification features that are expressed as boolean
combinations of basic building blocks. For example, one
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might specify the basic feature set to include all k-mers,
k ∈ {3, . . . , 6}, and positional information in the form of
an integer in the range [20, 50]. A complex feature, like
the one illustrated in Fig. 1, can then be constructed and
evaluated on a given classification task.

Fig. 1. The tree represents the feature: “GTT in position
30 AND GTG in position 36”.

What remains then is to describe how one can explore
this large, open-ended feature space of complex compo-
sitions of a large set of simple primitives. Our approach
uses a unique combination of evolutionary computation
techniques. We use Genetic Programming (GP) tech-
niques to evolve the kinds of structures illustrated in
Fig. 1. Using an efficient fitness function, we identify a
set of candidate features (a hall of fame) to be used as
input to a standard SVM classification procedure.

We refer to this approach as FG-EA for Feature
Generation with an Evolutionary Algorithm. The power
of FG-EA is demonstrated on the DNA splice site pre-
diction problem. This problem has been shown to re-
quire complex features [15]. Our results evaluate the
effectiveness of the top features reported by FG-EA
in the context of SVM classification. Given that FG-
EA is a novel feature generation method for sequence-
based classification, our primary direct comparisons are
with state-of-the-art feature-based classification methods
for DNA splice sites. The comparisons show that FG-
EA features significantly improve the classification per-
formance. Given that the problem of DNA splice site
prediction is the focus of many other non feature-based
methods due to its central role to gene finding, we also
conduct direct comparisons with state-of-the-art kernel-
based methods and achieve comparable performance.

The rest of this paper is organized as follows. In
section 1.1 we introduce the DNA splice site predic-
tion problem and summarize relevant machine learning
work. Section 1.2 summarizes related work in EAs and
their applications on biological sequences. FG-EA is de-
scribed in section 2. Results obtained by the application
of FG-EA on the DNA splice site prediction problem are
presented in section 3. A discussion of these results and
analysis of the top features and their biological relevance
follows in section 4. The paper concludes in section 5.

1.1 The DNA Splice Site Prediction Problem

Transcription of a eukaryotic DNA sequence into mes-
senger RNA (mRNA) occurs only after enzymes splice
away non-coding regions (introns) from the precursor
(pre-mRNA) sequence to leave only coding regions (ex-
ons). For this reason, prediction of splice sites is a fun-
damental component of the gene-finding problem [10].
An acceptor splice site marks the start of an exon; a
donor splice site marks the end. The sites have different
consensus sequences. AG is a consensus dinucleotide
among canonical acceptor splice sites, whereas GT is a
consensus among canonical donor splice sites.

Splice site prediction is a difficult problem. AG and
GT cannot be used as features due to their abundance
in non-splice site sequences. Nucleotide composition
and coding and non-coding length and composition
also do not make for discriminating features [36]. Early
approaches employing positional probabilities fared
poorly [47].

Recent state-of-the-art methods in splice site predic-
tion are kernel-based or feature-based. Kernel-based
methods like the ones in [45], [50], [39], [46] achieve
some of the best performance in recognition of splice
sites in a diverse list of species. Though not the primary
focus of this paper, our experiments in section 3 compare
the classification performance that FG-EA features confer
to an SVM to the performance reported in [46] by
the weighted degree kernel (WD) and weighted degree
kernel with shifts (WDS).

Feature-based methods focus on identifying discrimi-
nating features. The feature generation algorithm (FGA)
in [15] is one of the most successful feature-based classi-
fication methods for splice site prediction. FGA expands
upon the list of features of an earlier hallmark method,
GeneSplicer [36], which included only position-specific
nucleotides and upstream/downstream 3-mers.

FGA conducts a systematic search over features of
different types. All k-mers (2 ≤ k ≤ 6) are con-
sidered due to their broad efficacy in feature-based
classification [30], [34], [18], [19]. Region-specific (up-
stream/downstream) and positional compositional fea-
tures (upstream or downstream) are also enumerated
due to evidence that they are useful for finding signals
in DNA stream data [21]. FGA systematically generates
such features, even considering combinations through
conjunction. Due to the large ensuing feature space, the
features are regularly reduced to a top 5, 000 before being
expanded to include more features. The result is a high
prediction performance and features that encode impor-
tant biological signals [15], [16]. Success is attributed to
the different types of features enumerated.

