
Partial differential equations discovery with EPDE
framework: application for real and synthetic data

Mikhail Maslyaev, Alexander Hvatov∗, Anna V. Kalyuzhnaya

ITMO University, 49 Kronverksky Pr. St. Petersburg, 197101, Russian Federation

Abstract

Data-driven methods provide model creation tools for systems where the appli-

cation of conventional analytical methods is restrained. The proposed method

involves the data-driven derivation of a partial differential equation (PDE) for

process dynamics, helping process simulation and study. The paper describes

the methods that are used within the EPDE (Evolutionary Partial Differential

Equations) partial differential equation discovery framework [1]. The frame-

work involves a combination of evolutionary algorithms and sparse regression.

Such an approach is versatile compared to other commonly used data-driven

partial differential derivation methods by making fewer assumptions about the

resulting equation. This paper highlights the algorithm features that allow data

processing with noise, which is similar to the algorithm’s real-world applications.

This paper is an extended version of the ICCS-2020 conference paper [2]

Keywords: data-driven modelling, PDE discovery, evolutionary algorithms,

sparse regression, spatial fields, physical measurement data

1. Introduction

The ability to simulate complex processes, neglecting a lack of knowledge

about the system’s underlying structure, can be vital for developing models in

such spheres of science as biology, medicine, materials technology, and meto-

cean studies. In contrast to the deterministic physics-based models, developed5

∗Corresponding author: alex hvatov@itmo.ru

Preprint submitted to Journal of Computational Science May 30, 2021

by application of conservation laws to the studied process, data-driven mod-

eling (DDM) involves developing complete models from various fields of mea-

surements, describing the process, using means of statistics and machine learn-

ing algorithms. Moreover, in some occasions, DDM can enhance the existing

physics-based models with supplementary expressions or refined weight values10

[3]. In fluid dynamics science and hydrometeorology, surrogate models’ devel-

opment is the most common application of data-driven algorithms.

In the current paper’s scope are the methods of data-driven differential equa-

tion discovery. Differential equations, in some cases, are interpretable by the

expert either in the application field or in the differential equations. Moreover,15

the well-developed mathematical physics methods for the differential equations

analysis may interpret the equations. In most cases, actual algorithms utilize

the sparse regression in a prescribed differential terms library [4, 5]. The sec-

ond popular case of the study is the neural network’s algorithms for differential

equations discovery [6, 7, 8].20

We consider discovered models as the surrogate models that could be applied

to the hydrometeorological examples. Various approaches to surrogate modeling

are described below, including differential equations discovery.

The modern surrogate models tend to belong to one of 3 major groups [9]:

• Data-driven empirical approximations of the deterministic model outputs.25

These models use conclusions obtained with the statistical or machine

learning tools (response surfaces, kriging) applied to the data.

• Reduced-order models are based on the projection of the model’s main

equations to the subspace with the reduced dimensionality, using various

orthogonal decompositions.30

• Multifidelity models: simplifications of representing the complex physics

of the model’s process by omitting the less significant subprocesses or in-

creasing the model’s scale. In some cases, the experimental setup requires

applying models with different fidelity levels to evaluate multiple scales of

processes or modeling ensemble [10, 11].35

2

In this research, we are interested in developing a new approach that be-

longs to the first class of models. However, natural sciences applications require

robustness of the model and should work in high-dimensional space to handle

spatio-temporal and other types of variability. Transferring from one spatial

dimension usually considered in references to higher spatial dimensions requires40

the algorithm to handle exponentially growing noise levels.

In the previous works [12] we have described the EPDE (Evolutionary Partial

Differential Equations)1 approach, that can provide a flexible, yet efficient tool

for data-driven equation derivation. This work increases the problem’s difficulty

by introducing higher-dimensional cases and high-magnitude noise in the data.45

This version extends conference paper [2] and introduces a series of experi-

ments that allow comparing EPDE framework with the analogs in a better way.

The module system of the PDE algorithm that is briefly described in Sec. 6

allows to, as an example, use different from the finite-difference differentiation

scheme. We show it using neural networks and automatic derivatives in Sec. 7.50

This paper is organized as follows: Sec. 2 briefly introduces the existing sur-

rogate modeling approaches. Sec. 3 describes the problem of the data-driven

PDE discovery and Sec. 4 describes the practical realization. In Sec. 5, numeri-

cal examples of the synthetic data and the real data are shown. Sec. 6 presents

the additions to the method described in the previous article [12], which allows55

dealing with the higher-dimension data-driven PDE discovery. Sec.7 is dedi-

cated to illustrating the module structure and experiments with replacement of

differentiation model with neural network approximation. Sec. 8 concludes the

paper.

2. Related work60

The first examples of the data-driven surrogate modeling in hydrometeo-

rology have appeared in its earliest stages with the understanding, that the

1The approach described in the article is available as stand-alone EPDE-framework in

GitHub [1].

3

contemporary full-scale models required computational powers, inaccessible for

many research teams. The original approaches were based on the pattern scal-

ing - the extension of the present trend, obtained from the ensemble of full-65

scale models [13, 14]. The statistical emulation on the base of an ensemble of

pre-computed deterministic models has been developed in [15]. The recent ad-

vancements have been achieved in the area of deep learning methods [16]. While

being relatively successful in their forecasting abilities, the models above do not

consider any knowledge about the processes’ physics, and due to a large number70

of assumptions, it may lead to substantial errors.

Furthermore, the proposed method could be applied to the unstudied sys-

tems as a way to model them. Many systems across all spheres of science

lack the study to be adequately described by analytical models. The proposed

equation-based method may provide a surrogate model to simulate the system75

and an insight into its dynamics.

This article describes the first step of the creation of the differential equation-

based surrogate modeling method. Here we propose only the element of the

equation derivation, avoiding the problem of forecasting.

