
Evolution of a Human-Competitive Quantum Fourier
Transform Algorithm Using Genetic Programming

Paul Massey John A. Clark Susan Stepney
Department of Computer Science, University of York, Heslington, York, UK, YO10 5DD

{psm111 | jac | susan}@cs.york.ac.uk

ABSTRACT
In this paper, we show how genetic programming (GP) can be
used to evolve system-size-independent quantum algorithms, and
present a human-competitive Quantum Fourier Transform (QFT)
algorithm evolved by GP.

Categories and Subject Descriptors
D.1.m [Programming Techniques]: Miscellaneous,
J.2 [Physical Sciences and Engineering]: Physics.

General Terms
Algorithms, Experimentation.

Keywords
Genetic Programming, Genetic Algorithms, Evolutionary
Computing, Quantum Computing, Quantum Fourier Transform.

1. INTRODUCTION
Quantum Computing [4],[12] is a radical new paradigm that has
the potential to bring a new class of previously intractable
problems within computational reach. Harnessing the phenomena
of superposition and entanglement, a quantum computer can
perform certain operations more efficiently than classical (non-
quantum) computers. The earliest example of a ‘faster than
classical’ quantum algorithm was Deutsch’s quantum solution to
the binary promise algorithm. Here a single quantum evaluation
suffices to reveal whether a binary function f is constant
(f(0) = f(1) = 0 or f(0) = f(1) = 1) or balanced (f(0) = 0, f(1) = 1 or
f(0) = 1, f(1) = 0). (This can be extended to n-input binary
functions.) Various other faster than classical algorithms
followed, but real excitement was generated in 1994 by Peter
Shor with a specific application of the Quantum discrete Fourier
Transform.

The Quantum Fourier Transform (QFT) is perhaps the most
important building block in the quantum algorithm designer’s
armoury. It has a variety of applications (Chapter 5 of [10] gives
a variety of specific solvable instances of the hidden subgroup
problem such as Deutsch’s problem, Simon’s problem, period
finding, order finding, hidden linear function finding), but the

most important application is undoubtedly its use by Shor to
provide a polynomial time quantum algorithm for factorisation of
composite integers and the calculation of discrete logarithms in a
finite field [14][15]. Some of the best-known and widely
respected encryption algorithms in the world rely on these
problems being computationally intractable. Shor had provided
what is regarded by most as the ‘killer application’ for quantum
computing. The field began to attract huge interest.

One might imagine that there would be a flood of new algorithms
to harness the power of this rapidly emerging means of
computation. However, this has not been the case. It is generally
agreed that there are still very few distinct quantum algorithms
(see [10]). This motivates our investigation of genetic
programming in the quantum algorithm field. Genetic
programming has discovered new artefacts in other domains.
Indeed, its use has produced various patentable outputs. Can it
exhibit human-competitive performance for quantum algorithm
design?

In this paper we show how GP has been used to evolve a human
competitive algorithm for the Quantum Fourier Transform (QFT).
We show how circuits can be evolved using GP that implement
the QFT for 1, 2, and 3 qubits. This is, however, the prelude to
the main result of this paper: the evolution of an algorithm for the
QFT, which when executed with specific system size (i.e. number
of qubits) generates a circuit that implements the corresponding
QFT. We believe this is the most significant quantum artefact yet
evolved using evolutionary computing. It would appear to
compete (in this instance) with the efforts of professional
quantum specialists.

The power of the result comes from its generality. The drive to
ever-increasing levels of abstraction goes hand in hand with
increases in design sophistication in many domains (most notably
software engineering). The need to handle things at a higher level
is recognised by quantum specialists. It informs the evolutionary
frameworks in the pioneering work of Spector and co-researchers
(see below), from which we freely draw inspiration.