The FG-EA algorithm we propose here generalizes
the process of feature generation from sequence data
by not limiting the types of features considered. Such
considerations, while restrictive for enumeration-based
algorithms, can be handled well by evolutionary-based
search methods. Indeed, FG-EA obtains features that
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afford an SVM classifier an average precision about
4% higher than FGA on cross validation training data
and 7% higher on test data. These features result in
a classification performance that is similar to WD and
WDS on cross validation training data. In order to place
the description of our novel FG-EA algorithm in context,
we dedicate the next section to a brief summary of EAs
and their demonstrated ability to explore feature spaces.
Our FG-EA algorithm is detailed next.

1.2 Related EA Work

EAs mimic biological evolution to evolve a population
of candidate solutions towards the true solutions of a
difficult optimization or search problem [6]. Their ability
to explore exponentially large feature spaces makes them
appealing methods for feature generation in addition
to the classic enumeration and branch-and-bound tech-
niques. The superiority of EAs was recognized early [43].
Since then, many studies have demonstrated the ad-
vantages of EAs for feature generation in different do-
mains [2], [27], [38], [35], [14], [29], [20], [18], [17].

Recent applications of EAs to obtain predictive fea-
tures from sequence data have shown success in diverse
bioinformatics problems. Some of our recent work has
shown significant improvements in classification accura-
cies when genetic algorithms (GA) replace k-mer feature
enumeration techniques in predicting DNA hypersensi-
tive and splice sites [18], [19], [17]. Work on predicting
enzymatic activity in proteins additionally shows the
power of EAs in feature generation [20].

Unlike standard GAs in which individual are fixed-
length strings of symbols, an individual in GP is a
variable-length tree composed of functions and vari-
ables. The functions are internal nodes also referred to
as non-terminals, whereas the variables are the leaves
also known as terminals. Originally introduced to evolve
computer programs and complex functions [44], [4], [42],
[25], GP algorithms allow evolving S-expressions that
can be represented as parse trees [6].

Since their introduction, GP algorithms have seen an
increase in their usage in diverse problems in bioin-
formatics [49], [33], [52], [5], [37], [20]. Abundant ap-
plications can be found in bioinformatics on quantita-
tive structure-activity analysis in drug design, cancer
classification from gene expression data, classification
of genetically-modified organisms, and classification of
cognitive states from fMRI data [49], [33], [52], [5], [37],
[32], [13], [28], [8]. This paper provides a new example
of how GP techniques can be employed to generate
predictive features from sequence data.

2 METHODS

Our overall approach is shown in Fig. 2. The FG-
EA algorithm generates complex features represented
internally as GP trees and evaluates them on splice
site training data using a surrogate fitness function.
The top features are incrementally obtained via a “hall

of fame” mechanism. The features in the hall of fame
transform input sequence data into feature vectors. An
SVM operating over the feature vectors finally allows
evaluating the accuracy of the resulting classifier.

Fig. 2. The diagram shows the main steps we employ
to predict DNA splice sites. The top features obtained
after the exploration of the feature space with FG-EA
allow transforming input sequences into feature vectors
on which an SVM classifier can then operate.

It is worth noting that this approach is generally ap-
plicable to sequence-based classification problems other
than DNA splice site prediction. The training data and
the application of the fitness function to evaluate features
on the training data are the only components tied to the
specific problem at hand.

2.1 The FG-EA Algorithm

The key element in the process illustrated in Fig. 2 is our
FG-EA algorithm. FG-EA uses a standard GP algorithm
to explore a large, complex space of potentially useful
features. Features are represented as standard GP trees,
and a population of features is evolved over time using
standard GP mechanisms of mutation and crossover.
Since constructing SVM classifiers is a computationally
intensive process, FG-EA uses a surrogate fitness func-
tion to estimate the usefulness of the GP-generated fea-
tures. A hall of fame mechanism incrementally collects
the best estimated features for subsequent use with an
SVM. A description of the main steps in our FG-EA
follows (details are provided in the appendix).

2.1.1 Feature Representation

One of the novel components of FG-EA is its effective
representation of complex features without explicitly
listing the feature types considered. GP individuals in
a population can be complex constructs represented as
parse trees [25]. Each internal node in a parse tree is
a function, and its child subtrees form arguments to
that function. In FG-EA, the leaves of a parse tree, also
referred to as terminals, are either characters from the
DNA alphabet {A, C, G, T} or integers corresponding
to positions or motif (k-mer) length. The internal nodes
are the operators Length, Position, Motif, Matches,
MatchesAtPosition, AND, OR, and NOT.

Basic Compositional Features

The Matches operator allows constructing simple com-
positional features. An example is provided in Fig. 3.
The nucleotides that make up the motif serve as leaves.
The evaluation involves obtaining the occurrence of the
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motif in a given sequence. Since work in [15], [16] shows
that no longer than 6-mers are useful for splice sites, we
similarly limit motif length between 2 and 6.