The problem of data-driven discovery of partial differential equations, which80

plays a significant role in our modeling scheme, has seen an increasing rele-

vance and research interest in recent years. The sparse regression presents the

first class of the developed algorithms of data-driven partial differential equa-

tion derivation. It is applied to the libraries of possible equation terms to ap-

proximate the time derivative with the selected terms, required to describe the85

examined process, and calculate real-valued coefficients for them. The notable

examples of this approach are presented in [17, 18]. In [19], the same idea was

extended to the discovery of an equation with non-constant (time-dependent)

coefficients.

The concept of numerical Gaussian processes, developed in [20], views the90

discretized equation as the Gaussian process and obtains the equation’s un-

known coefficients with maximum likelihood estimation. However, the class of

the equations explored in the research is limited by the linear partial differential

4

equations.

Artificial neural networks provide a more versatile tool. This method is95

based on the approximation of time derivative with combinations of spatial

derivatives and other functions. The ANN applications’ examples to the problem

of partial differential equation discovery were presented in [8, 21, 22, 7, 6]. While

artificial neural networks can discover non-linear equations, they still rely on

approximating a determined term (time derivative of the first order), limiting100

their flexibility.

3. Problem statement

The class of problems, which the described EPDE algorithm can solve, can

be summarized as follows: the process, which involves scalar field u, is occurring

in the area Ω and is governed by the partial differential equation Eq. 1. How-105

ever, there is no a priori information about the dynamics of the process except

that some form of PDE can describe it (for simplicity, we consider temporally

varying 2D field case, even though the problem could be formulated for an ar-

bitrary field). In recent developments, we have abandoned the assumption of

the constant weights in the partial differential equations, allowing them to be110

an arbitrary function (logarithmic, trigonometric) and thus expanding the class

of possible systems to study.

F (u, ∂u∂x1
, ∂u∂x2

, ..., ∂u∂t ,
∂2u
∂x2

1
, ∂

2u
∂x2

2
, ..., ∂

2u
∂t2 , ...,x) = 0;

G(x) = 0, x ∈ Γ(Ω)× [0, T];

(1)

From the area Ω × [0, T] a set of samples U = {u1, u2, ..., un}, where ui =

u(x
(i)
1 , x

(i)
2 , ti) is the function value at the arbitrary point (x

(i)
1 , x

(i)
2 , ti) ∈ Ω ×

[0, T], is collected. There are no strict limitations for distributing the sample115

collection points in the area, but the further requirements of the derivative

calculations make the case of stationary points located on the grid the most

preferable. The main task of the algorithm is the derivation of the Eq. 1, using

measurements from the set of discrete measurements U with some externally

5

defined limitations, including a range of the derivative orders, several terms in120

the equations, and some factors in the term.

The resulting model Eq. 2 takes form of linear combination of terms, where

each of them t(x) =
Ntokens∏
j=1

φj (with Ntokens is pre-defined algorithm hyper-

parameter) is constructed as the product of pre-computed elementary oper-

ators φj , selected from a different groups of elementary operators of a same125

nature. More detailed elementary operator φi ∈ Φ = ∪jΦj ; Φj - a group of

elementary operators of a same nature (for example, trigonometric group Φj =

{sin(x1), cos(x1), sin(x2), ...}, or differential operators group Φj = {u, ∂u∂x1
, ∂u∂x2

, ...}).

F (x) =
∑
i

citi(x) = 0; (2)

The addition of different groups Φj of terms allows to switch from the differ-

ential equation with the constant coefficients to differential equations with the130

variable coefficients.

The noise in this paper is assumed to be directional. The noise Exj
in the

direction xj can be described as Eq. 3.

Exj (u(x1, ..., xn; t)) = u(x̄1, ..., xj , ...x̄n; t) + ε(xj) (3)

With x̄i “fixed” variables are denoted and ε(xj) is the noise, which in the

paper is assumed to be distributed normally N(0;σ) with the expected value135

of 0 and the variance of σ. It should be emphasized that poly-directional noise

forms as the superposition of the unidirectional noise operators, i.e. Exj ,xk
=

Exj
◦Exk

. In what follows σ̄ = σ max(u) is chosen as the multiplier of maximal

magnitude of the measured value in this direction. The noise level is defined in

the same way. In the text below bar over the variance, σ is omitted.140

4. Method description

In this section, the details of the evolutionary method of partial differential

equation derivation are described. The proposed method involves a combina-

tion of evolutionary algorithms and sparse regression to detect the equation

6

structure. The sparse regression aims to construct equation terms set, while the145

evolutionary algorithm is focused on selecting significant terms from the created

set and calculating weights that will be present in the resulting equation. At

first, we introduce the preprocessing pipeline while later describe the algorithm

workflow.

4.1. Data preprocessing150

To initialize the algorithm, time and spatial derivatives, which will later form

the desired equation, must be calculated. In specific situations, the derivatives

by themselves can be measured, and, therefore, this step can be skipped, but

often only the raw value of the studied function is available in the research. It

can be assumed without losing the generality that the measurements are held on155

the rectangular (but not necessarily uniform) grid for the more straightforward

further computations. The multi-dimensional case requires more nuanced meth-

ods of obtaining derivatives, unlike the instances of a single dimension. In most

of the one-dimensional experiments, even on moderate noise levels, which can

be measured as Eq. 4, the finite-difference method of derivative calculation can160

lead to satisfactory results. It is important to note that the taken derivatives’

quality is crucial for acquiring the equation’s correct structure.

Qnoise =
‖u0 − ũ‖2
‖u0‖2

∗ 100% (4)

In general, the calculation of derivatives is the operation that is vulnerable

to the data’s noise. Also, the convergence of the algorithm and the resulting

equation depends on the input derivatives’ quality. If they are computed with165

high errors, the resulting equation’s alterations can vary from incorrect coeffi-

cients to the entirely wrong structure. For these reasons, several noise-resistant

methods of partial derivative calculations have been introduced. Notably, they

include such commonly used methods as kernel smoothing [23], derivation of

polynomials, fitted over sets of points, and more uncommon ones like Kalman170

filtering [24].

