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ABSTRACT

In this paper, we describe two evolutionary aldons aimed at
scheduling collective communications on intercotioac
networks of parallel computers. To avoid contenfiamlinks and
associated delays, collective communications prbceea

synchronized steps. Minimum number of steps is Bbéw the
given network topology, wormhole (pipelined) switudp

minimum routing and given sets of sender and/oeivec nodes.
Used algorithms are able not only re-invent optimschedules
for known symmetric topologies like hyper-cubest they can
find schedules even for any asymmetric or irregtd@ologies in
case of general many-to-many collective commurocati In most
cases does the number of steps reach the thebtetie bound
for the given type of collective communication;iifdoes not,
non-minimum routing can provide further improvemedptimum

schedules may serve for writing high-performanammonication
routines for application-specific networks on chir for

development of communication libraries in case ehayal-
purpose interconnection networks.

Categoriesand Subject Descriptors
1.2.8 [Artificial intelligence]: Problem Solving, Control Methods,
and Search heuristic methods

General Terms
Algorithms, Performance, Design.

Keywords
Collective communications, communication schedyliexplutio-
nary optimization.

1. INTRODUCTION

The importance of communication among CPU cores;gssors
and computers and of related interconnection nddsvisrrecently
steadily growing. More often than not, processimgles access
the network according to a global, structured comication
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pattern. The performance of these collective comaations (CC
for short) has a dramatic impact on the overall cpssing
efficiency, because communication times, softwarehardware-
related alike, add up to an overhead of parallet@ssing.

An interconnection network connects a group of sopeéth each
node containing its own processor, memory, and wero The
router specifically handles the communication fiowd to free up
the application processor for time critical messagecessing.
Typically, only one pair of internal channels (1dpemodel) is

used for the router to pass messages to the porcdssreduce
the communication latency, some systems are impladeby

using multiple pairs of internal channelsport model). These
internal channels are to be differentiated from #adernal

channels, which are responsible for the passingnesages
between nodes. In the all-port model, the numbesaofs equals
a number of external channels. The interconnectietwork can
be direct (as 2D-torus or a hyper-cube), or indjregth some
routers (switches) without processors (as in Fa&). & class of
interconnection networks of interest in this papéns at high
performance; it makes use of nearly distance iiseapipelined

message transmission (wormhole switching WH ordiectally

circuit switching CS) over full duplex links (twohannels in
opposite directions) and deterministic source-basedting

algorithms. We therefore exclude adaptive algorghmith HW

support for broadcast or multicast message passahmgiques.

Collective communication [1] involves communicati@mong
subsets or among all processors; provided thatethierl:1
mapping between processors and processes, we oaraleqtly
talk about communicating process groups. Genevadljrave two
process groupst — the subset of senders (transmitters) Bl
the subset of receivers. The subsendR can be overlapping
and can be as large as the full setPoprocesses. Collective
communication may be categorized as one to onet@meany,
many to one or many to many, with many being also a

1.T n R=0, non-overlapping sets of processes.

A. One-to-all,| T|= 1,|R|= P - 1. (One-to-all broadcast
OAB, one-to-all scatter OAS).

B. One-to-many, T| = 1,| R[ < P - 1. (Multicast)

C. Allto-one,| T|= P - 1,|R|= 1, e.g. gather (AOG) or
reduce (AOR).

D. Many-to-many,| T|= M, IR[= N, M, N < P. Non-
overlapping sets of processes (Many-to-many braadca
MNB, many-to-many scatter MNS).



2.IT n Rlz 1. Many-to-many communication with overlapping
sets of processes.

3.IT n R|=P. All-to-all communications such as permutation,
all-to-all scatter (AAS), broadcast (AAB), reducAAR), and
others.

In one to all, one process in grotpis the sender (transmitter)
and all the other processes in grduipre receivers. This category
of group communication has two distinct servicespadcast
(multicast) and scatter. Broadcast (multicast) lemw the same
message is delivered to all the other processékeirgroup and
scatter delivers a different message to each recéivthe group.
For all to one group communication, all the proesss groupl
are identified as senders and the only one procegsoupR is
identified as the receiver. A service offered iistbategory is
gather, which occurs when different messages fieensenders
are received by the receiving process. This iofiosing process
of scatter. And finally, all to all communicatios when each
process in groufd performs its own one to all message passing.
A service provided in this category is all broadcasich allows
for each sender to deliver the same message toeatkeceivers in
the group. This is also known as gossiping. Them#ervice of
this group is all scatter, which means a differeetsage is sent to
each receiving process from the sending procedsscalter is
also referred to as complete exchange.