Fig. 3. Compositional (left) and positional (right) are just
some of the features that can be constructed by FG-EA.

Positional Features
The MatchesAtPosition operator allows construct-
ing simple positional features. An example is pro-
vided in Fig. 3. The positional features correspond to
local features often employed in classification of bi-
ological sequences. In these features, the goal is to
find a specific motif at a specific position in the se-
quence. It is important to note that the Matches and
MatchesAtPosition operators are limited to operate
directly over motifs and positions. The rest of the opera-
tors, AND, OR, and NOT, can only apply directly over one
another, Matches, and MatchesAtPosition.

Correlational Features
The parse tree representation allows constructing not
only compositional and positional features, but also
the region-specific compositional features shown to be
important for DNA splice site prediction [15]. The AND
operator allows specifying correlational features. An ex-
ample is provided in Fig. 1. The region-specific com-
positional features employed in [15] are a subset of
correlational features. Since the position ranges of the
downstream and upstream regions are different, an AND
operator over two positional features essentially results
in region-specific compositional features.

Conjunctive and Disjunctive Features
FG-EA samples a much richer set of features than just
correlational features. The operators AND, OR and NOT
allow constructing diverse conjunctive and disjunctive
features. Examples of such complex features are shown
in Fig. 4. For instance, the disjunctive feature shown
specifies either finding two specific motifs in specific
positions in the upstream region or not finding a specific
motif in a specific position in the downstream region of
a sequence. Repeated applications of AND, OR, and NOT
can result in more complex features.

Ephemeral Constants
The terminal elements are also referred to as ephemeral
constants or ERCs (the squares in the features shown in
Fig. 4). There are two ERC types in the parse trees FG-EA

Conjunctive

Disjunctive

Fig. 4. The trees are examples of complex conjunctive
and disjunctive features constructed by FG-EA.

constructs, character ERCs (ERC-char) and integer ERCs
(ERC-int). Table 1 lists all the ERCs, non-terminals and
their arguments, return-types, and constraints.

Name Args Return
Type

Constraints

AND 2 non-terminals Boolean
OR 2 non-terminals Boolean
NOT 2 non-terminals Boolean
Matches Motif Boolean
MatchesAtPosition Motif, Position Boolean
Motif ERC-chars Motif
Position ERC-int Integer {1, . . . , 162}
Length ERC-int Integer {2, . . . , 6}

ERC-char Character {A, C, G, T}
ERC-int Integer

TABLE 1
Table shows the non-terminals and terminals employed.

2.1.2 Generating Features

Generation 0 consists of N randomly generated fea-
tures using the well-known ramped half-and-half genera-
tive method [25] described in the appendix. Subsequent
generations are evolved using standard GP selection,
crossover and mutation mechanisms. The process of
evolving features continues for a fixed number of gener-
ations. The size of the population in a generation is not
kept constant. An ever-decreasing population model is
employed (see the appendix for more details).
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2.1.3 Fitness Function
The fitness function is key to achieving an efficient and
effective EA search heuristic. Ideally, a ”wrapper” ap-
proach would be employed [22], where a feature subset
is fed for evaluation to a machine learning process.
Accuracies obtained through sound empirical method-
ologies like k-fold validation would then be translated
into fitness values. However, the wrapper approach is
infeasible for large feature sets, large training sets, and
scenarios like EAs where it needs to be employed multi-
ple times. The ”filter” approach is more practical [22].
Essentially, a simpler “surrogate” fitness function is
designed to evaluate features in each generation. The
subset of the fittest features after the EA terminates are
then fed to the classifier for a more rigorous validation.

FG-EA employs the filter approach. Generated fea-
tures are associated fitness values with a heuristic fitness
function. A good fitness function is both simple and
correlates well with the true objective function of the
optimization problem at hand. Since the goal in feature-
based classification is to improve precision while manag-
ing the discriminating power of features, we formulate

the fitness function: Fitness(f) =
C+,f

C+
∗ IG(f).

In this equation, f refers to a feature, C+,f is the
number of positive (splice site) training sequences that
contain the feature f , and C+ is the total number of
positive training sequences. Through the ratio

c+,f

C+
, the

fitness function tracks only the occurrence of a feature in
positive sequences, as negative sequences may not have

any common features or signals. Moreover, the ratio
C+,f

C+

is weighted by the information gain (IG) afforded by the
feature f (see the appendix for more details).

