
Planning Complex Processes for Autonomous
Vehicles by Means of Genetic Algorithms

Nermeen M. Ismail1, Magda B. Fayek2, Ashraf A. Wahab1, and Nevin M.
Darwish2

1 Electronic Research Institute, Department of Computers and Systems , AI Group
2 Cairo University, Faculty of Engineering, Department of Computer Engineering

Abstract. Autonomous robots are becoming an increasingly important
tool for military, space exploration, and civilian applications. A key re-
quirement for controlling mobile autonomous robots is the ability to
express vehicle activity models as complex processes. This work presents
PGen[1]; a generative activity planner that translates intended state evo-
lution to an action plan. PGen supports generative planning with com-
plex processes via three main features. First, PGen goal plans and activ-
ity models are encoded using Reactive Model-based Programming Lan-
guage (RMPL). Second, PGen represents goal plans, plan operators and
plan candidates with a uniform representation called Temporal Plan Net-
works (TPN). Finally, PGen uses Genetic Algorithms as a novel approach
for TPN-based planning. PGen has been successfully implemented and
tested, simulation results are very promising.

1 Reactive Model-based Programming Language

Model-based programming languages help model the relationships between vari-
ous robot states by incorporating features such as concurrency, metric constraints
and durations, functionally redundant choice, contingencies, and synchroniza-
tion. RMPL is a rich language for describing activity models of autonomous
reactive systems. Designed to help complexity, RMPL is object-oriented and
supports high-level programming features such as abstraction, encapsulation,
and inheritance. RMPL is a process algebra that enables programmers to easily
encode arbitrarily complex activity models and mission control programs[4][11].

2 Temporal Plan Networks

RMPL allows a programmer to specify complex processes in terms of an easy rep-
resentation that defines the evolution of state variables. To enable fast planning,
RMPL programs are converted into equivalent graph structures called Tempo-
ral Plan Networks (TPN). TPN are useful in that they compactly encode the
space of possible state evolutions expressed by an RMPL program. TPNs are
collections of events and episodes representing processes that may have their
own sub-goals. An episode can have a Primitive Activity (PA), a Non-Primitive



Activity (NPA), a state query (ASK) and a state assertion (TELL). A PA is
a simple activity that is not composed of any further activities. An NPA is an
activity that is composed of further events, episodes and PAs. An ASK is a re-
quest that a particular assignment is being achieved for some period of time, so
it represents open conditions that need to be satisfied. A TELL is an assertion
that a particular assignment is already achieved for some period of time. Once
a program has been converted to a TPN, it can be processed using efficient
network algorithms to perform search, scheduling, etc[7].

3 PGen within Kirk

The contribution of this paper is part of Kirk. Kirk is a mission-level model-based
executive, designed to control mobile autonomous robots in rich environments,
such as rovers exploring the surface of Mars or unmanned aerial vehicles flying
for search and rescue missions. PGen refines the complex sequence of goals (mis-
sion plan) into an actionable activity plan using existing activity library. This
function was previously provided by another planner called Spock[7]. Spock uses
A* search algorithm to search for a complete and consistent solution plan. In
this paper, we propose PGen that uses Genetic Algorithms as a novel approach
for TPN-based planning. Genetic Algorithms have shown successful performance
when used to generate action plans represented as TPNs. Figure 1 shows PGen
planner as part of Kirk executive. The activity library database contains all pos-

Fig. 1. PGen generative planner as part of Kirk model-based executive architecture

sible activities that the vehicle can perform. These activities are represented as

2



Temporal Plan Networks and are used by PGen. Figure 2 shows PGen generative
planner control flow.

4 PGen Control Flow

3



Fig. 2. PGen control flow

4.1 Initialization and Chromosome Structure

PGen starts its genetic loop by creating an initial population of chromosomes.
Each chromosome represents a TPN structure that consists of events and episodes.
Each episode has zero or more NPAs collected from the activity library. Each
TPN has a start and an end event. Number of parallel paths and number of
events per path are user-adjusted parameters however; the current implementa-
tion sets them randomly within specific ranges.

4.2 Fitness Function

Not all TPN candidates are executable on mission hardware. This is either be-
cause some open conditions (ASK) within the TPN are not satisfied, or some
combinations of TPN constraints are conflicting. The resulting solution TPN
is said to be executable if it is both consistent and complete. PGen evaluates
each TPN candidate based on its temporal consistency (TEC), symbolic con-
straints consistency (SYCC) and completeness (COMP). TEC requires that a
valid temporal assignment to each event exists such that no temporal constraints
are violated. SYCC ensures that there are no overlapping intervals with conflict-
ing constraints. COMP requires that all open questions represented by ASK
constraints are satisfied. Fitness is calculated as follows: if a TPN candidate is
consistent and complete, its fitness is zero. Otherwise, it takes a value based on
the number of events and the number of open conditions (1).

