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Abstract—Evolutionary computation techniques have had lim-
ited capabilities in solving large-scale problems due to the large
search space demanding large memory and much longer training
times. In the work presented here, a genetic programming like
rich encoding scheme has been constructed to identify building
blocks of knowledge in a learning classifier system. The fitter
building blocks from the learning system trained against smaller
problems have been utilized in a higher complexity problem in
the domain in order to achieve scalable learning. The proposed
system has been examined and evaluated on four different
Boolean problem domains, i.e. multiplexer, majority-on, carry,
and even-parity problems. The major contribution of this work
is to successfully extract useful building blocks from smaller
problems and reuse them to learn more complex, large-scale
problems in the domain, e.g. 135-bits multiplexer problem, where
the number of possible instances is 2

135
≈ 4 × 10

40, is
solved by reusing the extracted knowledge from the learnt lower
level solutions in the domain. Autonomous scaling is, for the
first time, shown to be possible in learning classifier systems.
It improves effectiveness and reduces the number of training
instances required in large problems, but requires more time
due to its sequential build-up of knowledge.

Index Terms—Learning Classifier Systems, Genetic Program-
ming, Layered Learning, Scalability, Building Blocks, Code
Fragments.

I. INTRODUCTION

HUMAN beings have the ability to apply the domain

knowledge learned from a smaller problem to more com-

plex problems of the same or a related domain, but currently

the vast majority of evolutionary computation techniques lack

this ability. This lack of ability to apply the already learned

knowledge of a domain results in consuming more resources

and time to solve the more complex problems of the domain.

As the problem increases in size, it becomes difficult and even

sometimes impractical (if not impossible) to solve due to the

needed resources and time. Therefore a system is needed that

has the ability to reuse the learned knowledge of a problem

domain in order to scale in the domain [1].

The main goal of the research direction is to develop a

system capable of autonomous, scalable learning, from small

problems to more complex problems of the same or a related

domain, in a similar behavior to human beings. In order to

autonomously scale in a problem domain, reusable building
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blocks of knowledge must be extracted. To extract and reuse

building blocks of information in a problem domain, a rich

encoding is needed, but the search space could then bloat,

e.g. as in some forms of genetic programming (GP). Learning

classifier systems (LCSs) are a well structured evolutionary

computation based learning technique that have pressures to

implicitly avoid bloat, such as fitness sharing through niche

based reproduction [2].

Typically, an LCS represents a rule-based agent that incor-

porates evolutionary computing and machine learning to solve

a given task by interacting with an unknown environment. The

rules are of the form “if condition then action”. Commonly,

the condition is represented by a fixed length bitstring defined

over the ternary alphabet {0, 1,#}, where ‘#’ is the ‘don’t

care’ symbol that can be either 0 or 1, and the action is

represented by a numeric constant. The LCS technique can

scale in problem domains, but has to relearn from the start

each time. Further, increased dimensionality of the problem,

resulting in increased search space, demands large memory

space and leads to much longer training times, and eventually

restricts LCS to a limit in problem size. By explicitly feeding

the domain knowledge to an LCS, scalability can be achieved

but it adds bias and restricts use in multiple domains [3].

In the work presented here, the typically used ternary

alphabet based conditions in an LCS will be replaced by code-

fragment based conditions, in order to extract and reuse build-

ing blocks of knowledge. A code fragment is a tree-expression

similar to a tree generated in GP (see Section II-B2). The fitter

building blocks extracted from the learning system trained

against smaller problems will be utilized in learning more

complex, large-scale problems in the same domain, similar

to transferring knowledge in a transfer learning technique (see

Section II-A), in an attempt to develop a scalable classifier

system.

The proposed system will be tested on four different

Boolean problem domains, i.e. multiplexer, majority-on, carry,

and even-parity problems. The multiplexer domain is a multi-

modal and epistatic problem domain. In the majority-on

problem domain, the complete solution consists of strongly

overlapping classifiers, which is therefore difficult to learn.