2.1.4 Hall of Fame
The ℓ fittest individuals of a generation are added to a
hall of fame, which keeps the fittest individuals of each
generation. Maintaining a hall of fame guarantees that fit
individuals will not be lost or changed. We employ it for
two reasons. First, the hall of fame serves as an external
memory of the best individuals and allows maintaining
diversity in the solution space. Second, the hall of fame
represents the solution space at the end of a generational
run and guarantees optimal performance [7].

2.2 Post FG-EA Feature Selection

The set of features in the hall of fame can be further nar-
rowed through Recursive Feature Elimination (RFE) [53],
[54], [16]. The main idea in RFE is to start with a large
feature set and gradually reduce this set by removing
the least successful features (according to some metric)
until a stopping criterion is met. We employ RFE in the
context of SVM classification, as in [11], using precision
as the metric by which to determine whether a feature
can be removed. We employ RFE in order to estimate the
impact of feature set sizes on the precision and accuracy
of the classification, as detailed in section 3, and directly
compare with existing work.

2.3 Support Vector Machines as Classifier

The FG-EA obtained feature allow transforming input
sequences into feature vectors. The feature vectors as-
sociated with training sequences are employed to train
an SVM classifier and estimate the discriminating power
afforded by the top FG-EA features. Describing an SVM
in great detail is not the focus of this paper, and we
direct the reader to [48] for a detailed presentation. A
brief description of SVMs is given in the appendix.

3 MATERIALS

3.1 DATA SETS

The experiments described in this paper show the ef-
ficacy of the features obtained through FG-EA in the
context of classification and annotation by an SVM.
We compare the classification performance to two dif-
ferent groups of state-of-the-art methods in splice site
prediction, feature-based and kernel-based. Our com-
parison with the feature-based methods FGA [15] and
GeneSplicer [36] employs sequences extracted from the
2005 NCBI RefSeq collection of human pre-mRNA se-
quences (www.ncbi.nlm.nih.gov/). Our comparison with
the kernel-based methods WD and WDS [46] em-
ploys sequences extracted from the worm data set
(http://www.wormbase.org). Annotation of splice sites
by FG-EA is carried out on a few selected human pre-
mRNA sequences.

The 5, 057 human pre-mRNA sequences in the NCBI
RefSeq collection are annotated with exon start (accep-
tor) and end (donor) positions. The annotations are used
to extract 51, 008 positive (containing splice sites) and
200, 000 negative sequences as in [15], [16]. Acceptor and
donor splice site sequences (25, 504 acceptor and 25, 504
donor) consist of 162 nucleotides each, 80 nucleotides
upstream of the annotated AG or GT dinucleotide, re-
spectively, and 80 downstream (80+AG/GT+80). Neg-
ative sequences are 162 nucleotides long and centered
around randomly selected AG/GT dinucleotides not
annotated as splice sites. The significant difference in
size between the negative and positive training data sets
makes it harder for a classifier to obtain a high number
of positive matches at random [15], [16].

This data set is employed to train an SVM and evalu-
ate the top FG-EA features through classification in com-
parison with FGA and GeneSplicer. The FG-EA features
are further validated on a testing data set, the B2hum
1115 human pre-mRNA sequences employed to train
GeneSplicer [36]. To show the applicability of FG-EA in
annotation, five pre-mRNA sequences selected from the
B2hum set are annotated with splice site information.

The worm data set is extracted from the worm
genome and prepared in [46]. The genome is aligned
through blat with all known cDNA sequences avail-
able at http://www.wormbase.org and all known EST
sequences in [1]. A splicing graph representation built
over the clustered alignments reveals a list of acceptor
and donor splice sites. Using this list, 64, 844 donor and
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64, 838 acceptor splice site sequences are extracted. Each
sequence is 142 nucleotides long (60+AG/GT+80) and
centered around splice sites. Negative training sequences
are also 142 nucleotides long and centered around non-
splice sites in intronic regions. In keeping with the worm
data set employed in [46], 1, 777, 912 of these sequences
are centered around non-splice site AG dinucleotides,
and 2, 846, 598 sequences are centered around non-splice
site GT dinucleotides.

3.2 Overview of Conducted Experiments

We first analyze the distribution of fitness values over
generations to show that FG-EA converges fast to a high
fitness value. The rest of the experiments evaluate FG-EA
features in the context of SVM classification and lastly
show the applicability of these features for the purpose
of annotation. The annotation experiments employ the
SVM trained on the human splice site training data set
to annotate five pre-mRNA sequences selected from the
B2hum testing data set. The classification experiments
show results separately for acceptor and donor data in
order to obtain a more detailed picture of performance
and directly compare to other methods. Two sets of
classification experiments are conducted, one that allows
to compare the performance of FG-EA to FGA and
GeneSplicer, and another that allows comparison with
the WD and WDS methods.