Some researchers have taken a topology indepeagpnach to
the design of deadlock free wormhole routed CCritlyms. E.g.
the postal model (similar to sending a batch défstthrough the
postal service at one time) demonstrates the walfidita sending
node to transmit multiple messages before the vimgpinode
receives the first message. In this paper, we wmither take
a topology-aware approach and will assume that 6COMH
networks proceeds in synchronized steps. In onedft€C, a set
of simultaneous message transfers takes place alongplete
disjoint paths between source-destination nodes pHithe source
and destination nodes are not adjacent, the mesgageia some
intermediate nodes, but processors in these nademaaware of
it; the messages are routed automatically via reuagtached to
processors. We will assume that all messages ih&€ identical
size and are not combined or partitioned by netwwHes (the
non-combining model).

The paper is structured as follows. In Section 2 present
formally the scheduling problem and recent soluiofits certain
instances. Our novel approach based on evoluticalggrithms
is explained in Section 3. Solutions to sample comoation
problems on selected networks are given in Sectionhere the
quality of resulting schedules is also discussedCdnclusion we
give the range and scope of scheduling problemabta by the
presented approach and possible future extensions.

2. MATHEMATICAL FORMULATION OF
THE SCHEDULING PROBLEM AND ITS
PARTIAL SOLUTIONS

Any collective communication is composed of €&tm of pair-
wise communications (transfers, messages, paths)

% ={C1, Ca C3, ..., L, 1)
wherec; are unidirectional channels along the minimum fathn

the source to destination node. (We will restricrselves to
minimum routing for practical reasons given lat€ardinality of
setCommay be quite high, e.g. all-to-all communicationcagP

processors givesgom| =P (P - 1) messages; fd? [0 <8, 128>
we haveP (P - 1) 0 < 56, 16256 >.

The problem with broadcast (OAB, AAB) is that §&mis not
known in advance, since the informed nodes becauecss for
further transfers. Broadcast in WH meshes and toetsiorks
were scheduled by extending the use of dominatetg fom
graph theory [2], [3] to WH routing. In this appoba a subset of
nodes (dominating set) may pass messages to tléniagnodes
on the network in one step. Generally in case 0Bk k-port
network G, havingm nodes informed, we are trying to inform
recursivelyk x m nodes in the next step, multiplying the number
of informed nodes. Optimal algorithms reaching theoretical
lower bound of steps are not known even for famHigper-cubes
of higher dimensionsd(> 7).

For many-to-many broadcast (MNB) type of commundérat
regardless whether we use WH or SF routing, thebeuraf steps

is limited byk messages that can be absorbed by any node in one
step. Therefore we can inform only adjacent nodemne step (as

in SF routing) and still develop optimum scheduliiige task is
easier in symmetric networks; it is sufficient todf the so called
time-arc disjoint broadcast tree (TADT), which tskated to all
source nodes, creates no conflicts in any step &B A
communication. However, for asymmetric or irregui@ron-
constank) networks, no similar systematic approaches exist.

When the se€omis known in advance, the goal of scheduling is
to pack messages i@om into the minimum number of groups
such, that there iso conflict within a group. In wormhole routing
a conflict means that two messages scheduled instimee step
share one or more channels. If they dotliey are compatible.
Compatibility relationy on setComcan thus be defined:

% ¥ % = [ICe { 0% andceOx} (2

This relation defines a cover o€om by maximum-size
compatibility classes. A group of messages in compatibility
class can start transmission simultaneously andtivegefore
schedule each such group in one communication €tbpiously
we want to find a minimum number of compatibilittlagses still
covering setCom The final step is to transform this minimum
cover of Comto a partition, compatibility classes to blocks, by
eliminating messages in more than one class andihpps
simultaneously balancing the size of classes.