F =

0 Candidate passedTEC, SYCC and COMP

EV + OpASKs Candidate passed TEC, SYCC but failed COMP

MAXFITNESS Candidate failed TEC

(1)

where EV=No of events and OpASKs= No of open ASKs.
Hence, a candidate’s fitness is estimated over three phases as shown in Fig.3.

4.2.1 TEC In order to measure a candidate TEC, temporal constraints have
to be reformulated into an equivalent graph called a distance graph[12]. A dis-
tance graph is a graphical encoding of each upper and lower bound in a graph.
Once the distance graph for a given TPN has been constructed, one can easily
determine temporal consistency by using a negative cycle detection algorithm,
as the existence of a negative cycle implies that there is a set of temporal con-
straints that can not be satisfied. All Pairs Shortest-Path (APSP) algorithms has
been used to detect negative cycles in the distance graph. PGen uses Johnson’s
Algorithm[6] to detect negative cycles for distance graphs.

4



Fig. 3. Fitness calculation phases

5



4.2.2 SYCC An incompatibility exists when there are two episodes in TPN
representing overlapping intervals of time, labeled with symbolic constraints that
conflict. Two symbolic constraints conflict if one is either asserting or requesting
that a condition is true, while the other is asserting or requesting that the same
condition is false. For example TELL (Not C) and ASK (C) conflict, as do
ASK(C) and ASK (Not C). Since such condition pairs can never both be satisfied
at the same time, they represent one form of plan inconsistency.

Conflict Detection In order to detect incompatibilities, we must first compute
the feasible time bounds for each temporal event, and then use these bounds
to identify potentially overlapping intervals that are labeled with conflicting
symbolic constraints. These bounds can be computed by solving an all-pairs
shortest path problem over the distance graph representation. PGen uses results
previously obtained from Johnson’s Algorithm to solve all-pairs shortest path
problem.

Conflict Resolution PGen resolves the symbolic conflict either by deleting one
of the two contradicting activities or by constraining the time ranges of the start
and end points of the intervals to ensure they will not overlap.

4.2.3 COMP An open condition is represented by an episode labeled with an
ASK constraint. It represents the request for a condition to be satisfied over
a certain interval of time. When PGen calculates the completeness of a TPN
candidate, it first checks to see how many ASKs are satisfied by closing TELLs.
It tries to satisfy or close these open conditions. Once an interval that may satisfy
this open condition is found, a causal link can be added to force the interval to
contain the interval of the open condition. A causal link is an episode with [0,
+INF] time-bounds and no attached ASKs, TELLs, or any activities. They are
mainly used to order plan activities and force a certain sequence of events to
occur. Finally, PGen calculates a candidate’s score according to the number of
events in TPN and the number of unsatisfied ASKs.

4.3 Elitism

Elitism means that the best chromosome (or a few best chromosomes) is copied
to the population in the next generation. The rest are chosen in classical way.
Elitism can very rapidly increase performance of GA, because it prevents losing
the best found solution to date.

4.4 Tournament Selection

Based on earlier research results [3], PGen uses Tournament Selection rather
than other selection strategies like Roulette Wheel Selection. Tournament Se-
lection is one of many methods of selection in Genetic Algorithms which runs a
”tournament” among a few individuals chosen at random from the population

6



and selects the winner (the one with the best fitness) for crossover. Selection
pressure can be easily adjusted by changing the tournament size. If the tourna-
ment size is larger, weak individuals have a smaller chance to be selected and
vice versa.

4.5 TPN Crossover

PGen uses two crossover operators to perform the evolution; namely:
1.TPN Multiple Points Crossover : This is a novel crossover operator especially
designed for Temporal Plan Networks. It divides a TPN at some randomly cho-
sen cut sets. A cut set consists of some episodes at which a TPN will be divided
into two parts.
2.TPN Single Activity Swap Crossover : An episode is selected at random from
each chromosome and contents are swapped. Please refer to the upcoming ex-
ample in the next section.

4.6 TPN Mutation

PGen depends much on mutation operations to investigate the search space. It
uses the following proposed mutation operators:
1.TPN Activity Addition Mutation: An NPA is selected from the activity library
and inserted at a random episode with no NPA.
2.TPN Activity Deletion Mutation: An episode is selected at random in the TPN
candidate and its NPA is removed.
3.TPN Internal Activity Swap Mutation: Two episodes are selected at random
in the TPN candidate and contents are swapped.
4.TPN Activity Change Mutation: An episode is selected at random and its NPA
is replaced by another one selected from the activity library.