The first set of classification experiments conduct a
three-fold cross validation on the human data set de-
scribed above. The SVM is trained over 2/3 of the data
and tested on the remaining 1/3. This process is repeated
three times to obtain an average performance. The entire
experiment is repeated with 30 different sets of hall of
fame features obtained from 30 different independent
runs of FG-EA. Deviations in the measurements are
insignificant, demonstrating that FG-EA reliably gen-
erates effective features. The obtained cross validation
results are compared with those of FGA and GeneSplicer.
Finally, employing the feature set that yields the highest
precision over the training data set, the trained SVM is
applied to classify the B2hum testing data set.

The second set of classification experiments compare
the performance of FG-EA over the worm data set to
that of the kernel-based WD and WDS methods in [46]
in the context of five-fold cross validation. Employing
the entire worm data set for feature generation is in-
feasible, particularly when considering that we employ
30 independent runs of FG-EA and SVM evaluation of
resulting features to obtain a measure of performance
deviations due to stochasticity in FG-EA. For this reason,
we sample smaller subsets from the overall worm data
set, as detailed below.

First, to showcase the ability of FG-EA to train even
on smaller data sets with similar or better performance,
40, 000 sequences are sampled from the worm data
set. Second, FG-EA performance is measured on larger
data sets, where kernel-based methods have an advan-
tage [46]. Ten different subsets of 360, 000 sequences are

randomly sampled from the worm data set without re-
placement, and the average performance is compared to
WD and WDS. All sampled sets maintain the same ratio
of acceptor/donor and positive/negative sequences as
the entire worm data set. We note that parameters such
as cost factor, kernel shift parameter, and degree were
extensively evaluated in order to obtain the best perfor-
mance out of WD and WDS on the sampled data sets.
The values of these parameters can be found on our web-
site (http://www.cs.gmu.edu/∼ashehu/?q=OurTools).

3.2.1 Performance Measurements
We measure performance in terms of 11-point aver-
age precision (11ptAVG), false positive rate (FPR), area
under receiver-operating-characteristic curve (auROC),
and area under precision-recall curve (auPRC). An SVM
labels and orders data from most to least confident.
Given a confidence threshold, only the data above that
threshold can be considered correctly labeled. For any
recall ratio, precision can be calculated at the threshold
which achieves that recall ratio (the reader is directed
to [31] for a definition of recall and precision.). The
11ptAVG is the average of precisions calculated at 11 re-
call values {0%, 10%, . . . , 100%}. In addition to 11ptAVG,
(PRCs) are employed to show the ability of FG-EA
to discriminate true splice sites from other sequences.
FPR is also computed for recall values by varying the
confidence threshold to employ FPR-recall curves and
show that FG-EA makes very few mistakes.

3.3 Evaluation of Fitness Quality and Convergence

Our implementation of FG-EA employs 25 generations.
The distribution of fitness values of the features sampled
by each generation can be visualized in terms of two
statistics, the mean and maximum. To obtain a measure
of deviations due to stochasticity in FG-EA, these two
statistics can be tracked over 30 independent runs of FG-
EA. Fig. 5 shows the average and standard deviation
(over the 30 runs) of the mean and maximum fitness
values per generation. The evaluation of features over
acceptor and donor sequences is presented separately.

Fig. 5 shows convergence of fitness values around
generation 20. Moreover, around this generation, the
mean fitness value approaches the fitness of the best
individual in the population. The steady state reached
after generation 20 further validates the employment of
the ever-decreasing population model in FG-EA. The
model facilitates high exploration and diversity in the
beginning while focusing FG-EA towards more exploita-
tion with further generations.

3.4 Performance on Human Training Data Set

Precision vs. Recall on Training Data Set
Fig. 6 plots and compares precision values correspond-
ing to 11 recall points among GeneSplicer, FGA, and
FG-EA. Precision values of FG-EA are averaged over
30 runs. Standard deviations are shown as error bars.
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Fig. 5. Mean and maximum fitness values per genera-
tion (top: acceptor, bottom: donor) are averaged over 30
independent GP runs. Error bars are standard deviations.

Fig. 6 shows significant differences between FG-EA,
GeneSplicer, and FGA in all precision values calculated
at the 11 recall points. The break-even points on the
PRCs for acceptor data are 54.9%, 67.8%, and 91.3% for
GeneSplicer, FGA, and FG-EA, respectively. The break-
even points for donor data are 58.7%, 66.7%, and 91.2%
for GeneSplicer, FGA, and FG-EA, respectively. FG-EA
shows significant improvements of 23.5% and 24.5% in
the break even values for acceptor and donor splice sites,
respectively. Table 2, which summarizes the PRCs by
comparing 11ptAVG values, shows similar results. FG-
EA outperforms GeneSplicer and FGA with 11ptAVG
values of 94.89% and 93.69% for acceptor and donor
data, respectively. Paired t-test shows the 11ptAVG val-
ues are statistically significant (α = 0.005).