Similar to the majority-on problems, the complete solution

in the carry problems consists of overlapping classifiers. In

addition it is a niche imbalance domain, so is more difficult

to learn than the majority-on problems. Using the ternary al-

phabet based conditions with static numeric actions, no useful

generalizations can be made for the even-parity problems. The

results will be compared with the standard ternary alphabet

based XCS and related layered learning GP-systems to test
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effectiveness and efficiency of the proposed system.

Wilson’s accuracy based XCS [4], [5], the most popular

learning classifier system, is used to implement and test

the proposed system. In XCS the genetic algorithm (GA) is

applied to an action set instead of the whole population to con-

serve similar building blocks of information. These features

of XCS make it possible to form a complete and accurate

mapping from inputs and actions to payoff predictions. The

ability of XCS to produce complete and accurate solutions,

for a given problem, motivated its suitability for this research

work. If a learning system is unable to produce a complete

and accurate solution, then the extracted building blocks lack

important knowledge and so may not be suitable candidates

to be used to scale the system.

The rest of the paper is organised as follows. Section II

describes the necessary background in transfer learning, evo-

lutionary computation, and learning classifier systems. In Sec-

tion III the novel implementation of XCS with code-fragment

conditions is detailed. Section IV introduces the problem

domains and parameter settings used in the experimentation.

In Section V experimental results are presented and compared

with the standard ternary alphabet based XCS and related

layered learning GP systems. Section VI explains in detail the

reuse of extracted knowledge and the messy representation in

the proposed approach of XCS with code-fragment conditions.

In the ending Section this work is concluded and the future

work is outlined.

II. BACKGROUND

This section contains only the essential background material

to the novel work presented in the paper. More detailed

background is available in the online appendix.

A. Transfer Learning

Transfer learning is a process to transfer knowledge learned

in one or more source tasks to a related but more complex,

unseen target task, in an effort to facilitate learning in the

target task [6]. The source and target tasks may be from

the same or different problem domains [7]. The proposed

approach presented here is a form of layered learning that

is a subclass of transfer learning. The source and target tasks,

in each experiment conducted in this work, will be taken from

the same problem domain.

Layered learning is a machine learning paradigm, formally

introduced by Stone and Veloso [8] as an extension of earlier

work by de Garis [9] and Asada et al. [10], where the task to

be learned is decomposed into a hierarchy of subtask layers.

At each layer a subtask is learned separately, commonly in

sequence, by applying a suitable machine learning algorithm

that is usually chosen manually according to the subtask

characteristics. The knowledge learned at lower layers is used

to learn the subtask at the next higher layer. Layered learning

mostly applies to complex tasks for which: 1) direct learning

is not tractable, and 2) a bottom-up hierarchical decomposition

is possible, usually carried out manually using domain-specific

knowledge. In the work presented here, each subtask will be

a problem of increasing order in size and difficulty from the

same problem domain. The learning algorithm to be used at

each subtask layer is an extended version of XCS, proposed

in this work, see Section III.

B. Evolutionary Computation

Evolutionary computation is a population-based computing

paradigm [11] where each individual represents a potential

solution or a part of the solution to the problem at hand.

The population is evolved by applying genetic operations of

reproduction, elitism, crossover and mutation on the selected

individuals, according to their utility for the task being solved.

In the following subsections, two of the most common evo-

lutionary techniques, namely genetic algorithms and genetic

programming, are briefly described as they are directly related

to the work presented here.

1) Genetic Algorithms: The discovery component of an

LCS is commonly implemented using a GA. An LCS seeks

to evolve a population of co-operative rules, where each

individual rule is optimized using the GA.

GAs are an evolutionary computational technique where

each individual member of the population is usually repre-

sented by a bitstring of fixed length, and represents a potential

problem solution [12]. Goldberg hypothesized that higher

performance individuals in GAs are actually generated as

a result of the combination of short-length, low-order and

high-performance schemata1 – called the building blocks of

the system [12]. However, for a population of individuals

represented by fixed length strings, the genetic operators

sometimes cannot process the building blocks effectively as

a random crossover point may lie within the building block.

To avoid this disruption of partial solutions by the genetic

operators, a probability distribution based approach, known as

Estimation of Distribution Algorithm (EDA), was developed

[14]. In the various forms of EDAs, the crossover and mutation

operators are replaced by generating new offspring according

to the probability distribution of the selected individuals [15].