In Section 3 we detail the software framework we have used to
evolve quantum artefacts, indicating how solutions are
represented and manipulated. In Section 4 we provide details of
the various fitness functions used. In Section 5 we provide details
of the QFT and known implementations. In section 6, we provide
some of the circuits we have evolved together with the system
size independent algorithm for generating QFT circuits. Section 7
concludes. First, we review current applications of meta-heuristic
search to the design and exploration of quantum artefacts.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

2. SEARCH FOR QUANTUM ARTEFACTS
The design of quantum artefacts has emerged as a promising
application area for evolutionary computing and other heuristic
search techniques. Here we provide an outline of work in the
field. Rather than adopt a chronological account, we present
results according to the approximate level of abstraction of the
quantum artefacts that were sought.

2.1 Low level applications
Most published circuits or algorithms make use of some particular
set of quantum gates. Examples of such gates are shown in
Table 1. One widely used two–qubit gate is CNOT (or
Feynmann) gate. This is often considered ‘basic’ by researchers,
but this may be misleading. Gershenfeld and Chuang [5] show
how the CNOT gate can be implemented on Nuclear Magnetic
Resonance implementations of quantum computing by a series of
five more primitive operations. Rethinam et al [12] use a basic
genetic algorithm (bit string representation with single point
crossover) to evolve sequences of length 3, more efficient than
previously exhibited solutions. Perkowski et al have synthesised
‘basic’ gates such as Fredkin and Toffoli gates from lower level
gates.
Much quantum circuit design does not take into account physical
implementation constraints; for example, it may be possible to
carry out CNOT operations only on qubits in very close
proximity. There arise issues as to how problem variables map to
physical qubits and how computational administrative costs (such
as incurred when repeated qubit variable value swaps are used to
bring the required values for an operation adjacent) can be
minimized. Van Meter et al [22] outline work in progress seeking
to optimize the use of quantum resources.

2.2 Specific circuits
The use of genetic programming for the evolution of quantum
artefacts has been pioneered by Spector and co-researchers. Early
work attempted to generate circuits to solve instances of OR,
AND-OR, Deutsch Josza promise and database search problems
[1][2][16][17][18]. The reader is referred to [19] for a summary
and up-to-date discussion of the work. Of particular importance
is working with ‘second order encodings’; rather than evolve
circuits directly the GP search evolves programs that when
executed generate circuits. We too exploited this approach in
[11]. The notion of second order encodings is also exploited in
this paper; it is a major tool in the drive to increasing levels of
abstraction in the evolution of quantum artefacts. Various
researchers have built on the work of Spector and co-researchers.
For example, Leier & Banzhaf have used a linear tree GP variant
to evolve solutions to the 1-sat problem (Hogg’s algorithm) [7]
and Massey et al investigate the use of alternative cost functions
[11].

2.3 Communications
One of the most intriguing applications of quantum phenomena is
that of quantum teleportation [3]. Quantum teleportation aroused
a great deal of interest and it is not surprising that various
researchers have targeted the design of teleportation protocols.
Williams & Gray use a genetic programming approach to evolve
implementations of the subcircuits implementing each of the
phases [24]. Subsequently Rubenstein has evolved teleportation
sub-circuits. Yakubi & Iba criticise Williams & Gray’s work

stating that the approach allowed infeasible protocols to be
evolved and chose to evolve a whole protocol [25] but with a
structure constrained by knowing the traditional BBS protocol.
Spector et al have also evolved a teleportation protocol with the
PUSH base system (see Spector’s book [19] for details).
More recently Spector & Bernstein have used genetic
programming to discover the communications capabilities of
quantum circuitry [20]. This has included disproving conjectures
on communications capacities. It would appear that uncovering
genuine insights in this field is computationally tractable by
evolutionary computation and the area seems highly promising.
Of further interest is that protocols and circuits uncovered by
evolutionary computing were generalised by intelligent reflection.
(The work could adequately be described as inspirational.) A
fuller account can be found in [19].

2.4 Summary and next step
Evolutionary computation techniques have found successful
application to the derivation of quantum artifacts at many levels,
ranging from the evolution of implementations of ‘basic’ gates to
the evolution of circuits for teleportation. (A fuller review can be
found in [21].) The evolution of true parametrisable algorithms
seems a natural goal to set ourselves. We now describe the
approach that has been used to do this for one such artifact – the
Quantum Fourier Transform.