Precision on Training Data Over Reduced Feature Sets

We conduct the following experiment to show that the
high classification performance that the FG-EA features
confer to an SVM does not come from the sheer number

GeneSplicer 
FGA 
FG-EA 

GeneSplicer 
FGA 
FG-EA

Fig. 6. Precision values are plotted over recall points (top:
acceptor, bottom: donor). Values are averages over 30
FG-EA runs. Error bars are standard deviations.

of features. Given 5, 000 hall of fame features, we employ
RFE to repeatedly remove 500 least relevant features un-
til 500 top features remain. In order to compare directly
with the RFE analysis in [15], we expand our hall of
fame to 10, 000 features and remove 1, 000 features at a
time when evaluating on acceptor training data. Fig. 7,
which plots the precisions obtained on the decreasing
feature sets, shows that FG-EA confers higher precision
than FGA and GeneSplicer at each feature subset. This
suggests that FG-EA features are of high quality.

GeneSplicer FGA FG-EA (µ, σ)
Acceptor 81.89 92.08 94.89, 0.35

Donor 80.1 89.08 93.86, 0.57

TABLE 2
Comparison of 11ptAVG data. The average and standard
deviation in column 4 are obtained over 30 FG-EA runs.
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GeneSplicer 

FGA 

FG-EA

GeneSplicer 

FGA 

FG-EA

Fig. 7. Precisions are plotted over recall points (top:
acceptor, bottom: donor) for RFE feature subsets. No RFE
analysis is reported in GeneSplicer.

3.5 Performance on B2Hum Testing Data Set

We analyze the performance over the B2hum testing data
set. AUC, the area under the receiver operating charac-
teristic (ROC) curve for FG-EA over acceptor sequences
is 99.41% compared to 99.37% and 98.71% for FGA and
GeneSplicer, respectively. The FG-EA AUC score over
donor sequences is 99.39% compared to 99.25% and
98.58% for FGA and GeneSplicer, respectively.

Precision vs. Recall On Testing Data Set
PRCs are shown in Fig. 8. The break-even points on the
curves for acceptor data are 55.2%, 67.9%, and 77.7% for
GeneSplicer, FGA, and FG-EA, respectively. The break-
even points for donor data are 58.53%, 67.2%, and
78.11% for GeneSplicer, FGA, and FG-EA, respectively.
FG-EA shows significant improvements of 23.5% and
24.5% in the break even values for acceptor and donor
splice sites, respectively. FG-EA shows improvements of
9.8% and 10.9% in the break even values for acceptor and
donor splice sites, respectively. These results show that
all three methods achieve lower precision on the testing

data compared to the results on the training data. On
both training and testing data, FG-EA achieves higher
precision.

GeneSplicer 
FGA 
FG-EA 

GeneSplicer 
FGA 
FG-EA 

Fig. 8. Precision over recall (top: acceptor, bottom: donor)
are plotted for the B2hum testing data set.

FPR vs. Recall on Testing Data Set
Fig. 9 compares the FPR vs. recall curves among FG-
EA, FGA, and GeneSplicer. At 95% sensitivity, FG-EA
performs similar to FGA with an FPR of 3.7% over FGA’s
FPR of 3.3%. Both FPR values are significantly better
than the 6.2% achieved by GeneSplicer. Having low FPR
at high recall is particularly important when classifying
testing data where the negative sequences significantly
outnumber positive sequences.

3.6 Performance on Worm Training Data Set

Fig. 10 compares FG-EA to WD and WDS in [46] on
40, 000 randomly sampled sequences from the worm
data set in terms of PRCs obtained after the five-fold
cross validation (acceptor and donor results are shown
separately). The break-even points on the curves for ac-
ceptor data are 81.37%, 86.89%, and 91.1% for WD, WDS,
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GeneSplicer 

FGA 

FG-EA

GeneSplicer 

FGA 

FG-EA

Fig. 9. FPR over recall (top: acceptor, bottom: donor) are
plotted for the B2hum testing data set.

and FG-EA methods, respectively. The break-even points
for donor data are 86.2%, 86.4%, and 90.34% for the three
methods, respectively. FG-EA shows improvements of
4.21% and 3.94% in the break-even values obtained over
the acceptor and donor data, respectively. These results
make the case that similar or slightly better results are
obtained with FG-EA on small data sets. There is slight
degradation in accuracy, which we attribute to the bias
toward precision in our fitness function.