Santana et al. [16] and Pelikan et al. [17] have incorporated

transfer learning in the field of EDAs to transfer information

between optimization problems.

Schema theory has been criticized due to its weak theoret-

ical foundations [18]–[20], but still remains a popular tool to

explain the power of GAs [21]–[23].

2) Genetic Programming: GP is an evolutionary approach

to generating computer programs for solving a given problem

automatically [24], and uses a much richer alphabet than GAs

to encode the solution, i.e. more expressive symbols that can

express functions as well as numbers. A GP-like alphabet to

describe the problem is used in the LCS developed here, so

the GP technique is described to aid understanding.

In GP each individual is a computer program, commonly

represented by a tree, that when executed generates the po-

tential solution. The task to be solved is represented by a

primitive set of operations, known as the function set, and a

set of operands, known as the terminal set. The internal nodes

of the tree are functions and leaves are the terminals.

1A schema is a similarity template for describing a set of finite-length
strings defined over a finite alphabet [13].



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 3

A tree-GP computer program may contain unnecessary

bloating terms and non-optimum expressions. These problems

are usually addressed by limiting maximal allowed depth for

an individual tree and/or using a fitness measure that punishes

excess sized individuals [25]. The other ways to control bloat

in GP include simplifying individual programs using algebraic

and numerical simplification methods [26], [27], or using

specific bloat control operators [28].

GP has also been implemented using non-tree represen-

tations, such as linear GP (LGP) [29] and cartesian GP

(CGP) [30]. A number of GP researchers have incorporated

and investigated layered learning in GP [31]–[33]. CGP and

layered learning GP are briefly introduced here as they are

closely related to the work presented in this paper.

a) Cartesian Genetic Programming: Cartesian genetic

programming (CGP) is a flexible graph-based version of GP

that allows a program to be evolved with more than one output,

often using an evolution strategy [30]. In CGP, a program is

represented as a directed graph that is encoded in the form

of a linear string of integers. The graph-based representation

has the benefit of implicitly reusing the nodes in the graph. In

CGP there is a many-to-one genotype to phenotype mapping

due to the presence of a large amount of redundancy [34].

Self-Modifying CGP (SMCGP) is a developmental form

of CGP that allows an individual program to modify itself

using a set of self-modifying functions [35]. Using SMCGP,

Harding et al. [36] have evolved programs that provide general

solutions to a number of problems including an n-bit parity

problem and an adder to add two n-bit binary numbers.2 To

evolve these programs, they have used a set of self-modifying

operators in addition to the usual computational operators.

The main aim of SMCGP was to evolve a computer program

that could generate an arbitrary sequence of computer pro-

grams, each of which solves a particular problem [36], whereas

in the work presented here the main aim is to extract and reuse

knowledge of the domain to produce a scalable online learning

system.

b) Layered Learning Genetic Programming: For com-

plex problems, the standard monolithic GP may not find a

solution due to the large search space leading to an intractable

problem. In layered learning, the complex target task is

decomposed into subtasks and each subtask is learned in a

bottom-up fashion [8]. Gustafson and Hsu [31] implemented

layered learning in GP to learn the keep-away soccer game,

which is a multi-agent system problem. The main task was

decomposed into two subtasks and the final population in the

bottom task layer was used as the initial population for the top

task layer. The layered learning GP approach evolved better

solutions faster than standard GP.

Jackson and Gibbons [32] applied layered learning in GP

to solve Boolean logic problems of the even-parity and the

majority-on problem domains, using a two-layered approach.

The solutions of the bottom layer were encapsulated as

parametrized modules and reused to learn the main task in the

2We recently developed a state-machine based XCS system that evolves
general and compact solutions for the n-bit parity and n-bit carry prob-
lems [37].

top layer. The layered learning approach outperformed stan-

dard monolithic GP [24] and GP with automatically defined

functions (ADFs) [38], albeit it did not achieve 100% success

rate for the higher-order problems.