3. THE GP SOFTWARE
Our research has been conducted using successive versions of a
software suite called Q-PACE (Quantum Programs And Circuits
through Evolution). The quantum program presented in Section
6.1 has been evolved using Q-PACE III, the quantum algorithms
presented in Sections 6.2 and 6.3 have been evolved using
Q-PACE IV. We now describe Q-PACE’s key characteristics.

Table 1 - Gates Recognised / Generated by Q-PACE III & IV

Name Symbol Effect
NOT N(x) | 0

|1
>
> ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
→⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
a
b

b
a

Hadamard H(x) | 0
|1

>
> ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
+

→⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ba
ba

b
a

2
1

Berry Phase P(x, θ) | 0
|1

>
> ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
→⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
be

a
b
a

iθ2

SWAP SWAP(x, y)

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎯→⎯

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

>
>
>
>

d
b
c
a

d
c
b
a

11|
10|
01|
00|

Q-PACE III & IV also recognise controlled versions of each
of the above gates. For example, the Controlled Hadamard
gate H(c,x) has the same effect as the Hadamard gate H(x) if
the value of qubit c != 0, otherwise it has no effect. In the
case of the NOT gate, a double-controlled version
CCN(c1,c2,x) is also recognised (the gate N(x) is produced
only if neither qubit c1 nor qubit c2 have a value of zero).

Language and GP Engine. Q-PACE is written in C++, with GP
engines based on Wall’s GALib library [23].

Representation. Q-PACE uses a second order representation:
individuals are not quantum circuits, but higher level constructs
that need to be decoded/executed to generate quantum circuits. In
Q-PACE III, individuals are programs that, when decoded,
generate a single quantum circuit (appropriate to a single size of
quantum system). In Q-PACE IV, individuals are pseudo-code
algorithms which, when decoded/executed, produce a family of
quantum circuits (one for each size of quantum system under
test).

Quantum Gate Set. The individuals generated by Q-PACE III
and IV, when decoded/executed, create quantum circuits built
from the set shown in Table 1. A user of the software is able to
constrain the GP to use any subset of these allowed gates by
selecting (through an on-screen prompt at the start of a GP run)
which gate-generating functions should be used in the allele set.

Allele Set. Individuals are trees of alleles, where each allele is
either a function or a terminal. In Q-PACE III, functions generate
quantum gates, and terminals are constants (denoting which
qubit(s) should be operated on). In Q-PACE IV, functions may
be gate-generating functions, arithmetic functions or control
functions; terminals may be constants or variables. Formal
definitions of all the gate-generating functions used in Q-PACE
IV are presented in Table 2; formal definitions of all other alleles
used in Q-PACE IV are presented in Table 3. In Q-PACE III,
different functions take different numbers of parameters. In
Q-PACE IV, all functions take the same number of parameters
(three), to allow more general mutation operators; when a
function requires only one or two parameters, the remaining
parameters have no effect. The user is able to constrain the GP to
use any subset of the allele set through an on-screen prompt at the
start of a GP run. A linked list object is used to store the quantum
circuit produced when the individual is decoded for a given
system size.
GP Operators. Q-PACE uses a tournament selection operator and
a subtree-swap crossover operator. A range of mutation operators
are available. The default Q-PACE III mutation operator allows
terminals to mutate into other terminals, and functions to mutate
into other functions of the same cardinality. The default Q-PACE
IV mutation operator performs one of three different types of
mutation, known as “mini”, “midi” and “maxi” replacement,
depending on the result of a biased coin flip. In mini-replace, an
allele is mutated for another allele of the same type (e.g. a
constant can only mutate into another constant, a gate-producing
function can only mutate into another gate-producing function,
etc), and any children of the original allele are unchanged. In
midi-replace, a terminal can mutate into any other terminal (e.g. a
variable can become a constant, and vice versa), and a function
can mutate into any other function (e.g. a gate producing function
can become an arithmetic function, and vice versa), with any
children of the original node left unchanged. In maxi-replace, an
allele can mutate into any other node. If the original allele has
children, they are destroyed and rebuilt at random (this capability
allows quite extensive mutations).