These results make the case that FG-EA performs
very well even when trained over small-size data sets.
This is also demonstrated in Table 3, which summarizes
the performance through measurements of auROC and
auPRC values. We note that the results shown for FG-
EA are averaged over 30 independent runs over the
same subset in order to properly take into account the
stochasticity of FG-EA.

The average performance of FG-EA on ten different
subsets of 360K randomly sampled sequences from the
worm data set is compared to that of WD and WDS
in [46] over these subsets. This performance is summa-

Weighted Kernel
Weighted Kernel Shift
FG-EA

Weighted Kernel
Weighted Kernel Shift
FG-EA

Fig. 10. Precision over recall (top: acceptor, bottom:
donor) are plotted for the 40K subset sampled from the
worm training data set.

rized in Table 4 in terms of auROC and auPRC values.
The shown data make the case that the performance of
FG-EA over the larger sampled data sets is comparable
to that of WD and WDS. While accuracy is slightly lower
due to the bias towards precision in our fitness function,
the obtained precision is slightly higher in FG-EA.

Acceptor Donor
auROC auPRC auROC auPRC
µ σ µ σ µ σ µ σ

WD 99.2 0.3 86.7 1.2 99.1 0.2 87.1 0.3
WDS 99.3 0.2 89.1 0.8 99.1 0.1 88.6 0.2
FG-EA 98.7 0.2 97.1 0.7 98.8 0.4 96.7 0.8

TABLE 3
Comparison of auROC and auPRC values on 40K

sequences sampled from the worm data set. Reported
standard deviations are a result of the five-fold cross

validation. Additional deviation for FG-EA results from 30
independent FG-EA runs on the same data set.
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Acceptor Donor
auROC auPRC auROC auPRC
µ σ µ σ µ σ µ σ

WD 99.7 0.3 93.9 0.3 99.6 0.2 93.8 0.1
WDS 99.8 0.2 94.2 0.4 99.5 0.1 94.1 0.1
FG-EA 98.8 0.2 96.1 0.3 98.6 0.3 96.2 0.4

TABLE 4
Comparison of auROC and auPRC values on ten

different sets of 360K sequences sampled from the
worm data sets. Reported standard deviations are a

result of the five-fold cross validation and the different
sets. Additional deviation for FG-EA results from the 30

independent FG-EA runs over a data set.

3.7 Annotation Performance on B2Hum Data Set

Five pre-mRNA sequences are randomly selected from
the B2Hum testing data set for annotation. A win-
dow of 162 nucleotides is scanned with overlap of 161
nucleotides over each pre-mRNA sequence to obtain
shorter sequences for classification. The SVM trained
over the human splice site data set is then employed to
classify each of the shorter sequences. The results of the
classification are employed to annotate the pre-mRNA
sequences with splice site information.

For brevity, annotation results are graphically shown
on only one pre-mRNA sequence in Fig. 11 (the
rest of the results can be viewed on our web-
site (http://www.cs.gmu.edu/∼ashehu/?q=OurTools)).
Fig. 11 plots the SVM prediction scores for each of the
windows. The high prediction scores (above 0.6) agree
well with the known exon locations, also shown in
the plot. The results shown in Fig. 11 further support
the prediction power of our method and the general
applicability of FG-EA for the purpose of annotation.

Fig. 11. Acceptor and donor prediction scores are shown
on the left and right axis, respectively. The selected se-
quence is AB012229. High prediction scores agree well
with the known exon end positions as shown on the plots.

4 DISCUSSION

It is interesting to analyze the type distribution of the top
features obtained by FG-EA and measure the contribu-
tion of each type. We divide the hall of fame features
in three types or subsets. One subset consists of all
compositional features. The second subset consists of
all region-specific compositional, positional, and corre-
lational features. The third and final subset contains
all remaining features and consists of conjunctive and
disjunctive features. Table 5 breaks down the distribution
of features into these three subsets.

The contribution of each feature subset to the perfor-
mance detailed above is estimated by associating an IG
value to each subset. The IG value of a subset sums the
IG values of the features in a subset, assuming naive
Bayes independence. The distribution of IG values is also
shown in Table 5. Evaluation of the features on acceptor
and donor data is kept separate. Table. 5 clearly shows
that the largest increase in IG is attributed to the complex
conjunctive and disjunctive features. This result further
justifies the employment of GP in exploring complex and
vast feature spaces. The improvements in classification of
splice site sequences over FGA and GeneSplicer suggest
that the complex conjunctive and disjunctive features are
important to detection of splice sites.