5 Example

Consider that there is a ship sinking in the sea and there is one person on it. It is
required to fetch that person then put him on the medical ship. So, the mission
programmer writes the control program in Fig.4.

Fig. 4. Control program RMPL and its equivalent TPN for rescue mission

7



Assume that the activity library contains four activities: Search-For-Sunken-
Object(), Determine-Object-Type(), Rescue-Sunken-Person() and Extinguish-
Fire(), see Fig.5.

Fig. 5. Activity Library

5.1 Initialization

Assuming that PGen produces the initial generation (as explained before), given
in Fig.6 an example TPN candidate.

8



Fig. 6. A TPN candidate selected from the first generation

5.2 Fitness

For fitness calculation, PGen transforms Temporal Plan Networks into its cor-
responding distance graphs. Then it applies Johnson’s Algorithm in order to
obtain the distance matrix. Figure 7 shows the distance graph, distance matrix
and the calculated feasible times for the TPN candidate at hand. It is clear
that it does not contain any negative cycles, thus it passes TEC check. After

Fig. 7. Distance graph, Distance matrix and Calculated feasible times for TPN candi-
date in Fig.6

that, TPN candidates are expanded and go through SYCC check, see Fig.8. The
candidate at hand does not contain any conflicting symbols, so it passes this
check successfully. Finally, COMP check is conducted; PGen connects the goal
to each TPN candidate, and counts the number of unsatisfied ASKs. Figure 8
shows the candidate at hand expanded with the goal connected to it. The open
conditions are: ASK (USVView =personView), ASK (USVView=objectView)
and ASK (personStatus=underCureStatus). The first condition is the only one
satisfied. So, the fitness value= Number of events + Number of unsatisfied ASKs
= 9+2 =11.

9



Fig. 8. TPN candidate in Fig.6 expanded and connected to goal

5.3 Crossover

Assume that the TPN candidate in Fig.6 is selected for crossover along with
candidate in Fig.9.b. TPN Multiple Points Crossover is applied and crossover
points are selected at random. Events with gray color in Fig.9.a and Fig.9.b are
the crossover points. Two offsprings are formed in the next generation as shown
in Fig.9.c and Fig.9.d.

5.4 Fitness

When Fitness is evaluated for the two offsprings, PGen finds that the child in
Fig.9.c passes the three checks, hence it takes 0 fitness value and is returned as
a solution, see Fig.10.

6 Experimental Results

PGen was implemented in C++ and tested on a Pentium IV 3 GHz proces-
sor with 1 GB of RAM running Windows XP SP2. It run on a series of test
problems to check its effectiveness. Test data consists of 66 problems of differ-
ent complexities. Complexity is measured as the number of Primitive Activities
and Non-Primitive Activities required solving the problem. For correct parame-
ter selection, the effect of changing Elitism Size, Tournament Size were studied.
We will study the effect of these two parameters on the probability to reach a
solution. 20 runs were performed for the same problem then we get number of
successful runs that found a solution. Failed runs are those that did not reach
a solution. In addition, performance analysis (amount of processing required to
solve a problem)[2] has been conducted to specify suitable crossover rate[1].

10



Fig. 9. TPN Crossover applied to parents and offsprings are formed

11



Fig. 10. A solution is found

6.1 Elitism Size

Figure.11 shows the Elitism Size against probability to reach a solution for three
problems. Note that Problem 3 is more complex than Problem 2. Also Problem
2 is more complex than Problem 1. From these results we can conclude the
following:

1. Increasing the Elitism Size increases the probability to reach a solution till
ESmax, and then it drops. This means that it is good to keep some of the
best candidates found aside, but after some point and when the size of these
kept candidates is getting bigger, i.e. less genetic operations are done, the
diversity of the search space drops, hence the probability to find a solution
decreases.

2. If we look at the optimum points(ESmax for each problem), we can find that
ESmax for the Problem 1 is at 70%. ESmax for Problem 2 and Problem 3
is at 50%. This means that as the problem gets more complex, ESmax gets
smaller. This means that as a problem grows and becomes more complex,
more diversity is needed in the search space.

6.2 Tournament Size

Figure.12 shows the Tournament Size against probability to reach a solution.
As a general behavior, and for the three problems in hand, increasing the Tour-
nament Size increases the probability to reach a solution till some point, then

12



Fig. 11. Elitism Size against probability to reach a solution (No of solutions out of 20
different runs)

it remains almost constant. It is clear that the larger the Tournament Size is,
the more likely we are to select a highly fit individual from the population, and
hence we reach a solution faster.