Allele selection for initial population. While current_tree_depth
< max_tree_depth, an allele is a randomly-selected function with
some probability function_probability, and a randomly-selected

terminal with probability (1 – function_probability). When
current_tree_depth reaches max_tree_depth, all new alleles are
randomly selected terminals.

Stopping Criteria. Evolution continues until either (a) an exact
solution to the problem under test is found (in which case it is
displayed), or (b) a user-defined number of generations elapse (in
which case the best result so far is displayed).

Table 2 – Gate-generating functions used in Q-PACE IV

Name Return
value

Side effects

Create_N(x, -, -) x create N(x)
Create_CN
(c, x, -)

x if c ≠ x, create CN(c, x)
if c = x, create N(x)

Create_CCN
(c1,c2,x)

x if c1=c2=x, create N(x)
if c1=c2≠x, create CN(c1, x)
if c1≠c2≠x, create CCN(c1,c2,x)
if c1=x≠c2, create CN(c2, x)
if c1≠c2=x, create CN(c1, x)

Create_H(x, -, -) x create H(x)
Create_CH
(c, x, -)

x if c ≠ x, create CH(c, x)
if c = x, create H(x)

Create_P(x, θ, -) x create P(x, π/2θ)
Create_CP
(c, x, θ)

x if c ≠ x, create CP(c, x, π/2θ)
if c = x, create P(x, π/2θ)

Create_SWAP
(x, y, -)

x if x ≠ y, create SWAP(x,y),
otherwise, no effect

Table 3 – Other alleles used by Q-PACE IV

Name Return
value

Comments

PLUS(x, y, -) x + y
MINUS(x, y, -) x – y
MULTIPLY
(x, y, -)

x * y

DIVIDE(x, y, -) x / y return int(x / y) if y ≠ 0, 1
otherwise

ITERATE
(n, BODY, -)

n the second child of an ITERATE
is always a BODY (enforced
during crossover and mutation)

BODY
(ch1, ch2, ch3)

ch1

ROOT
(ch1, ch2, …)

ch1 all individuals are rooted in this
function; it can appear nowhere
else in an individual

plus Constants (1.. current_system_size) and Variables
(current_system_size, and loop counters for any ITERATE
statements currently in scope)

Notes for both Table 2 and Table 3:

1. If the value of a (decoded) parameter is < 1, it is coerced to 1; if the
value is > current_system_size, it is coerced to
current_system_size.

2. Parameters denoted “-” have no effect on the result. They give all
functions the same arity, to allow more general mutation operators.

4. FITNESS FUNCTIONS
The state of any n qubit quantum system can be represented by a
state vector of 2n complex numbers. In order to determine the
fitness of an evolved individual, Q-PACE compares the state
vectors generated by applying that individual to a set of known
initial states, with those produced by applying a known model
solution to the same set of known initial states. More specifically,
the technique for assessing fitness is as follows:
Initialisation:

♦ Create a set VI of input state vectors that span the space of all
possible inputs. Each member of VI acts as a fitness case for
the problem under test.

♦ Create a set VT of target vectors, the desired results for each
fitness case, by applying a model solution to the set VI .

Evaluation:

♦ Apply each candidate individual to each fitness case, to
produce a set of result vectors VR.

♦ Compare each member of VR with the corresponding member
of VT . The chosen means of comparison defines the specific
fitness function for the particular problem under test.

For the results presented in this paper, two fitness functions are
used. The first, Figure 1, gives credit only for exact matches in
the various fitness functions. The second, Figure 2, sums the
differences between corresponding state vector positions in the VT
and VR vectors. Note that for the purposes of this fitness function,
VT and VR are required to be in polar co-ordinate form, i.e.

(,)
i iT T TV r

i
θ= and (,)

i i iR R RV r θ= . This allows the fitness

function to use a scaling factor α, the purpose of which is to
ensure that individuals where the magnitude of the complex
numbers match (but the phases do not) have a considerably better
fitness than individuals where the phases match but the
magnitudes do not. The fitness function is designed this way to
promote a particular evolutionary strategy: to allow the GP
software to first evolve solutions which are basically correct but
with incorrect angles in any phase gates (e.g. CP(2,1,π/8) instead
of CP(2,1,π/4)), before subsequently evolving the correct angles.
We have found this strategy, by and large, works well for solving
problems where quantum phase operations are an integral part of
the solution.