7

Therefore, data clearance and noise-resistant derivative calculations have

been combined to achieve decent smoothness in the framework. First of all,

Gaussian smoothing kernels are applied for the data field on each time frame.

This approach can reduce the significant outliers in the data and corresponds175

to the nature of the studied metocean processes, where the fields tend to be

smooth. In the time-dependent multi-dimensional field, the smoothing is applied

for each of the time frames. Two-dimensional Gaussian smoothing with selected

bandwidth σ has the structure Eq. 5 and kernel Eq. 6, where s is the point, for

which the smoothing is done, and s′ - point, that value is utilized in smoothing.180

ũ(s, t) =

∫
Kσ(s− s′)u(s′)ds′; (5)

Kσ(s− s′) =
1

2πσ2
exp (

1

2σ2

2∑
i=1

(s− s′)i); (6)

In addition to smoothing, a noise-stable numerical differentiation scheme is

applied. The derivative is taken by differentiation of polynomials constructed

over the set of points in the selected window. The coefficients of the polynomials

utilized in this step are obtained by linear regression. Despite all these measures,

as presented on Tab. 1, derivatives of higher orders tend to have significant errors185

even after smoothing and polynomial derivation.

Table 1: Noise levels (%) for the raw noised data and for the smoothed data

u ∂u
∂t

∂2u
∂t2

Noised function 15.5 260.1 12973.8

Smoothed function 12.3 10.78 458.2

A particular example of the noised function field is shown in Fig. 1. For

clarity purposes, only the spatial domain center slice is provided. However, it

should be emphasized that the entire spatial field is smoothed out to obtain

8

the spatial derivative field, with the other spatial dimension processed by the190

kernel.

Figure 1: Graph of a section over one spatial dimension for synthetic input function (solution

of wave equation with 2 spatial dimensions) in original state, with Gaussian noise, added to a

fraction (40%) of points of the domain, and after the noise was smoothed by Gaussian kernel

Differentiation of the three different fields shown in Fig. 1 gives the derivative

fields that have values of the different orders. Thus, they are shown in the

different graphs in Fig. 2.

In most equations governing the real-world processes, derivatives’ orders are195

limited to the first or second order. Derivatives of the slices shown in Fig. 1 are

represented in Fig. 2 and indicate that the proposed algorithm of noise reduction

in derivatives not only achieves values close to the values of the derivatives on

noiseless data but also preserves the structure of the fields, which is vital for the

main evolutionary algorithm due to the normalization of values on each time200

frame.

9

Figure 2: Graph of first (left column) and second (right column) order time derivative, cal-

culated on input function (a)), noisy function (b)), and function with noise, smoothed by

Gaussian kernel (c)

4.2. Evolutionary algorithm

After the preprocessing, which involves differentiation of initial field, the

evolutionary algorithm is initiated. Here, we split the task of the equation

discovery into two subtasks, performed in turns: the detection of the structure205

(terms) of the equation, and calculation of the real-valued coefficients, that

correspond to these terms with the detection of valuable ones. The search of

the optimal set of terms is performed with the evolutionary algorithm, while the

calculation of intermediate coefficients is done with the regularized regression.

During the search process, we use the values of factors φ, belonging to the task-210

specific types Φ, evaluated on the studied domain nodes, that form vectors as

in Eq. 7, combinations of which form the terms of the searched equation.

a) Chromosome form and the fitness function. An example of genes in the

chromosome is presented in Eq. 8. Here, the vector composed as the elementwise

product (that is denoted with � symbol) of vectors containing the original215

10

function and its derivative along the x-axis is used as the regression feature set.

f1 =

1
...

1
...

1

; f2 =

u (t0, x0)
...

u (ti, xj)
...

u (tm, xn)

; f3 =

ux (t0, x0)
...

ux (ti, xj)
...

ux (tm, xn)

; ... (7)

F′k =

u(t0, x0) ∗ ux(t0, x0)
...

u(ti, xj) ∗ ux(ti, xj)
...

u(tm, xn) ∗ ux(tm, xn)

= f2 � f3; (8)

The normalization of terms values is held for each time frame passed into the

algorithm for the correct operation of regularized regression during the further

weight calculation phases. In this step, we can use arbitrary norm, but most

commonly, L2 norm or L∞ norms are applied, as it is represented in Eq. 9.220

Fk =

u(t0,x0)·ux(t0,x0)
||f2(t0) � f3(t0)||

...

u(ti,xj)·ux(ti,xj)
||f2(ti) � f3(ti)||

...

u(tm,xn)·ux(tm,xn)
||f2(tm) � f3(tm)||

; (9)

The evolutionary part of the algorithm aims to select a set of terms to

form the equation. In the set, one of the terms is randomly selected as the

target. The target term is approximated with the weighted combination of the

other terms in the list. In the beginning, a randomized collection of possible

equations, which is called population, is declared. Every individual contains a225

set of terms with the selected target that can be interpreted as the right part of

the equation and features, a linear combination of which composes the left part.

In order to perform selection, the fitness function is introduced in Eq. 10 as the

11

inverse value of L2-norm. The target term in the ”right side” of the equation

contains only one randomly selected term. Norm is taken as the differences230

between target Ftarget and the selected combination of features F with weighs

α, obtained by the sparse regression (left side of the equation). Therefore, the

evolutionary algorithm’s task can be reduced to obtain the equation structure

with the highest fitness function value.

ffitness =
1

‖F · α− Ftarget‖2
−→ max (10)

The composition of the encoded terms represents the genotype of the indi-235

vidual. These encodings contain the parameters of each token in the term. The

evolution of individuals is performed both by mutation and by a crossover in ev-

ery iteration step. The mutation for an individual is introduced as the random

change (addition, deletion, or alteration of factors) in its terms. For example,

this can result in shift of equation term ut to uxx ∗ut or ux ∗utt to ux ∗ut. The240

elitism, introduced as the individual’s exclusion with the highest fitness value,

helps preserve the best-discovered candidate (the one with the highest fitness

function value) during the mutation step.

b) Evolutionary operators. Crossover is the part of the evolutionary mechanism,

which manifests as the gene exchange between two individuals to produce off-245

spring with higher fitness values. In the task of data-driven equation derivation,

it can be introduced as the exchange of terms between equations. In order to

produce units with higher fitness values, the crossover should be held between

selected individuals. Several tests have proved that the fastest convergence to

the desired solution can be achieved with the tournament selection. In this pol-250

icy, several tournaments, where the unit with the highest fitness value is selected

for a further crossover, are held between individuals of the population. After

that, parents for the offsprings are randomly chosen between the tournament

winners. In contrast to the simple selection of several individuals with the high-

est fitness function values for reproduction, this approach can let the offsprings255

take good qualities from the population’s less-valuable individuals.