Acceptor Nr. IG
Compositional 600 2.53

Positional, Correlational, Regional 2451 10.34

Conjunctive and Disjunctive 1949 21.78

Donor Nr. IG
Compositional 738 4.22

Positional, Correlational, Regional 2791 11.43

Conjunctive and Disjunctive 1471 36.23

TABLE 5
IG sums of subsets of features evaluated over acceptor

(top) and donor data (bottom.

A closer inspection of the hall of fame reveals the
fittest features are complex rule sets. For instance, one of
the fittest features on acceptor data is the pure disjunc-
tive feature shown in Fig. 12(a). This composite feature
combines 8 positional subfeatures with motif lengths
from 2 to 5. The feature specifies these motifs to be
found at various interesting locations. Note that the
operator MatchesAtPosition is abbreviated as MP here.
Other fit disjunctive features combine correlational and
positional subfeatures. For instance, the feature shown
in Fig. 12(b) is the result of correlational and positional
features in downstream and upstream regions combined
during evolution in FG-EA.

The fittest FG-EA features contain useful biological
signals reported around splice sites [36], [15], [16].
Known signals in a typical pre-mRNA include the
branch site, the pyrimidine-rich region, splice site con-
sensus signals, and exonic splicing enhancers.

The mammalian branch-site signal is degenerate and
shows low levels of purifying selection [23]. To identify
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(a)

(b)

Fig. 12. Generated Feature Examples

such signals, we search for compositional features of 6
nucleotides 40 to 20 nucleotides upstream of the acceptor
splice site. Our hall of fame contains such compositional
features over motifs CTGACC, CCTGAC, CTTTT, etc.
Similar features are also reported in [16]. FG-EA features
additionally capture the acceptor splice site pyrimidine
tract interval. Well-known positional tetramers, such as
CTGA, CTTT, CTAA, and TTTT in this interval are
present in the hall of fame and have high fitness values
when evaluated over the acceptor training data.

Studies have suggested a potential role for the GGG
and GGGG motifs in splicing [26]. The role of these mo-
tifs is validated by our FG-EA. The hall of fame contains
compositional and positional features over these motifs.
These features have high fitness values when evaluated
over donor training data. Additionally, many A/C-rich
motifs, such as CACACA, GCCCAA, CATTCA, CC-
TACA, can be found among FG-EA fittest features. Such
motifs, originally described in [3] and additionally dis-
covered in [16], have not been extensively characterized.

The IG analysis in Table 5 shows that additional,
complex disjunctive and conjunctive features play a
significant role in discriminating splice sites from non-
splice sites. These features, some of them listed above,
display complex biological signals that may be of
interest to biologists for further characterization. For
this reason, we have made the entire list of fea-
tures in the hall of fame available on our website,
http://www.cs.gmu.edu/∼ashehu/?q=OurTools.

We note that Fig. 12 also illustrates the presence of re-
dundant terms in the features. The FG-EA method does
not concern itself regarding removal of redundancy dur-
ing its evolutionary-based search, since redundancy does
not affect classification accuracy. Some post-processing
can be conducted over the hall of fame features to
improve their readability and analysis.

5 CONCLUSIONS

We have presented an evolutionary algorithm, FG-EA,
which employs GP to automate the process of feature
generation for feature-based classification. Detailed anal-
ysis of the discriminative power of the FG-EA features
shows that FG-EA outperforms state-of-the-art feature
generation methods in splice site classification. FG-EA
reveals the significant role of novel complex conjunctive
and disjunctive features. The abundance of disjunctive
features shows that complex features are essentially rule
sets that combine many small interesting rules in one
complex feature. The combination of many small rules
is known as the ”Pitt-Approach” and has shown success
in rule classification in various domains [44].

The proposed FG-EA algorithm can easily be em-
ployed in other prediction problems on biological se-
quences. Similar to our previous work on kernel GP
evolution [17], further extensions of FG-EA can combine
the evolution of features with evolution of SVM kernels
for greater classification accuracy. Additionally, we plan
on employing regular expressions to further combine
and reduce the bloat in the expressions and so improve
readability and performance.

The noted increases in time and memory during the
SVM classification of large data sets (detailed in our web-
site) can be addressed in the future by using distributed
evaluations and sampling techniques. Additional future
work can consider incorporating shift-based positional
comparisons in the features to further increase prediction
power. On the other hand, kernel-based methods can
also benefit by incorporating regional-, correlational-,
conjunctive-, and disjunctive-based calculations when
comparing two sequences.
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