2 2
(if then 0 else 1)

i iT R
i

f V V= =∑

Figure 1 - "Match State Vector Positions" Fitness Function

i i i iT R T R
i i

f r rα θ θ= − + −∑ ∑

Figure 2 - Polar co-ordinate difference fitness function

In addition to the functional fitness given above, the fitness
function also contained an efficiency component defined by

()
_ _

target_size 100
system size tested

efficiency sz= −∑

Figure 3. Efficiency component of fitness function
where sz is the size of the quantum circuit generated by the
individual for the current system size and the target_size is
defined as 2 for a system of size 1, 6 for a system of size 2, 10 for

a system of size 3 and 16 for a system of size 4. (These values
are a little greater than the most efficient sizes known.)

An additional component was introduced to penalise the absence
of appropriate SWAP gates in any position for the system size
under consideration. In this respect we have given the technique
a small piece of system specific help. The presence or absence of
a SWAP gate wildly changes the r-theta difference of an
individual, so much so that hundreds or thousands of generations
spent working towards the delicate (and very tricky)
CREATE_CP loops could be undone in a single generation by a
mutation that introduced the right SWAP gate (but destroyed
everything else of value in the algorithm).

5. THE QUANTUM FOURIER
TRANSFORM
5.1 Definition
Consider a quantum state vector (x0, x1, … xN-1 }, where N = 2n.
Applying the QFT to this state vector gives us a result state vector
(y0, y1, … yN-1 } such that yk is equal to the right hand side of the
equation in Figure 4.

1

0

1 2exp
N

k j
j

i jky x
NN

π−

=

= ∑

Figure 4

5.2 Implementation
The following pseudo-code algorithm, QFT(n), implements the
QFT on any size of quantum system using only the quantum gates
shown in Table 1:

For (j = 1; j < n; j++) {

Create_H(j);

For (k=1; k <= (n–j); k++) {

Create_CP(j+k, j, k+1); } }

Create_H(n);

For (i = 1; i <= (n / 2); i++) {

Create_SWAP(i, n – i + 1); }

The functions Create_H(x), Create_CP(x,y,z) and
Create_SWAP(x,y) are defined in Table 2.
Each of these circuits implements an exact QFT for that system
size. Table 4 shows the circuits produced by this algorithm for
quantum systems of 1 - 4 qubits.

Table 4 - Circuits to implement the QFT for n = 1-4 qubits

n Circuit

1 H(1)

2 H(1), CP(2,1,π/4), H(2), SWAP(1,2)

3 H(1), CP(2,1, π/4), CP(3,1, π/8), H(2), CP(3,2, π/4),
H(3), SWAP(1,3)

4 H(1), CP(2,1, π/4), CP(3,1, π/8), CP(4,1, π/16), H(2),
CP(3,2, π/4), CP(4,2, π/8), H(3), CP(4,3, π/4), H(4),
SWAP(1,4), SWAP(2,3)

6. RESULTS
6.1 An evolved program to implement the
QFT on a 3-qubit system
Q-PACE III is able to evolve programs which, when decoded and
executed, implement an exact QFT on a 3 qubit quantum system.
Using the fitness function shown in Figure 1, a population size of
100, a crossover probability of 0.5, and a mutation probability of
0.01, Q-PACE III is able to generate (in 1122 generations) the
following individual:

ROOT(
 2,
 Create_CP(3, Create_CH(1,1), Create_CP(1,2,2)),
 2,
 Create_H(2),
 Create_CP(2,3,2),
 Create_CCN(
 Create_CP(
 Create_CCN(Create_CP(3,1,3), Create_N(1), 1),
 3, 2),
 Create_H(3), 1),
 Create_CN(1,3),
 2, 3)

This individual, when decoded/executed, produces the quantum
circuit illustrated in Figure 5. After hand-optimisation, the circuit
can be simplified to that illustrated in Figure 6.