12

The next essential element of the proposed data-driven algorithm is sparse

regression. Its main application is the detection of the equation structure among

the set of possible terms. With no original information about the equation

structure and the correct number of terms, it is better to introduce the equation260

with a higher number of possible term candidates. Therefore some form of

filtration has to take place. The main instrument in this phase is the Least

Absolute Shrinkage and Selection Operator (LASSO). In contrast to other types

of regression, LASSO can reduce the number of non-zero elements of the weights

vector, giving zero coefficients to the features that are not significant to the265

target.

The minimized functional of the LASSO regression Eq. 11 takes the form of

the sum of two terms. First is the squared error between vectors of the target,

denoted as Ftarget, and vector of predictions, obtained as the inner product of

a matrix of features F and vector of weights α, while second in the L1-norm of270

the weights vector, taken with sparsity constant λ:

‖Fα− Ftarget‖22 + λ‖α‖1 → min
α

(11)

The main drawback of the LASSO regression is its disability to acquire the

correct values of the coefficients. Final linear regression over discovered effective

terms is performed to obtain the resulting PDE’s actual coefficients. In the final

step, non-zero weights from the LASSO are rescaled with original unnormalized275

data as features and the target.

The pseudo-code for the resulting algorithm is provided in Appendix A

5. Numerical experiments

5.1. Synthetic data

a) Wave equation. The analysis of the algorithm performance is held on the280

synthetic data. This simplification can show the result’s response to various

types and magnitudes of noise, which is generally unknown on the measurement

data. As in the previous studies, the solution of the wave equation with two

13

spatial variables Eq. 14, where t - time , x, y - spatial coordinates, u - studied

function (for example, small out-of-plane membrane displacement), and α1 =285

α2 = 1 was taken as the synthetic data. The equation was solved, using the

finite-difference technique for the domain, comprised of 201× 201× 201 points

in 2 spatial dimensions & time, and the proposed method was applied to the

solution dataset. The grid, which covered the domain, had uniformly distributed

nodes with coordinates between 0 and 10. The initial conditions for the equation290

were Eq. 12 & Eq. 13, and u = 0 was the boundary condition for the problem.

u = 10000 sin (
1

100
xy(1− 1

10
x)(1− 1

10
y))2 (12)

∂u

∂t
= 1000 sin (

1

100
xy(1− 1

10
x)(1− 1

10
y))2 (13)

The algorithm has proved to detect the correct structure of the equation

with the clean data, while on the noisy data, additional terms or completely

wrong structures have been detected.295

∂2u

∂t2
= α1

∂2u

∂x2
+ α2

∂2u

∂y2
(14)

Several noise addition experiments were held on the synthetic data: first of

all, in a fraction of points (40% of total number) the noise of various magnitudes

have been added: (µ = 0;σ = n ∗ ||u(t)||, n = 0.1, 0.2, ..., 0.8). After that, the

algorithm has been applied to this data. The results of the experiment are as

follows: the method is successfully able to detect the structure of the equation300

for the interval of noise levels up to 14.9 %, which corresponds to the standard

deviation of Gaussian noise in the interval [0, 0.35], multiplied by a norm of

the field in the time frame. The weights errors in this interval are minor, as is

shown in the Tab. 2. With higher noise levels (in the interval between 14.9%

and 15.67%), the algorithm detects additional terms that are not present in the305

original equation, resulting in both distortion of equation structure and incorrect

14

weights calculation. Finally, with high noise levels, the proposed algorithm can

lose grasp of the equation’s correct structure.

Table 2: Discovered structures of the equations for the specific noise levels

Noise level of input data (%) equation

0 ∂2u
∂t2 = 1.00∂

2u
∂x2 + 1.00∂

2u
∂y2

8.3 ∂2u
∂t2 = 1.02∂

2u
∂x2 + 1.01∂

2u
∂y2

10.9 ∂2u
∂t2 = 1.04∂

2u
∂x2 + 0.99∂

2u
∂y2

13.1 ∂2u
∂t2 = 0.96∂

2u
∂x2 + 0.99∂

2u
∂y2

14.9 ∂2u
∂t2 = 0.95∂

2u
∂x2 + 1.2∂

2u
∂y2

15.67 ∂2u
∂t2 = 0.84∂

2u
∂x2 + 0.63∂

2u
∂y2 + 0.12∂u∂y

16.45 ∂2u
∂x2

∂2u
∂y2 = 0

17.88 ∂2u
∂x2

∂2u
∂y2 = 0

In Fig. 3, the influence of the noise level added to the measured field on the

derivative fields is shown.310

Figure 3: Noise levels of calculated first and second (dashed line) time derivatives, related to

noise levels of input data

In the other experiment with the same data set, the noise of relatively high

15

magnitudes was added to a minor fraction of points (5% of the total number). In

this case, the framework has shown similar results to the previous experiment:

until the noise level of approximately 15%, the discovered structure was correct.