Hien et al. [39] investigated layered learning with incre-

mental sampling in GP. They tested twelve symbolic regres-

sion problems and results were compared with standard GP

[24]. The combination of incremental sampling with layered

learning in GP showed improvement in terms of reducing the

training time and complexity of the solutions. Later Hien and

Hoai [40] incorporated parameter setting techniques derived

from progressive sampling to overcome ad-hoc parameter set-

ting issues in the incremental sampling based layered learning

GP.

Hoang et al. [33] investigated interactions between evolu-

tion, development, and layered learning using tree adjoining

grammar guided GP (TAG3P) [41]. The developed system,

called DTAG3P, was tested in symbolic regression problems,

Boolean even-parity problems, and ORDERTREE problems.

The layered learning DTAG3P system produced more struc-

tured and scalable solutions to the problems as compared

with two single-short learning GP systems: standard tree-

based GP [24] and the pre-existing TAG3P [41]. However,

the DTAG3P system introduced a number of new parameters

into the TAG3P system.

A GP system produces an individual as a ‘single’ solution,

rather than a co-operative set of rules as in an LCS. It generally

requires supervised learning with the whole training set [42],

rather than online, reinforcement learning [43] as in LCS.

C. Learning Classifier Systems

Traditionally, an LCS represents a rule-based agent that

incorporates evolutionary computing and machine learning to

solve a given task by interacting with an unknown environment

via a set of sensors for input and a set of effectors for actions.

After observing the current state of the environment, the agent

performs an action, and the environment provides a reward.

An LCS is an adaptive system that, using the cooperative

set of rules, learns to perform the best action, i.e. the action

that receives the maximum reward from the environment for

a given input.

XCS is a formulation of LCS that uses accuracy-based

fitness to learn the problem by forming a complete mapping

of states and actions to rewards.3 In XCS, the learning agent

evolves a population [P ] of classifiers, where each classifier

consists of a rule and a set of associated parameters estimating

the quality of the rule. Each rule is of the form ‘if condition

then action’, having two parts: a condition and the correspond-

ing action. Commonly, the condition is represented by a fixed

length bitstring defined over the ternary alphabet {0, 1,#},
and the action is represented by a numeric constant.

XCS operates in two modes, explore and exploit [45]. In

the explore mode, on receiving the environmental input state

s, a match set [M ] is formed consisting of the classifiers

from the population [P ] that have conditions matching the

3For a detailed review of different types and approaches in LCS refer to
[44].
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input s. For every action ai in the set of all possible actions,

if ai is not represented in [M ] then a covering classifier is

randomly generated. After that an action a is selected to be

performed on the environment and an action set [A] is formed,

which consists of the classifiers in [M ] that advocate a. After

receiving an environmental reward, the associated parameters

of all classifiers in [A] are updated. When appropriate, new

classifiers are produced using an evolutionary mechanism.

Overly specific classifiers may be removed by a more general

and accurate classifier by performing subsumption deletion

in order to reduce the number of classifiers in the final

population [46]. In contrast to the explore mode, in the exploit

mode the agent does not attempt to discover new information

and simply performs the action with the best predicted payoff.

The exploit mode is also used to test learning performance of

the agent in the application.

Lanzi extended the fixed length bitstrings representation of

classifier conditions in XCS to a variable-length messy coding

in [47]. A messy coded string may be over- or under-specified,

due to its variable-length structure [48]. In the messy coded

conditions by Lanzi, environmental inputs were translated into

the bitstrings that have no positional linking between the bits

in a classifier condition and any feature in the environmental

input. Then Lanzi and Perrucci [49] enhanced a step further

from messy coding to a more complex representation in which

S-expressions were used to represent the classifier conditions.

Various other richer encoding schemes have been investigated

to represent high level knowledge in LCS in an attempt to

obtain compact classifier rules [50]–[52], to reach the optimal

performance faster [53], [54], to approximate functions [55],

[56], to learn problems involving a large number of ac-

tions [57], to develop useful feature extractors [58], and to

identify and process building blocks of knowledge [59], [60].

1) Previous Work on Code-Fragment Based XCS: In gen-

eral, a GP-like rich encoding scheme is needed in order to

extract the building blocks of knowledge and to reuse them in

learning complex, large-scale problems in the domain. Previ-

ously, we implemented this scheme to encode the action in a

classifier rule, which produced optimal populations in discrete

domain problems [52], [61], [62] as well as in continuous

domain problems [63], but this did not lead to simple scaling.