Exact solution of the above problem can be obtaimgdVILP
method (Mixed Integer Linear Programming), but vdong
solutions are required for network size of pradtioterest. The
communication scheduling can also be formulatedaagraph
coloring problem [4]. Elements dfom can be represented by
graph nodes and incompatibility relation (two nod#saring
a channel) by graph edges. Minimum number of caleeded to
color the graph gives the optimum number of contylti
classes (communication steps); nodes with the sahoe belong
to one compatibility class. MILP as well as exactheuristic
graph coloring yield only a suboptimal solution.€Titeason is the
existence of multiple minimum paths for some sowfestination
pairs; it is not clear which minimum path should d&ected for
Com On the other hand, inclusion all of them may picEimore



compatibility classes than necessary, aside frompbex removal
of redundant elements. Another approach, recurdivision of
setComdescribed in [4], is supposed to be exact, buesithe
following restrictions:

- only non-overlapping sets of proces3es R =[] are assumed,
- routing from src to dst is unique and prescribed,

- one-port model is assumed.

In our approach we will be able to relax all aboestrictions.

3. EVOLUTIONARY APPROACH

The design of conflict-free schedules using evohary
optimization has been carried out in two directions

1. Store and Forward (SF) routing strategy, onlyimg messages
to the adjacent nodes in one step, proved to kealsesfor MNB
on WH networks. As the MNB lower bounds are eqoaM/H as
well as SF routing, optimal MNB schedules on SF aNH
networks coincide. MNB schedules were found by kti/parallel
Genetic Simulated Annealing (HGSA) [6].

2. However, the situation is different with regam OAB and
MNS communications, as the SF and WH lower bouriffisr din
these communications and in OAS, nearly distancenisitive
WH routing was applied, moving messages severas lopne
step. The schedules were obtained with the aid BOM [5]
algorithm, because traditional genetic algorithaiked.

Based on recently published results [17], [18], ehee tested
also classical genetic algorithm, we chose onlgeh®io types of
evolution algorithms HGSA and MBOA because theyiead
the best solutions with the best success rate.

3.1 Many-to-many broadcast by means of

HGSA
Scheduling MNB on SF (WH) networks was dividendbirivo
separate tasks:

- creation of seComwith all minimum paths between any pair
sender — receiver including paths that are a falbr@er paths
with the same sender. This is followed by detectiod counting
initial conflicts on all the channels.

- evolving a population of complete MNB schedules
(chromosomes) burdened with conflicts towards afliopifree
schedule, taking into account the given target remab stepsS.
Time slots (steps) 1, 2, ..$ assigned to channels on each
selected path are re-arranged and the fitness vslaemputed
from the number of conflicts in the whole schedule.

A conflict at SF routing arises when two messagastwo use the
same channel in the same step. Necessary (butuffitient)
conditions for a schedule to be conflict-free are:

1. Two paths can use the same channel in the stapeosly if
they have a same source (sender). This is takarsiagjle use.

2. A channel can be used in G2imes or less.

If L is a length of a path andis the position of the analyzed
channel on the path, we can use this channel

insteplifZz=1,

in stepdd <Z, S~(L-2) >, if Z# 1.

At the beginning, the time step is assigned toannkl randomly
from the above interval.

HGSA [12] is a hybrid method that uses parallel Bated

Annealing (SA) [14] with the operations used innstard genetic
algorithms [16], see Fig. 1. In the proposed athami several SA
processes run in parallel. During communicationivated each
100’s iteration of Metropolis algorithm (see paeggr bellow),

each process sends their solution to a master.nfdster keeps
one solution for himself and sends one randomlysehcsolution
to each slave. The selection is based on the teuldteel, where
the individual with the best value of the fithessidtion has the
highest probability of selection.

After communication phase, each process has twivithels.

Now starts the phase of a genetic crossover. Twditiadal

children solutions are generated from two parehit&ms using
double-point crossover. The best solution from esents and
two children is selected and mutation is perforralyeays (in the
parent solution) or with a predefined probability the children
solution). Mutation is performed by randomly selegtgenes and
by randomly changing their values. A new soluti@r Bach
process is selected from the actual solution pexvidy SA and
from the solution obtained by genetic manipulatibhe selection
is controlled by well-known Metropolis criterion.

~ Hl GA to temperature

"™ Kl Set new temperature

?5) G SA\» — é?o = & =
W Ty &
Solution SA\» e éf’ S qz’f;' —
Random generator s & —
(individaan GA operation =/ — 3/,

Figure 1. Hybrid parallel Genetic Simulated Annealing

The well-known Metropolis algorithm is a method s#mpling

a Boltzmann distribution [13]. A system with ener@yq is
provisionally perturbed into a new state with eyekg.,. Such

a perturbation is called a "move". B, < E,4 the new state is
accepted. 1E., > E,q the new state is accepted with probability
exp -((EnewEo)/T), whereT is “temperature”. If the new state is
not accepted, the system remains in the old stdiis. algorithm
tends to transform any distribution into a Boltzmatistribution
and maintains a preexisting Boltzmann distribufib3].