On the data with higher noise magnitudes, errors in the structure of the equation315

occurred. This experiment has shown that in the studied cases, the main limiting

factor for the algorithm’s performance with implemented preprocessing for noise

reduction is the noise level and not the distribution of noise across the studied

field.

b) Korteweg-de Vries equation’s solitary solution. To further analyze the syn-320

thetic data’s algorithm performance, we have conducted additional experiments

on the Korteweg-de Vries equation and the heat transfer equation.

To create a more specific situation for the Korteweg-de Vries equation Eq. 15,

we have studied the solitary wave solution of the equation Eq. 16. This solution

represents the transfer of a single wave, propagation with speed c from the initial325

position, specified by the wave crest’s location at x0. The data for the test is

obtained from the solution function Eq. 16. The solution is evaluated on the

uniform grid of 101 spatial points in the interval x ∈ [0, 10] and 151 time points

in the interval t ∈ [0, 15].

∂u

∂t
+ 6u

∂u

∂x
+
∂3u

∂x3
= 0 (15)

u = − c
2
sech2[

√
c

2
(x− ct− x0)] (16)

The application of the framework to the solution Eq. 16, evaluated on a330

regular grid, failed to rediscover the initial equation. An improperly discovered

model results from the simpler incidental forms in data, such as ut = −cux. This

equation’s simplicity results in a higher probability of its discovery than for the

full KdV equation. Additionally, the absence of the high-order derivatives in

the structure, which are inevitably calculated with numerical error, may lead335

to higher fitness function values than in the correct equation. This experiment

illustrates that the algorithm is susceptible to discovering “shortcut-equations”,

16

which commonly represent the equality between functions (usually, different

derivatives) present in the input functions pool. Similar cases have been stud-

ied to analyze the discovery process for ordinary differential equations in the340

previous works.

c) Heat equation with convection. To provide a more sophisticated test case for

the framework, we have utilized the convection-diffusion equation. The equa-

tion belongs to the class of parabolic equations and has the structure Eq. 17,

where ∇ represents gradient operator, and v is the velocity vector (field).345

We have studied example of the equation with transfer in only one direction

(meaning,v = [v1, 0]; v1 = −1, representing constant velocity field along x-

axis), and α = 1 - thermal diffusivity of the medium; ∇ =
∑
i ei

∂
∂xi

- gradient

operator; ei - basis vector for i-th axis. The equation was solved on a grid with

100 × 100 × 100 nodes in domain between 0 and 10 along each axis. The ini-350

tial and boundary conditions are correspondingly presented in the Eq. 12 and

Eq. 13.

∂u

∂t
= ∇ · (α∇u)− v · (∇u) (17)

u = 10 sin (
π

100
x(10− x)) sin (

π

100
x(10− x)) (18)

u = 10 sin (
2π

3
t) sin (

π

100
y(10− y)) + 0.05t (19)

The evolutionary algorithm detects the correct structure of the equation in

the majority of independent runs (out of 15 runs), as is shown in Tab. 3.355

In Tab. 3 ci ≈ 1, i = 1, 3, c4 ≈ 1.59, and c5 ≈ 2.98. This experiment

indicates, that the algorithm is able to detect complex structures of the equation,

if there are no ”shortcut” solutions of the problem.

17

Table 3: Equations structures, detected in the experiment.

Equation Number of experiments, getting the structure

∂u
∂t = c1

∂2u
∂x2 + c2

∂2u
∂y2 + c3

∂u
∂x 9

−11.06d
3u
dx3 = ∂u

∂x 1

∂u
∂t = c1

∂2u
∂x2 + c2

∂2u
∂y2 3

∂2u
∂x2 = −c4 ∂u∂y + c5

∂u
∂x 2

5.2. Real data example

For the validation of the model, the dynamics of the two-dimensional field of360

sea surface height (SSH) data from the NEMO ocean model for the Arctic region

(center of the Barents sea) for a modeling month a resolution of an hour has

been used. The area is known to have strong tides, leading to the discovery of

the time-dependent equation. It is necessary to emphasize that despite existing

Tidal equations, there is no single analytical equation for the specific case of365

the SSH dynamics in this region due to the overlapping of different natures’

processes. The studied domain was divided into daily intervals to reduce the

risks of the deriving equation, which describes multiple processes following each

other in the domain. The data’s spatial properties are as follows: the intervals

between nodes are approximately 5 km, while the domain contained 50 × 50370

nodes.

After the application of the framework to the data, we obtain the equation

in the form Eq. 20.

∂u

∂x
= −0.0506

∂u

∂t
− 0.0053

∂2u

∂t2
(20)

Eq. 20 was solved, and the calculated field was compared with the initial one

to validate the result of the algorithm. Since there is a second-order time deriva-375

tive and first spatial derivative, the initial conditions (two initial time steps to

represent the field and its first time derivative for the beginning of the studied

period) and the boundary condition on one edge of the studied area are set. The

18

graphs of daily sea surface height dynamics from reanalysis and equation solu-

tion are presented in Fig. 4 and Fig. 5. The quality metrics show that the discov-380

ered equation can describe the equation well: RMSE = 0.0434,MAE = 0.0446

for the field with values in interval between approximately 0.5 and 0.9.

t = 15.0 t = 16.0 t = 17.0

Figure 4: Example of SSH field, obtained from reanalysis (upper row) and the same field from

Eq. 20, (lower row) for 3 time frames

5.3. Comparison with other methods

The experiments, similar to the ones in [7], have been performed to com-

pare the proposed algorithm with existing state-of-the-art methods. Due to385

the framework’s limitations, a single equation Eq. 22 is used, instead of the

system Eq. 21, that is utilized in [7]. Additional difficulties to the comparison

were contributed by unknown initial and boundary conditions in the referenced

experiment.

∂U
∂t = −U∇U + ν∆U,U = (u, v)T

U |t=0 = U0(x, y)

(21)

∂u

∂t
= (

∂2u

∂x2
+
∂2u

∂y2
) + u(

∂u

∂x
+
∂u

∂y
) (22)

19

Figure 5: Dynamics of sea surface height for September 18, 2013: reanalysis (denoted as data)

and solution of the equation, obtained from framework, denoted as model, for the center of

the studied area

Eq. 22 was solved using finite differences, and the noise from normal dis-390

tribution was added to simulate the previous experiment. The preprocessing

phase, described in previous sections and involving smoothing and derivatives

calculation, was performed to reduce noise’s influence on the resulting equation.