In our previous code-fragment conditions work [60], [64], we

used a separate population of code fragments, which limited

the number of available code fragments, resulting in a system

that was not able to learn the complex, large-scale problems.

Our previous work introduced GP-tree like expressions to

represent condition bits in a classifier rule, named code-

fragment conditions [64].4 This initial investigation of code

fragments in XCS showed that the multiple genotypes to a

single phenotype issue in feature-rich encoding disabled the

subsumption deletion function. The additional methods and

increased search space also led to much longer training times.

This was compensated by the code fragments containing useful

knowledge, such as the importance of the address bits in the

multiplexer problems. The code fragments also created masks

4In [64], the GP-tree like expressions were called automatically defined
functions (ADFs), due to the resemblance with ADFs used in GP.

that autonomously subdivided the search space into areas of

interest and uniquely, areas of no interest.

In [60], building blocks of knowledge were extracted, in the

form of code fragments, from small-scale problems and reused

to learn large-scale problems. The resulting code-fragment

XCS system outperformed ternary alphabet based XCS in

the multiplexer, carry, and even-parity problem domains in

terms of improving effectiveness and reducing instances in

large-scale problems. Although this was the first time such

scalability had been achieved in the field of LCS, the technique

could only solve problems to a scale that was previously

learnable by existing XCS techniques.

In the previous work on code-fragment conditions, a sep-

arate population of code fragments was created and kept

static throughout the learning process [60], [64]. This puts

a limit on the number of available code fragments that can

be used in the conditions of classifiers. Also, the extracted

code fragments were used in a hierarchical fashion from one

level to seed a population of code fragments in the next level

[60], not allowing the direct reuse of the extracted knowledge

in previous smaller levels, where ‘level’ is a single step

in problem complexity, e.g. 6-bits MUX to 11-bits MUX.

Further, the amount of the code fragments to be reused was

set empirically.

III. XCS WITH POPULATION-BASED CODE-FRAGMENT

CONDITIONS

In the new work presented here, the condition bit in a

classifier is directly replaced with a code fragment instead

of addressing a separate population, which is no longer used.

Therefore, there is no limit on the number of available code

fragments, except in the number of rules in the population. The

system is allowed to reuse the extracted code fragments from

all previous levels, instead of just one level. The number of

code fragments to be reused from a certain level is governed

by the unique code fragments in good classifiers, i.e. equal

to the number of distinct code fragments in the conditions

of accurate and experienced classifiers in the final population

with a fitness value greater than the average fitness of the

classifier population.

In the proposed XCS with code-fragment conditions, called

XCSCFC, each code fragment is a binary tree of depth up

to two, which was set to limit the tree size. A binary tree of

depth two can have maximum seven nodes. The function set

for the tree is problem dependent such as {+,−, ∗, /...} for

symbolic regression problems, and {AND, OR, NAND, NOR

...} for binary classification problems. The terminal set is {D0,

D1, D2, ... Dn-1}, where n is the length of the environmental

input state. A population of classifiers having code-fragment

conditions is illustrated in Table I. The symbols &, |, d, r,

and ∼ denotes AND, OR, NAND, NOR, and NOT operators,

respectively. The code fragments are shown in the postfix

form.

The proposed XCSCFC system extends standard XCS,

described in Section II-C, in the following cases: 1) the

classifier matching procedure, the covering operation, the rule

discovery operation, the subsumption deletion mechanism,
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TABLE I
A POPULATION OF CLASSIFIERS USING CODE-FRAGMENT CONDITIONS. HERE ‘&’, ‘|’, ‘d’, ‘∼’, AND ‘r’ DENOTE AND, OR, NAND, NOT, AND NOR

OPERATORS RESPECTIVELY. THE CODE-FRAGMENT CONDITIONS ARE SHOWN IN POSTFIX FORM.