Figure 5. (Unoptimised) circuit generated by the evolved solution

to QFT(3)

Figure 6. (Hand-Optimised) circuit generated by the evolved

solution to QFT(3)

This circuit has 10 gates. Although the best known circuit to
generate QFT(3) can be implemented in 7 gates (see Table 4), that
circuit requires the use of a SWAP gate, which was not available
as an allele to Q-PACE III in this particular GP run. The most
efficient known circuit to implement QFT(3) using the alleles
given to Q-PACE III in this GP run has 9 gates, just one less than
the solution evolved here.

6.2 An evolved algorithm to implement the
QFT on system sizes of 1 to 3 qubits
Q-PACE IV is able to evolve algorithms which, when decoded
and executed, implement an exact QFT on system sizes of 1, 2
and 3 qubits. One is presented here. To evolve this algorithm,

the GP used the fitness function shown in Figure 2 (together with
a small efficiency component to minimise GP bloat), a population
size of 2000 for the first two generations, and 50 thereafter (to
ensure a “deep gene pool” at the beginning of the evolutionary
process), a crossover probability of 0.75, and a mutation
probability of 0.075. With these parameters, Q-PACE IV is able
to generate (in 2177 generations) the following individual:

ROOT(
 ITERATE(
 MINUS(n, 1, n),
 BODY(
 Create_H(var1, n, n),
 ITERATE(
 MINUS(n, var1, n),
 BODY(
 Create_CP(
 PLUS(var1,var2,n),var1,PLUS(1,var2,var2)
),
 var1, 2),
 var1),
 n),
 n)
 Create_H(n, n, n),
 ITERATE(
 DIVIDE(n, n, n),
 BODY(Create_SWAP(var1,n,2), DIVIDE(n,n,n), n),
 n)
)

This individual, when decoded/executed for different system sizes
n:, produces the quantum circuits shown in Table 5.

Table 5. Circuits produced by the first evolved algorithm, for
n = 1-4 qubits

n Circuit

1 H(1), SWAP(1,1)

2 H(1), CP(2,1,π/4), H(2), SWAP(1,2)

3 H(1), CP(2,1, π/4), CP(3,1, π/8), H(2), CP(3,2, π/4),
H(3), SWAP(1,3)

4 H(1), CP(2,1, πI/4), CP(3,1, π/8), CP(4,1, π/16), H(2),
CP(3,2, π/4), CP(4,2, π/8), H(3), CP(4,3, π/4), H(4),
SWAP(1,4)

These circuits are human-competitive for n = 1-3: there is one
redundant gate in the circuit for a 1 qubit system, but the other
two circuits equal the most efficient known using these quantum
gates.
However, this algorithm does not implement the QFT perfectly
for systems with more than 3 qubits. The final ITERATE loop
always runs for precisely one iteration, and therefore there is
always precisely one SWAP gate generated, regardless of the
system size. For system sizes above 3, multiple SWAP gates are
required to implement the QFT exactly (more precisely, ⎣ ⎦2/n
gates are needed, where n is the system size). The n=4 circuit
shown is a reliable QFT(4) circuit apart from a missing
SWAP(2,3) gate at the end. This algorithm becomes increasingly
poor at implementing the QFT as the system size increases.

6.3 An evolved algorithm to implement the
QFT on any size of quantum system
When set up with the same parameters as in Section 6.2, but
allowed to test candidate solutions against system sizes of 1, 2, 3
and 4 qubits, Q-PACE IV is able to evolve (in 2436 generations)
an algorithm that implements the QFT operation exactly on any
size of quantum system, as follows:

ROOT(
 ITERATE(
 MINUS(n, 1, 4),
 BODY(
 Create_H(v1, n, n),
 ITERATE(
 MINUS(n, v1, v1),
 BODY(
 Create_CP(PLUS(v1,v2,v1), v1, PLUS(v2,1,4)),
 1, 1),
 var1),
 1),
 n),
 Create_H(n, 1, n),
 ITERATE(
 DIVIDE(n, 2, n),
 BODY(
 Create_SWAP(
 v1,
 PLUS(MINUS(n,v2,1), 1, 3),
 1),
 n, n),
 3)
)

This individual, when decoded/executed for different system sizes
n:, produces the quantum circuits shown in Table 6.