The added noise was created from k × maxx,y,t u(x, y, t) × N(0, 1). The

experiments resulting in the correct structure have been conducted with the395

value k = 0.001, as in the compared study [7]. As the framework output, we

will consider the closest to the equation’s correct structure, obtained on the grid

of sparsity constant values.

These tests show that noise resistance corresponds with other framework

applications and is somewhat better than in the compared experiment. Despite400

the insignificant difference in the coefficient k (0.001 versus 0.00015), the noise

level difference is significant (1% versus 6.3%). For the noise levels approxi-

mately below 5%, the correct equations were detected. The equation structure

deteriorates, which manifests in wrong weights and additional terms or lack of

mandatory ones.405

20

Table 4: Discovered structures of the equations for the specific noise levels

k Noise level of input data (%) equation

0.0005 0.25%
∂u
∂t = (0.999∂

2u
∂x2 + 1.000∂

2u
∂y2)+

+u(1.001∂u∂x + 1.000∂u∂y)

0.00075 0.49%
∂u
∂t = (1.001∂

2u
∂x2 + 1.001∂

2u
∂y2)+

+u(0.999∂u∂x + 0.999∂u∂y)

0.001 0.97%
∂u
∂t = (1.000∂

2u
∂x2 + 0.999∂

2u
∂y2)+

+u(1.000∂u∂x + 1.000∂u∂y)

0.00125 4.2%
∂u
∂t = (1.001∂

2u
∂x2 + 1.002∂

2u
∂y2)+

+u(0.998∂u∂x + 0.999∂u∂y)

0.0015 6.3%
∂u
∂t = (0.996∂

2u
∂x2 + 0.998∂

2u
∂y2)+

+u(1.000∂u∂x + 1.003∂u∂y)− 0.0034∂
2u
∂y2

∂u
∂x

6. EPDE framework description

The framework, encompassing the described method, is designed to allow the

user to customize the algorithm’s significant elements while giving the default

pipeline and necessary tools for the differential equation discovery. The setup

of the equation discovery experiment requires the selection of functions (tokens)410

that form the pool, from which the algorithm creates the candidate equations.

The main element that has to be defined is obtaining the function values on the

set of processed points to evaluate further the fitness function in the Eq. 10. For

example, the derivatives in the framework’s current development are stored as

the pre-computed matrices of their values on the grid. In contrast, trigonometric415

functions’ values are calculated during the fitness function calculation due to a

frequency parameter. The correct token evaluation method’s selection can be

viewed as the trade-off between memory storage utilization and computational

powers involved in calculating functions during the algorithm run.

The token families, sets of elementary functions, are created with the def-420

21

inition of the tool mentioned above. For every token, the range for function

parameters (such as power or frequency) and markers are specified, setting the

behavior of functions in the equation structure (i.e., if a function can be present

in terms in the left side of the equation, if it is in the right part, or if multiple

tokens from a token family can be in a term).425

The workflow of the main evolutionary algorithm, which forms the algo-

rithm’s cornerstone, is mutable via the evolutionary operator’s modifications.

To guide the operator’s development, we have introduced the builder class, rep-

resenting the eponymous pattern. The operators, presented in the Sec. 4, are

included in its default form, provided by the director class. However, the user430

can modify all of the significant elements if the specific equation discovery task

requires it. The selection of the parameters for the evolutionary operators is

made in their definition in the builder class.

7. Neural networks approximation with automatic differentiation

This section is dedicated to changing the differentiation method. The pro-435

posed algorithm has a modular structure. Thus, we may replace the differentia-

tion algorithm from finite differences or analytical differentiation of polynomials

to the neural network approximation with further automatic differentiation.

7.1. Application of artificial neural networks to the data preprocessing

Automatic differentiation is a standard tool in deep learning frameworks.440

The process of neural network training utilizes the backpropagation technique

based on calculating the loss function gradient with respect to the weights’ val-

ues, which is often done via automatic differentiation. With this approach to

the derivative calculation problem, the preprocessing stage involves two stages:

fitting the artificial neural network to the input data and the automatic differ-445

entiation with respect to the spatial coordinates and time.

The multi-layered feed-forward artificial neural network’s training process

with the sigmoid activation functions was implemented, using the tensorflow

22

framework. We use the network that contained three fully-connected layers

(generally, with 256, 512, and 64 neurons) in the experiments. The selection450

of architecture was driven by the propositions in [25, 26]. We utilize the mean

squared error as the loss function during the artificial neural network training

process, performed with Adam stochastic optimization algorithm. A random

sample of studied data points (the function we want to describe with the dif-

ferential equation, which we will obtain later) is used for each epoch’s training455

process.

After the ANN training process with the studied data, automatic differenti-

ation is used to obtain the derivatives. In contrast to the previously mentioned

method of calculating derivatives of polynomials fitted only along an axis, the

automatic differentiation technique can get mixed partial derivatives. The gra-460

dients, hessian and further derivatives are collected from the in-built methods

of automatic differentiation.

7.2. The analysis of ANN preprocessing properties

The wave equation’s test case with one spatial dimension was examined to

compare the noise-reducing properties of proposed derivatives evaluation meth-465

ods: the kernel smoothing and analytical differentiation of fitted polynomials

against the automatic differentiation of artificial neural networks. The noise is

added in the way shown previously. However, data is not separated into sub-

domains. Here, we add the Gaussian noise with µ = 0 and σ = 0.03∗max(u(t))

to each of the time frames.470

The lower quality of the artificial neural field reconstruction of the noisy

field presented in Fig. 6, can not be attributed to the overfitting or the under-

fitting of the network: the same structures are obtained in the initial stages

of loss function stabilization and on the latter epochs. Therefore, we can at-

tribute the method’s downside to the particular architecture: 3 fully connected475

layers of the ANN with particular neurons. Nevertheless, the comparison of the

fields obtained after the differentiation (see Fig. 7) shows that the default kernel

smoothing and the polynomial fitting algorithm can better calculate the fields.