Condition Action

D0D0∼| D0D5d∼ D1D4r∼ D0D0∼| D0D0∼| D0D0∼| 0

D0D0∼| D0D0∼| D0D0∼| D0 D1D4d D4 1

D0D0∼| D0D5d∼ D5D1& D0D0∼| D0D0∼| D0D0∼| 0

D3D0rD5D1dr D0D0∼| D0D0∼| D0D0∼| D0D0∼| D0D0∼| 1

D0D1dD0D4d& D0D0∼| D1D0rD2D0|d D3D1&∼ D0D0∼| D0D0∼| 0

... ...

and the procedure comparing equality of two classifiers are

modified; and 2) the extracted domain knowledge is reused in

the form of code fragments.

A. Classifier Matching

A classifier rule cl from the population [P ] is said to be

matched against a problem instance s from the environment

if each code fragment in its condition outputs 1. A code

fragment is evaluated by loading the terminal symbols with

corresponding binary bits from the observed environmental

state s. Assuming the problem instance s is 110101, then the

code fragment shown in Fig. 1 will give 1 as the output. This

output value was generated by loading D0, D1, D2, and D5

with 1, 1, 0, and 1 respectively.

D0 D1

|

D2 D5

&

|

Fig. 1. An example of a code fragment.

There is a special code fragment to be used as ‘don’t care’

symbol in the condition of a classifier rule, shown in Fig. 2.

This code fragment always outputs 1.

D0

D0

~

|

Fig. 2. A code fragment used as ‘don’t care’ symbol in a classifier rule.

Although for simplicity there is the same number of code

fragments as condition features, e.g. 6 for the 6-bits MUX

problem, there is a decoupling between a code fragment

and a position within the condition, i.e. unlike in standard

ternary alphabet based XCS the order of code fragments

is unimportant. The number of ‘specific’ code fragments is

essentially messy as the system can choose how many ‘don’t

care’ code fragments it uses. The classifier matching procedure

is described in Fig. 3.

1: procedure DOES MATCH(cl, s)

2: for i = 1 to n do

3: cf ← the code fragment cl.cond[i]
4: if cf 6= ‘don’t care’ code fragment then

5: load terminal symbols in cf with correspond-

ing binary bits from the state s
6: val ← evaluate value of cf
7: if val 6= 1 then

8: return false
9: end if

10: end if

11: end for

12: return true
13: end procedure

Fig. 3. The procedure to match a classifier cl from the population [P ] against
an environmental input state s. If the classifier cl matches the state s, then this
procedure will return true otherwise false. Here n is the length of condition
cond in a classifier rule.

B. Covering Operation

Covering occurs if an action is missing in the match set

[M ]. In the covering operation, a random classifier is created

whose condition matches the current environmental state s
and contains ‘don’t care’ code fragments with probability

Pdon′tCare. All the ‘non-don’t care’ code fragments in this

newly created classifier must output 1 against the observed

state s. The covering operation is described in Fig. 4.

C. Rule Discovery Operation

In the rule discovery operation, two offspring are produced

by applying the GA in the action set [A]. First of all, two

parent classifiers are selected from [A] based on fitness and

the offspring are created out of them. Next, the conditions

of the offspring are crossed with probability χ using a two

point crossover operation5, treating each code fragment as a

single allele similar to a bit symbol in ternary alphabet based

conditions. The blocks of information are essentially the code

fragments so are not subjected to disruption by crossover, as

shown to be beneficial by EDAs. The crossover operation is

described in Fig. 5. After that, each code fragment in the con-

ditions of the crossed over children is mutated with probability

µ, such that both children match the currently observed state

s. In the mutation operation, a ‘non-don’t care’ code fragment

5The XCSCFC system does not depend on any specific type of crossover
operation, so the interested researcher can use any type of crossover operation
in XCSCFC.
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1: procedure COVERING OPERATION(s, a)

2: initialize classifier cl
3: initialize condition cl.cond with length n
4: for i = 1 to n do

5: if RandomNumber[0, 1) < Pdon′tCare then

6: cl.cond[i]← ‘don’t care’ code fragment

7: else

8: initialize value val to 0
9: while val 6= 1 do

10: cf ← randomly create code fragment

11: load terminal symbols in cf with corre-

sponding binary bits from the state s
12: val← evaluate value of cf
13: end while

14: cl.cond[i]← cf
15: end if

16: end for

17: cl.action← a
18: return cl
19: end procedure

Fig. 4. The procedure to create a covering classifier cl that will match the
current input state s and advocate an action a missing in the match set [M ].
Here n is the length of condition cond in a classifier rule, and Pdon′tCare

is the probability of ‘don’t care’ code fragment in condition of the newly
created classifier in the covering operation.

is replaced by a ‘don’t care’ code fragment, and a ‘don’t care’

code fragment is replaced by a randomly generated ‘non-don’t

care’ code fragment that outputs 1 against the state s. Then,

the actions of the children are mutated with probability µ.