Paths src dst

— 00 01 02 03
- - 4 |124.| 6 |145.] 9 [135,.
H_j 4 A
Gene 0 ] \ Gene 3
Index to the Scheduling
shortest paths sequence of
fromnode Oto 1 comm. steg

Figure 2. The structure of chromosome



Very simple encoding has been chosen for HGSA. \Ever

chromosome consists 6f genes, wher® is a number of nodes
in a given topology. The gene’s index representh ltoe sender
and the receiver node index (sender node = gemelsxidivP,
receiver node = gene’s_index mBd

Each gene consists of two components. The firstpocorant is an
index of the shortest path from the sender to #eeiver. The

second component is a sequence of communicatigs gtene

slots) assigned to channels on the path, becaesméksage can
stop for one or more steps at some nodes alongadtte Fig. 2

illustrates an example of this encoding.

3.2 Scheduling broadcast and scatter

communication by means of MBOA

The general procedure of MBOA [5] belonging to family of

Estimation of Distribution Algorithm (EDA) [15] isimilar to that
of GA, but the classical recombination operator®gsover and
mutation) are replaced by probability estimatiodlofwed by

probability sampling. These algorithms use to athga the
statistical information contained in the set ofmpising solutions
to discover the linkage between genes. New solstiane
generated by sampling the constructed probabilstidel. A new
feature of these algorithms is a global usage @& whole
population in the process of model constructione ©hthe basic
advantages is the capability to discover nonlinigeraction
between genes,
problems. The basic pseudo-code of EDA is showFign3.

Generate initial population of individuals
D(0) of size N (randomy);
Wiile termination criterion is false do

begi n

Sel ect the parent popul ation D°(t) of M
i ndividuals according to a selection
net hod;

Estimate the probability distribution of
the sel ected parents D(t);

Cenerate new offspring Q(t) according to
the estimated probabilistic nodel;

Repl ace part of D(t) by generated
offspring Q(t), yielding D(t+1);

end

Figure 3 Pseudo-code of EDA algorithm

We have used Mixed Bayesian Optimization AlgorittvtBOA)
[5] for our task. MBOA is based on Bayesian Optiatian
Algorithm (BOA), whose probabilistic model is theyesian net.
MBOA replaces this net by a set of binary decidi@es/graphs.
The MBOA differs from BOA also in the heterogeneousdel
parameters. The decision trees can be used alsoifitinuous or

which allows solving complex noaline

mixed domains. MBOA uses variance adaptation faalisg
variance in continuous domains. The integer bounthtion was
newly added to this algorithm.

The OAS chromosome, shown in Fig. 4, uBagenes; each gene
consists of two items: an index of one of the skgirtsource-
destination path and a communication step numbéow(the
whole path is traversed in a single time step). dsen AAS
chromosome encoding has a form of a matrix WRthOAS
chromosomes (vectors).

Destination
\‘ O

0 0 4 116 2 9 0
A A

Index "of' the
shortest path

Gene Step number

Figure4. The structure of OAS WH chromosome

In the case of OAB with wormhole switching, we hawsed an
indirect encoding; a chromosome does not includeromdcast
tree, but only instructions how to create it. Eatiromosome
consists of P genes, one for each destination node, Fig.5.
Individual genes are composed of three items: acsonode
index, the shortest path index, and a step number.

The main disadvantage of this encoding is posdinmation of
some inadmissible solutions during the process ehetic
manipulation. We say that a solution is inadmissiifla correct
broadcast tree cannot be obtained from it. E.gsttusation when
in a certain step a node should receive a messaigesf node that
did not get it yet. That is why admissibility haske verified for
each chromosome before evaluating fithess anaifited be, the
chromosome would be restored. In Fig. 5, a chromesior OAB
on the 8-node WH ring topology is presented. The BAA
chromosome is then a collection of P OAB chromosymekind
of a matrix chromosome.