Table 6. Circuits produced by the second evolved algorithm, for
n = 1-5 qubits

n Circuit

1 H(1)

2 H(1), CP(2,1,π/4), H(2), SWAP(1,2)

3 H(1), CP(2,1, π/4), CP(3,1, π/8), H(2), CP(3,2, π/4),
H(3), SWAP(1,3)

4 H(1), CP(2,1, πI/4), CP(3,1, π/8), CP(4,1, π/16), H(2),
CP(3,2, π/4), CP(4,2, π/8), H(3), CP(4,3, π/4), H(4),
SWAP(1,4), SWAP(2,3)

5 H(1), CP(2,1,PI/4), CP(3,1,PI/8), CP(4,1,PI/16),
CP(5,1,PI/32), H(2), CP(3,2,PI/4), CP(4,2,PI/8),
CP(5,2,PI/16), H(3), CP(4,3,PI/4), CP(5,3,PI/8), H(4),
CP(5,4,PI/4), H(5), SWAP(1,5), SWAP(2,4)

These circuits are human-competitive for all n: each one equals
the most efficient known circuit for that system size.

7. CONCLUSIONS AND FURTHER WORK
7.1 Summary
The QFT is arguably the most important building block in
quantum algorithm construction. Its use as a crucial component
of polynomial time quantum algorithms for factorisation and

discrete logarithm problems alone guarantee worldwide interest in
its implementation.
Spector describes circuits implementing the QFT for small
numbers of qubits [19]. Here we have demonstrated correct
implementations also for small numbers of qubits (up to 5).
However, for the first time, genetic programming has been used to
evolve a system size-independent algorithm capable of generating
a correct circuit for any supplied n. The algorithm, when
executed, generates efficient circuits. The leap in abstraction
level is of crucial importance. Circuits are system size specific;
an algorithm can generate a circuit for any supplied size. It
captures an intellectual idea about a family of correct circuit
structures.

7.2 Can GP compete with humans?
The algorithm evolved using GP described in this paper would
appear to be one of the most significant quantum artefacts
discovered using evolutionary computation. Since
implementations of the QFT have been demonstrated only very
recently, it would appear that a claim to be human competitive is
justified. We hope its discovery by GP will inspire further
interest in the field.
However, the results presented in this paper do not extend the
portfolio of known quantum algorithms. Given the difficulty of
devising new quantum algorithms analytically, an important open
research problem remains: can GP evolve new quantum
algorithms to solve open problems in computer science?

8. REFERENCES
[1] H. Barnum, H. J. Bernstein, L. Spector. Quantum circuits

for OR and AND of ORs. J. Physics A: Mathematical and
General, 33(45):8047-8057, November 2000

[2] H. Barnum, H. J. Bernstein, L, Spector. A quantum circuit
for OR. quant-ph/990756

[3] G. Brassard. Teleportation as Quantum Computation. In
Proc. 4th Workshop on Physics and Computation, New
England Complex Systems Institute 1996. Also as quant-
ph/9605035, 1996

[4] D. Deutsch. Quantum Theory, the Church-Turing Thesis,
and the Universal Quantum Computer, Proc. Royal Society
of London, series A, vol. 400, p97, 1985

[5] N. A. Gershenfeld, I. L. Chuang. Bulk Spin-Resonance
Quantum Computing. Science 275, 350–356, January 1997

[6] L. K. Grover. A fast quantum mechanical algorithm for
database search. Proc. 28th Ann. ACM Symp. on the Theory
of Computing (STOC), 212–219, 1996

[7] A. Leier, W. Banzhaf. Evolving Hogg’s Quantum Algorithm
Using Linear-Tree GP. GECCO 2003, 390–400. LNCS
2723, Springer, 2003

[8] A. Leier, W. Banzhaf. Exploring the search space of
quantum programs. CEC 2003, 170–177. IEEE Press, 2003