The mutation operation is described in Fig. 6. The prediction

of the offspring is set to the average of the parents’ values

whereas the prediction error and the fitness of the offspring are

set to the average of the parents’ values reduced by constants

predictionErrorReduction and fitnessReduction respectively, as

in [65].

1: procedure CROSSOVER OPERATION(cl1, cl2)

2: x← RandomNumber[0, n)

3: y ← RandomNumber[0, n)

4: if x > y then

5: swap x and y
6: end if

7: for i = x to y do

8: swap cl1.cond[i] and cl2.cond[i]
9: end for

10: end procedure

Fig. 5. The procedure to perform two-point crossover operation on two
offspring classifiers cl1 and cl2. Here n is the length of condition cond in a
classifier rule.

D. Subsumption Deletion

Utilizing code fragments for the matching component of

the LCS removes the implicit linking between the position

of a condition bit in a classifier rule and the corresponding

feature in the environmental input. Although this can lead to

compaction of a rule, it also places additional pressure on

1: procedure MUTATION OPERATION(cl, s)

2: for i = 1 to n do

3: if RandomNumber[0, 1) < µ then

4: if cl.cond[i] = ‘don’t care’ code fragment then

5: initialize value val to 0
6: while val 6= 1 do

7: cf ← randomly create code fragment

8: load terminal symbols in cf with cor-

responding binary bits from the state s
9: val← evaluate value of cf

10: end while

11: cl.cond[i]← cf
12: else

13: cl.cond[i]← ‘don’t care’ code fragment

14: end if

15: end if

16: end for

17: if RandomNumber[0, 1) < µ then

18: a← cl.action
19: cl.action← randomly chosen action other than a
20: end if

21: end procedure

Fig. 6. The procedure to perform niche mutation on an offspring classifier cl
matching the currently observed input state s. The mutated classifier cl will
still match the state s. Here n is the length of condition cond in a classifier
rule, and µ is the mutation probability.

subsumption deletion as the reordering of the same conditions

needs to be taken into account. It is to be noted that due to

the multiple genotypes to a single phenotype issue caused by

using tree-based code fragments in place of ternary symbols in

the conditions of classifier rules, subsumption deletion is less

likely to occur anyway. Subsumption deletion is still made

possible, albeit problematic, by matching the code fragments

on a character by character basis. The reason for a syntactic

equality comparison of code fragments, instead of a semantic

one, is that semantic comparison of two code fragments would

require evaluation of the code fragments against each possible

value of the terminal symbols in both code fragments. As

the terminal symbols can be smaller level code fragments

(see Section III-F), for large-scale problems, e.g. the 135-

bits multiplexer problem, semantic comparison is impractical

due to the amount of time needed for evaluation of the code

fragments.

A classifier cl1 can subsume another classifier cl2 if both

have the same action and cl1 is accurate, sufficiently experi-

enced, and more general than cl2. Classifier cl1 will be more

general than classifier cl2 if cl1 has a set of the matching

environmental inputs that is a proper superset of the inputs

matched by cl2. In XCSCFC, a classifier cl1 is said to be

more general than a classifier cl2 if: 1) the number of ‘don’t

care’ code fragments in the condition of cl1 is larger than the

number of ‘don’t care’ code fragments in the condition of cl2;

and 2) each ‘non-don’t care’ code fragment in the condition

of cl1 is in the condition of cl2. This is described in Fig. 7.
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1: procedure IS MORE GENERAL(cl1, cl2)

2: x← number of ‘don’t care’ code fragments in cl1
3: y ← number of ‘don’t care’ code fragments in cl2
4: if x ≤ y then

5: return false
6: end if

7: X ← set of all ‘non-don’t care’ code fragments in cl1
8: Y ← set of all ‘non-don’t care’ code fragments in cl2
9: if X 6⊆ Y then

10: return false
11: end if

12: return true
13: end procedure

Fig. 7. The procedure to determine whether a classifier cl1 is more general
than another classifier cl2. The classifier cl1 will be more general than the
classifier cl2 if cl1 has a set of the matching environmental inputs that is a
proper superset of the inputs matched by cl2.