A new heuristics for OAB chromosome restoration hesn used.
The restoration (a repair of the broadcast tree)cgeds in
subsequent communication steps. A check is madeviny node
whether the node receives the message really fronmfarmed

node. If not so, the source node of this commuitinats

randomly replaced by a node that already has thesage. Also, it
is necessary to check shortest paths already Uibede is a finite
number of shortest paths from each source to eastindtion
node. If the second gene component (the path inebeogeds this
value, the modulo operation will be applied to it.

The fithess function is again based on countingflot® in

a schedule when two paths share the same chantieé iname
step. The optimal schedule does not contain anflicband the
MBOA (with the given number of communication stegps an
input parameter) was able to find it for commonweks with up
to 64 nodes [6].
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Figure5. The structure of OAB WH chromosome

The advanced features of our algorithms follow:

- multiple minimum paths from source to destinatimdes were
accounted for in an easy way through mutation. densas the
fithness was not improving in a certain period ofimzation,
replacement of one minimum path by another proedueta good
remedy.

- overlapping sets of senders and receivers amiggble without
program modification

- networks with fat nodes (several processors ottedeto one
router) are dealt with as simply as slim node netksio

- CC can be scheduled on direct as well as indiirtetrcon-
nection networks.

4, RESULTSAND THEIR QUALITY

Time complexity of CCs will be determined in terro§ the
number of communication stepsc(G) for the lower bound and
1°Y(G) for the upper bound. This figure of merit is iacf the
number of start-ups (overheador each one) and does not take
into account the message length. Since a nearlyandis-
insensitive wormhole switching has been assumeed, réual
communication times can be obtained approximateiynfthe
number of start-ups““(G) plus the serialization delay t,

tec=1"YG) ts+m

(©)

neglecting the hardware overhead in routers altwegttaversed
path. Possible synchronization overhead betweenmmorication
steps, be it hardware or software-based, shoulddhaded in the
start-up timets. According to frequency of CCs and an amount of
computation in a certain application, efficiency opfrallel
processing can thus be estimated with a good dedezuracy.

The lower boundscc(G) on number of CC steps can be found
easily [1]. As far as the broadcast communicati@AB) on
k ports is concerned, the lower bound on the numbsteps

Tone(G) = 5 =10gk1 P1 (4)
is given by the number of nodes informed in each
step, that is initially 1, 1+ %k after the first step,

(k+1) + (k+1)x k= (k+ 1Y after the second step, etc.,..., and
(k+ 1)°= P nodes after step

In case of AAB communication, since each node lbaaccept
P - 1 distinct messages, the lower bounfi(3- 1) /k] steps or
(4), whichever is greater. A similar bound applies OAS

communication, because each node can inject ieta¢twork not
more thark messages at a time. The lower bound for AAS can be
obtained considering that one half of messages fieaoh
processor cross the bisection, whereas the otlifeddaot. There
will be altogether 2R / 2) (P/ 2) of such messages in both ways.
If Bc is the network bisection width [1], not more th&g
messages can flow in one direction through theatattime. This
gives| P?/ (2B) 1 or[ (P — 1)k| communication steps, whichever
is greater. Thus the lower boundg(G) for the network grapks
depends on three parameters: port nurkbeumber of nodeP,
and channel bisection widBy, Table 1.

Table 1. Lower complexity bounds of selected CCs

(any topology)
cc WH, k-port, full duplex
OAB [log .1 P 1=[(log P) / log ( k+1)
AAB Max ([log i P1,[(P=1)/K)
OAS [(P-1)/H
AAS Max ([P*/ 2 B)1,[(P-1)/K)

In order to see how powerful evolutionary algorithare, we have
started with scheduling CC on the well-known dirgiology -
an all-port WH hyper-cube interconnection netwafk.hyper-
cube has been chosen because of its regular topoftiy known
optimal scheduling so that it can serve as acdamén
benchmark. Lower bounds for all all/one-to-all/dd€ schedules
shown in Table 1 are, except OAB, reachable by knoptimal
algorithms for any hyper-cube size. The double-tigerithm for
OAB [1] is optimal only ford < 6. Other known algorithms are
nearly optimal (e.g. the algorithm by Ho-Kao is io@l up to
d<7 [1]). Ten optimization runs have been run forctea
configuration and the success rate (%) in reachhe lower
bound (known to be the global optimum) is showitable 2.