23

(a) Original noised field (b) The noised field reconstruction

Figure 6: The comparison between the solution of wave equation x− and y− axes are coordi-

nates, color value of the function u(x, y) a) and the ANN, fit to the solution b)

In the discussed experiments, the noise levels, introduced in Eq. 4, in the initial

fields are approximately 2.49%. The noise levels in the first time derivatives480

(Fig. 8) are 31.6% and 1116.89% for default method and ANN accordingly, and

the first spatial derivatives (Fig. 9) are 29.7% and 927.14% correspondingly.

8. Conclusion

The proposed method has proven to be suitable for the data-driven deriva-

tion of equations that can model various physical processes. The robustness485

of the algorithm to the noise in the input data provided by improved prepro-

cessing of data allows the framework applicable to real-world problems. Even

in the cases of substantial noise in the input data, the resulting equations had

the correct structures and, therefore, can correctly describe the studied system.

Other notable points about the algorithm operation can be stated:490

• To achieve a good quality of the resulting processes, the areas, localizing

different processes, should be separated and studied independently. It is

presented in the case of real-world data processing when the area that is

already known to have strong time dependencies of sea surface height was

separated, and the equation for it was derived;495

24

(a) Field of the correct first time derivative (b) Field of the correct spatial time derivative

Figure 7: The fields of time and spatial derivatives, calculated from the noiseless data

(a) Kernel filtering & polynomial differentiation (b) Automatic differentiation result

Figure 8: The comparison between the differentiation methods for first time derivative solution

of wave equation

25

(a) Kernel filtering & polynomial differentiation (b) Automatic differentiation result

Figure 9: The comparison between the differentiation methods for first spatial derivative

solution of wave equation

• The meta-parameters of the algorithm have a strong influence on the final

result. For example, low values of sparsity constant can lead to additional

terms in the equation, while its higher than optimal values can completely

distort the equation structure. Therefore, mechanisms of meta-parameter

selection should be implemented in the further development of the method;500

• The proposed preprocessing technique, that combines kernel smoothing

and fitting the Chebyshev polynomial to the data in a specified window,

is proven to be an efficient derivative calculation tool. It was shown to

perform better than the automatic differentiation of an artificial neural505

network.

Areas of the further development of the framework can include deriving a

more generalized class of equations, using similar techniques, not limiting the

results in a class of partial differential equations. Additionally, the equations

for vector variables or even systems of equations can be the next targets for the510

work.

Source code is publicity available at GitHub [1].

26

Acknowledgements

This research is financially supported by The Russian Scientific Foundation,

Agreement #19-71-00150.515

References

[1] NSS Team, Fedot E* algotirhms, https://github.com/ITMO-NSS-team/

FEDOT.Algs (2020).

[2] M. Maslyaev, A. Hvatov, A. Kalyuzhnaya, Data-driven partial differential

equations discovery approach for the noised multi-dimensional data, in:520

International Conference on Computational Science, Springer, 2020, pp.

86–100.

[3] J. Berg, K. Nyström, Neural network augmented inverse problems for pdes,

arXiv preprint arXiv:1712.09685.

URL https://arxiv.org/abs/1712.09685525

[4] H. Schaeffer, R. Caflisch, C. D. Hauck, S. Osher, Learning partial dif-

ferential equations via data discovery and sparse optimization, Proceed-

ings of the Royal Society A: Mathematical, Physical and Engineering Sci-

encedoi:473(2197):20160446.

[5] S. H. Kang, W. Liao, Y. Liu, Ident: Identifying differential equations with530

numerical time evolution, arXiv preprint arXiv:1904.03538.

[6] T. Qin, K. Wu, D. Xiu, Data driven governing equations approximation

using deep neural networks, Journal of Computational Physics 395 (2019)

620–635.

[7] Z. Long, Y. Lu, X. Ma, B. Dong, PDE-net: Learning PDEs from data, in:535

International Conference on Machine Learning, 2018, pp. 3208–3216.

[8] M. Raissi, Deep hidden physics models: Deep learning of nonlinear partial

differential equations, The Journal of Machine Learning Research 19 (1)

(2018) 932–955.

27

https://github.com/ITMO-NSS-team/FEDOT.Algs
https://github.com/ITMO-NSS-team/FEDOT.Algs
https://github.com/ITMO-NSS-team/FEDOT.Algs
https://arxiv.org/abs/1712.09685
https://arxiv.org/abs/1712.09685
http://dx.doi.org/473(2197):20160446

[9] M. J. Asher, B. F. W. Croke, A. J. Jakeman, L. J. M. Peeters, A review540

of surrogate models and their application to groundwater modeling, Water

Resour. Res. 51 (2015) 5957–5973. doi:10.1002/2015WR016967.

[10] M. P. Rumpfkeil, P. Beran, Multi-fidelity surrogate models for flutter

database generation, Computers & Fluids 197.

[11] N. O. Nikitin, P. Vychuzhanin, A. Hvatov, I. Deeva, A. V. Kalyuzhnaya,545

S. V. Kovalchuk, Deadline-driven approach for multi-fidelity surrogate-

assisted environmental model calibration: Swan wind wave model case

study, in: Proceedings of the Genetic and Evolutionary Computation Con-

ference Companion, 2019, pp. 1583–1591.

[12] M. Maslyaev, A. Hvatov, A. Kalyuzhnaya, Data-driven partial derivative550

equations discovery with evolutionary approach, in: International Confer-

ence on Computational Science, Springer, 2019, pp. 635–641.

[13] B. D. Santer, T. M. Wigley, M. E. Schlesinger, J. F. Mitchell, Developing

climate scenarios from equilibrium gcm results.