[9] A. Leier, W. Banzhaf. Comparison of Selection Strategies
for Evolutionary Quantum Circuit Design. GECCO 2004,
557–568. LNCS 3103, Springer, 2004

[10] M. A. Nielsen, I. L. Chuang. Quantum Computation and
Quantum Information. CUP, 2000

[11] P. Massey, J. A. Clark, S. Stepney. Evolving Quantum
Programs and Circuits through Genetic Programming,
GECCO 2004, 569-580. LNCS 3103, Springer, 2004

[12] M. J. Rethinam, A. K. Javali, E.C. Behrman, J.E. Steck, S. R.
Skinner. A genetic algorithm for finding pulse sequences for
NMR quantum computing. Available as quant-ph/0404170,
April 2004

[13] E. Rieffel, W. Polak. An Introduction to Quantum
Computing for non-Physicists. Available as quant-
ph/9809016, 1998

[14] P. Shor. Algorithms for Quantum Computation : Discrete
Logarithms and Factoring, Proc. 35th IEEE Symposium on
the Foundations of Computer Science, p124, 1994

[15] P. Shor. Polynomial Time Algorithms for Prime-
Factorisation and Discrete Logarithms on a Quantum
Computer, SIAM Journal of Computing, 26, p1484, 1997

[16] L. Spector, H. Barnum, H. J. Bernstein, N. Swamy. Genetic
Programming for Quantum Computers. In Genetic
Programming 1998, 365-374. Morgan Kauffman, 1998

[17] L. Spector, H. Barnum, H. J. Bernstein, N. Swamy. Finding
a Better-than-Classical Quantum AND/OR Algorithm using
Genetic Programming. CEC 1999, 2239–2246. IEEE, 1999

[18] L. Spector, H. Barnum, H. J Bernstein, N. Swamy. Quantum
Computing Applications of Genetic Programming. In L.
Spector, W. B. Langdon, U.-M. O’Reilly, P. J. Angeleine,
eds, Advances in Genetic Programming 3, chapter 7, pp 135–
160. MIT Press, 1999

[19] L. Spector. Automatic Quantum Computer Programming: a
genetic programming approach. Kluwer, 2004

[20] L. Spector, H. J. Bernstein. Communication Capacities of
some Quantum Gates, discovered in part through Genetic
Programming. In Proc. 6th Int. Conf. Quantum
Communication, Measurement, and Computing (QCMC), pp.
500–503, 2003

[21] S. Stepney, J. A. Clark. Evolving Quantum Algorithms and
Protocols. In M. Rieth, W. Schommers, eds. Handbook of
Theoretical and Computational Nanotechnology, American
Scientific Publishers, 2005 (in press)

[22] R. Van Meter, K. Binkley. Compiling Quantum programs
Using Genetic Algorithms. In The Wild and Crazy Idea
Session IV, abstracts, part of 11th Intl. Conf. Architectural
Support for Programming Languages and Operating
Systems, October 2004

[23] M. Wall. GALib, a C++ Library for Genetic Algorithms,
available from http://lancet.mit.edu/ga/

[24] C. P. Williams, A. G. Gray. Automated Design of Quantum
Circuits. In Quantum Computing and Communications:
First NASA Conference, QCQC’98, 113–125. LNCS 1509,
Springer, 1999

[25] T. Yabuki, H. Iba. Genetic algorithms for quantum circuit
design – evolving a simpler teleportation circuit. In Late
Breaking Papers at GECCO 2000, pp. 425–430, 2000

http://lancet.mit.edu/ga/

	INTRODUCTION
	SEARCH FOR QUANTUM ARTEFACTS
	Low level applications
	Specific circuits
	Communications
	Summary and next step

	THE GP SOFTWARE
	Comments

	FITNESS FUNCTIONS
	THE QUANTUM FOURIER TRANSFORM
	Definition
	Implementation

	RESULTS
	An evolved program to implement the QFT on a 3-qubit system
	An evolved algorithm to implement the QFT on system sizes of
	An evolved algorithm to implement the QFT on any size of qua

	CONCLUSIONS AND FURTHER WORK
	Summary
	Can GP compete with humans?

	REFERENCES