OAB schedules for WH hyper-cube have been obtawidd the
aid of WH-oriented MBOA only, because WH routingsha
different (better) lower OAB bounds than SF routir@n the
other hand, WH AAB can be served best by SF-orieESA;
lower AAB bounds are identical and WH-oriented MB@Atoo
complicated in this case. Remaining OAS and AASedales



were again obtained by WH-oriented MBOA. Resultmsiarized
in Table 2 were satisfactory and led us to appbcabf MBOA
and HGSA for scheduling CC on other network top@egwhere
optimal algorithms are not known. Among them AMP, [wisted
ladder, Moore graph [7], K-ring, also known as &éd hyper-
cube [9], and other topologies were investigated.

Table 2. Lower boundstcc(G) and success rate of reaching
them for all-port WH hyper-cubes

P OAB OAS AAB AAS
MBOA MBOA HGSA MBOA
8 2/100% 3/100% 3/100% 4/60%
16 2/100% 4/100% 4/1009% 8/30%
32 2/100% 7/90%| 7/100% 16/10%
64 3/70%*) | 11/90% 11/80% 32/0%
128 3/50% *) | 19/90% 19/0% 64 / 0%

*) 100% with HGSA  **) 100% with HGSA

The illustrative examples of one indirect and oirea network
are in Fig. 6 - coated Mesh (CM) [10] and 2D-MeBh).(Only
4 x 4 meshes are presented for simplicity.

a) b)
Figure6.a) 4x4CM, b) 4 x 4 2D-M

The results of scheduling all-to-all communicati@me shown in
Table 3. Optimum algorithms (lower bounds) havenbeletained
for OAB. AAS schedules require one step over thveelobounds
Tans(M) = 1aas(CM) = 16. With no way of decreasing the number
of steps any further, the schedules may be optiarabnly
suboptimal.

Table 3. The number of communication steps t°¢(G)

Network graph G AAB AAS
HGSA MBOA
M 4x4, 1-port 15 (100%) 17 (60%)
M 4x4, all-port 8 (100%) 17 (25%)
CM 4x4, 1-port 15 (100%) 17 (20%)

Let us note that during the search for the optinaamedule, it
may be necessary to include not only multiple mimmpaths, but
sometimes even non-minimum ones! Fig. 7 shows aample —
one-to-all scatter communication in the mesh togpldo reach
the minimum number of communication steps (the topand is
5 steps), 3 messages must be injected to a neiwarkery step
by the source node. The last step requires noramimi routing.

satfisngece

Step 1 Step 2 Step 3

et

Step 4 Step 5
Figure 7. One-to-all scatter in 5 steps

Another interesting network topology is Octagon. [8] is the
novel on-chip communication network architecturétatle for
the aggressive on-chip communication demands ofe8y®on
Chips (SoCs), see Fig. 8. As a ring, it is not firmen deadlock
and virtual channels have to be used.

Figure 8. a) Slim Octagon b) Fat Octagon topology

Collective communications on the generic 8-processammetric
Octagon network are easy. One-to-all communicatamesdone
the same way for every source node. OAB clearlylmadone in
2 steps and OAS neefi#/3] = 3 steps. To implement AAB, we
have to use such a broadcasting tree that is timedisjoint
(TADT) and can be used by all nodes simultaneousthout
creating conflict.

To design the most complex AAS schedule (yet unknowhe
evolutionary approach has been used. Four steps mesded for
AAS on Octagon with all-port (3-port) nodes, onepstvorse than
the lower bound in Table 1. The optimum AAS schedslgiven
in Table 4. The sequences of digits denote the gikbngth one
(src, dst) or two (src, via, dst). It can be sebat tAAS



communication is not performed the same way bpades - there
is no analogy to the TADT.

Table 4. AAS communication schedule on the Octagon8
topology

step | AAS on Octagon

0 073, 104, 156, 21, 23, 267, 340, 432,
45,512, 654, 701, 762

1 012, 07, 10, 265, 321, 34, 451, 437,
567, 623, 73, 704, 76

2 01, 12, 15, 107, 234, 26, 32, 40, 4%6,
543, 670, 621, 765

3 04, 015, 076, 123, 210, 345, 326,
43, 540, 51, 56, 62, 65, 67, 70

87,

The suggested scaling strategy [8] based on bridgdes
connecting adjacent Octagons has a drawback ofra hesv
bisection widthB; and therefore a poor performance in all-to-all
and many-to many (MNB/MNS) traffic. Another scalisgrategy
extends the Octagon to the multidimensional spacdirtking
corresponding nodes of several Octagons. This, hewe
increases the node degree, and is not always abtepOctagon
can also be extended to a larger ring witlr 8, 12, 16,..., A
nodes retaining the original topology [8], but cestion of wires
in the middle may cause difficulties at manufactgri(in 2
dimensions, e.g. in Network on Chip). We have tfegecused a
fat Octagon with two CPU cores per node, Fig. 8l4,described
in literature as yet. The results (upper boundsetécted M-to-N
broadcast and scatter schedules are given in Bable