[14] M. Cabré, S. Solman, M. Nuñez, Creating regional climate change scenarios555

over southern south america for the 2020’s and 2050’s using the pattern

scaling technique: validity and limitations., Climatic Change 98 (2010)

449–469. doi:10.1007/s10584-009-9737-5.

[15] S. Castruccio, D. J. McInerney, M. L. Stein, F. Liu Crouch, R. L. Jacob,

E. J. Moyer, Statistical Emulation of Climate Model Projections Based on560

Precomputed GCM Runs*, Journal of Climate 27 (5) (2014) 1829–1844.

doi:10.1175/JCLI-D-13-00099.1.

[16] T. Weber, A. Corotan, B. Hutchinson, B. Kravitz, R. Link, Technical note:

Deep learning for creating surrogate models of precipitation in earth system

models, Atmospheric Chemistry and Physics 20 (2020) 2303–2317. doi:565

10.5194/acp-20-2303-2020.

28

http://dx.doi.org/10.1002/2015WR016967
http://dx.doi.org/10.1007/s10584-009-9737-5
http://dx.doi.org/10.1175/JCLI-D-13-00099.1
http://dx.doi.org/10.5194/acp-20-2303-2020
http://dx.doi.org/10.5194/acp-20-2303-2020
http://dx.doi.org/10.5194/acp-20-2303-2020

[17] K. Kaheman, S. L. Brunton, J. N. Kutz, Automatic differentiation to si-

multaneously identify nonlinear dynamics and extract noise probability dis-

tributions from data, arXiv preprint arXiv:2009.08810.

URL https://arxiv.org/abs/2009.08810570

[18] L. Zhang, H. Schaeffer, On the convergence of the sindy algorithm, Multi-

scale Model. Simul., 17(3) (2019) 948–972.

URL https:///arxiv.org/abs/1805.06445

[19] S. H. Rudy, A. Alla, S. L. Brunton, J. N. Kutz, Data-driven identifica-

tion of parametric partial differential equations, SIAM Journal on Applied575

Dynamical Systems 18 (2) (2019) 643–660.

[20] M. Raissi, P. Perdikaris, G. E. Karniadakis, Numerical gaussian processes

for time-dependent and nonlinear partial differential equations, SIAM Jour-

nal on Scientific Computing 40 (1) (2018) A172–A198.

[21] J. Berg, K. Nyström, Data-driven discovery of pdes in complex datasets,580

Journal of Computational Physics 384 (2019) 239–252.

[22] M. Raissi, P. Perdikaris, G. Karniadakis, Physics informed deep learning

(part ii): Data-driven discovery of nonlinear partial differential equations.

arxiv 2017, arXiv preprint arXiv:1711.10566.

URL https://arxiv.org/abs/1711.10566585

[23] I. Knowles, T. Le, A. Yan, On the recovery of multiple flow parameters from

transient head data, Journal of Computational and Applied Mathematics

169 (1) (2004) 1–15.

[24] R. Piche, Automatic numerical differentiation by maximum likelihood es-

timation of state-space model, arXiv preprint arXiv:1610.04397.590

URL https://arxiv.org/abs/1610.04397v1

[25] Z. Zainuddin, P. Ong, Function approximation using artificial neural net-

works, International Journal Of Systems Applications, Engineering & De-

velopment 1 (4) (2007) 173–178.

29

https://arxiv.org/abs/2009.08810
https://arxiv.org/abs/2009.08810
https://arxiv.org/abs/2009.08810
https://arxiv.org/abs/2009.08810
https://arxiv.org/abs/2009.08810
https://arxiv.org/abs/2009.08810
https:///arxiv.org/abs/1805.06445
https:///arxiv.org/abs/1805.06445
https://arxiv.org/abs/1711.10566
https://arxiv.org/abs/1711.10566
https://arxiv.org/abs/1711.10566
https://arxiv.org/abs/1711.10566
https://arxiv.org/abs/1711.10566
https://arxiv.org/abs/1711.10566
https://arxiv.org/abs/1610.04397v1
https://arxiv.org/abs/1610.04397v1
https://arxiv.org/abs/1610.04397v1
https://arxiv.org/abs/1610.04397v1

[26] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks595

are universal approximators, Neural Networks 2 (1989) 359–366.

Appendix A. Pseudo-code of the algorithm

30

Input: set of elementary tokens T , symbolically representing constant,

initial function, and its various derivatives; set of function

measurements from the studied field

Parameters: M - number of token combinations in a single individual;

k - number of elementary tokens in a combination; n pop

- number of candidate solutions in the population;

evolutionary algorithm parameters: number of epochs

nepochs, mutation rmutation & crossover rates rcrossover,

part of the population, allowed for procreation aproc,

number of individuals, refrained from mutation (elitism)

aelite; sparse regression parameter - sparsity constant λ

Result: The structure of the partial differential equation with the

corresponding weights, best fitting the input field

Smooth the measurements & calculate the derivatives; Generate

population P of individuals, representing equation, of size n pop, with

M - random permutations of k tokens to form sets Cj ;

for epoch = 1 to nepochs do

for individual in population do

Apply sparse regression to the individual to calculate weights;

Calculate fitness function to individual;

end

Hold tournament selection and crossover;

for individual in population except n pop× aelite ”elite” ones do

Mutate individual;

end

end

Select the individual with the highest fitness function value as the final

structure of the solution to the problem;

Calculate the correct weights of the equation using linear regression.
Algorithm 1: The pseudo-code of the algorithm operation

31

	Introduction
	Related work
	Problem statement
	Method description
	Data preprocessing
	Evolutionary algorithm

	Numerical experiments
	Synthetic data
	Real data example
	Comparison with other methods

	EPDE framework description
	Neural networks approximation with automatic differentiation
	Application of artificial neural networks to the data preprocessing
	The analysis of ANN preprocessing properties

	Conclusion
	Pseudo-code of the algorithm