Fig. 12. Tournament Size against probability to reach a solution (No of solutions out
of 20 different runs)

7 Comparison between PGen and Spock

As described previously, PGen is part of the Kirk model-based executive for
mobile autonomous systems. PGen acts as the generative planner inside Kirk;
its main role is to take a goal plan and form a solution plan by combining the goal

13



plan with a set of activities from the activity library and search for a consistent
and complete solution plan using Genetic Algorithms. Among all work done in
this area, we see that the most similar work done was Spock[7]. It is therefore
worthy to compare our results with Spock’s. Table.1 shows Spock results.

Table 1. Spock Results

Problem Events in Episodes in T ime to
Solution Solution Solve

1 6 5 0.04s
2 10 13 0.14s
3 9 11 0.14s
4 11 13 0.11s
5 16 32 0.67s
6 20 44 2.35s
7 16 30 15.21s

Table 2. PGen Results

Problem Events in Episodes in T ime to
Solution Solution Solve

1 8 10 0.07s
2 10 12 0.07s
3 9 11 0.13s
4 11 13 0.13s
5 14 15 0.27s
6 25 31 0.69s
7 27 34 2.21s

In general, PGen’s performance[1] was not less than Spock. Moreover, more
complicated problems were tested on PGen. To conclude, we find our planner
presented in this paper is better than Spock for the following reasons:

1. PGen was run on 66 different test problems while Spock was run on just 7
test problems. So, PGen has been tested more intensively.

2. Full and complete performance analysis was presented for PGen while not
any was presented for Spock

3. The activity library used in PGen’s test problems consists of 43 activities
while the one used for Spock consists of just 2 activities. This shows how
solid the test phase prepared for PGen was, and how simple the test phase
prepared for Spock was. Hence, because PGen was exposed to more complex

14



missions in testing, this makes it more reliable than Spock. We cannot judge
at the moment how Spock will react when it is exposed to these complicated
missions that PGen was exposed to.

4. Spock’s evaluation function is not complete; it does not include a heuristic
cost estimate. PGen’s fitness function is complete and more robust.

5. Wide range of results was given for PGen. 6 different results were presented
while Spock results were very poor.

8 Conclusion and Future Work

PGen main goal is to produce generative plans for complex processes. Goal
plans and activity models are encoded using RMPL, while plan operators
and plan candidates are represented by TPN. PGen uses Genetic Algorithms
as a novel approach for TPN-based planning and it showed successful per-
formance. Results are better than Spock; the most similar work done in this
area. It is planned to run PGen on larger problems in order to demonstrate its
applicability to more complex autonomous vehicle control scenarios. PGen
is part of Kirk model-based executive for mobile autonomous systems, how-
ever for the time being it was tested separately without being integrated with
Kirk. Its input was a TPN control program and its output was a complete
and consistent TPN plan. Integration with the rest of the Kirk model-based
executive will be completed in the near future.

References

1. Nermeen M.Ismail, Magda B.Fayek, Ashraf A.Wahab , Nevin M. Darwish
Planning Complex Processes for Autonomous Vehicles by Means of Genetic
Algorithms. M.Eng.Thesis (2008)

2. John R. Koza Genetic Programming: On the Programming of Computers by
Means of Natural Selection (1992)

3. Jinghui Zhong, Xiaomin Hu, Min Gu and Jun Zhang Comparison of Perfor-
mance between Different Selection Strategies on Simple Genetic Algorithms
(2005)

4. Gregory Horvath, Michel Ingham, Seung Chung, Oliver Martin, Brian
Williams Practical Application of Model-Based Programming and State-Based
Architecture to Space Missions (2006)

5. Seung H. Chung Model-based Programming for Cooperative Vehicles: Genera-
tive Activity Planner (2004)

6. Paul E. Black Dictionary of Algorithms and Data Structures (2004)
7. Jonathan Kennell Generative Temporal Planning with Complex Processes.

M.Eng.Thesis (2003)
8. Brian C. Williams , Michel D. Ingham , Seung H. Chung and Paul H. Elliott

Model-based Programming of Intelligent Embedded Systems (2003)
9. Philip K.Kim , Brain C. Williams and Mark Abramson Executing Reactive

Model-based Programs through Graph-based Temporal Planning (2001)
10. Andreas F. Wehowsky , John Stedl and Brian C. Williams Planning for Com-

munication Between Cooperative Mars Rovers (2001)

15



11. B. C. Williams and V. Gupta Unifying Model-based and Reactive Programming
in a Model-based Executive (1999)

12. R. Dechter, I. Meiri, and J. Pearl Artificial Intelligence (1991) 49:61-95

16