Table5. M-to-N communication, lower tcc and upper ¢
bounds. Fat Octagon topology (P = 16)

FD, 1-port, Fat MNB HGSA MNS MBOA
Octagon s | ™™ | s NS
8 to the same 8 7 7 7 10 /7F)
8 to other 8 8 8 10 10
8 to all 16 8 8 11 15
all 16 to all 16 15 15 15 17 +

*) with non-minimum routing, +) non-minimum routingt found

5. DETAILSOF IMPLEMENTATION

The computational platform used was IBM BladeCeénttl]
with 12 HS20 blades, each fitted with 2 CPU Xeon
2,8GHz/533MHz, 1GB RAM, 40GB HD, interconnected by
gigabit router-switch. Algorithms were coded in @Cand MPI
and ran under Linux OS.

Parameters of HGSA (AAB problems) were set to Hraesvalues
for all runs, i.e. 10 blades in the master slawhitecture; the

length of a communication interval between the eraahd each
slave was each 100's iteration of Metropolis alidmoni;

population size was the same as the number of &ladarting
temperature 100, number of iterations at one teatper value
was 200, gradient of cooling 0.99. 20 runs of HG®Are

performed for each topology.

OAB, OAS and AAS communication schedules have lseemght
using MBOA. Here the population size was determisech that
the global optimum was reached in at least 50%llofuas (if
possible). Tournament selection and replacementatgrewas
used. Mutation rate was 100% (one random gene wsated in
each chromosome). Mutation rate is so high bectuseene’s
item representing used shortest paths between eoara
destination, can take a huge number of differehtesa

The average time complexity of reaching global mptin (in
terms of number of fitness function evaluations$tewn In Fig.
9 and 10 for several instances of hyper-cubes.réaleexecution
time was from few seconds to several hours fomtbst complex
problems.

The average number of fitness function

evaluations (AAB on a hyper-cube, HGSA) 90451.75
100000

10000

803.57 1144 .4

1000

100 A

Number of evaluations

10 4 4
1

8-node

16-node 32-node
Number of nodes

64-node

Figure 9. Time complexity of AAB HGSA

The average number of fitness function

evaluations (AAS on a hyper-cube, MBOA)
987000

1000000

278000

153200

100000

Number of evaluations

10000
16-node
Number of nodes

8-node 32-node

Figure 10. Time complexity of AAS MBOA

6. CONCLUSION

The evolutionary algorithms such as MBOA and HGS#veh
been applied successfully to several network tagiebowith slim
or fat nodes and quite general collective commuitioa with



overlapping sets of senders and receivers. ScimeddC in the
minimum number of steps without creating a conflctcommon
channel in two transfers in the same step) ledptor@l solutions
(t*YG) = 1c(G)) or nearly optimal solutions. Of course, the fact
that the lower bound may not be always reached regemted
algorithms is to be expected because it may nattaénable in
principle by any algorithm. Sometimes lower bourzs be
obtained in schedules with non-minimum routing. lwer, only
minimum routing has been considered in this papscabse
inclusion of the non-minimum routing would leadaie enormous
increase of possible paths from sources to dekiimagand to the
prohibitive computer memory and time requirements.

The results were derived for general case of M-toeWective
communications on WH interconnection networks.
application-oriented CCs of this kind are increghinmportant in
multiprocessor SoCs (System on Chips). One exaispighen
one group of processors finishes a task and a gobwifferent
size continues and needs the intermediate results the first
group. The really obtained upper bound§(G) were presented
for the 2D-mesh, coated mesh and (fat) Octagonegpmf small
size for illustration only. The presented algorithare at current
form applicable to networks with up to around 64des
however, if we put up with suboptimal schedulesvif@ the
number of steps reasonably close to the lower bpudine network
size can be substantially larger. Scalability lsndf the both
presented algorithms and their possible improvesneatld be a
subject of future research.
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