E. Comparing Equality of Two Classifiers

If a newly created classifier in the rule discovery operation

is not subsumed (either by the parents or in the action set) and

there is no classifier equal to it in the population, then it will

be added to the population. Two classifiers are considered to

be equal if and only if both have the same action and the same

code fragments in their conditions. The procedure to compare

two classifiers for equality is given in Fig. 8.

1: procedure ARE EQUAL(cl1, cl2)

2: if cl1.action 6= cl2.action then

3: return false
4: end if

5: x← number of ‘non-don’t care’ code fragments in cl1
6: y ← number of ‘non-don’t care’ code fragments in cl2
7: if x 6= y then

8: return false
9: end if

10: X ← set of all ‘non-don’t care’ code fragments in cl1
11: Y ← set of all ‘non-don’t care’ code fragments in cl2
12: if X 6= Y then

13: return false
14: end if

15: return true
16: end procedure

Fig. 8. The procedure to determine whether two classifiers cl1 and cl2 are
equal. If both classifiers have the same action and the same code fragments
in their conditions, then this procedure will return true otherwise false.

F. Reusing Extracted Knowledge

The fitter code fragments, i.e. building blocks of infor-

mation, from smaller problems, are used to create the code

fragments in a higher level problem of the same domain.

Each code fragment can be considered a module as in modular

CGP [66], and each problem level can be considered a subtask

layer as in layered learning [8]. In the work presented here,

code fragments are kept static throughout the learning process

whereas in modular CGP the modules are allowed to evolve.

The code fragments in the conditions of accurate and expe-

rienced classifiers in the final population, with a fitness value

greater than the average fitness of the classifier population,

are taken as the fitter code fragments and reused to learn

the higher level complex problems in the domain. The code

fragments from smaller problems are used as terminals in the

code fragments of a higher level problem. The probability

of a terminal to be a code fragment from previous levels or

a condition bit from the current level problem is set to 0.5
following the ramped half and half approach of initializing a

population in GP [67].

An example of code fragments in the 20-bits MUX problem

is shown in Fig. 9. The code fragments in the 20-bits MUX

problem contain fitter code fragments from the 6-bits MUX

problem and the 11-bits MUX problem, similarly the code

fragments in the 11-bits MUX problem contain code fragments

from the 6-bits MUX problem. The code fragments in the 6-,

11-, and 20-bits MUX problems are named as L1 n, L2 n,

and L3 n respectively, where n = 0, 1, 2, ... etc.

Fig. 9. A sample of code fragments in the 20-bits multiplexer problem. The
code fragments in the 6-, 11-, and 20-bits multiplexer problems are named as
L1 n, L2 n, and L3 n respectively, where n = 0, 1, 2, ... etc.

IV. THE PROBLEM DOMAINS AND EXPERIMENTAL SETUP

A. The Problem Domains

The problem domains used in the experimentation are the

multiplexer problems, the majority-on problems, the carry

problems and the even-parity problems.

A multiplexer is an electronic circuit that accepts input

strings of length n = k+2k, and gives one output. The value

encoded by the k address bits is used to select one of the 2k

remaining data bits to be given as output. For example in the

6-bits multiplexer, if the input is 011101 then the output will

be 1 as the first two bits 01 represent the index 1 (in base

ten), which is the second bit following the address. Similarly,

if the input is 101101 then the output will be 0 as the third

bit after the address is indexed. The multiplexer problems are

considered to be interesting because they are multi-modal and

epistatic, which are therefore difficult to learn. “They are non-

trivial high dimensional deceptive and discrete. They have no

parameters suitable for continuous gradient ascent” [68]. They
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also allow generalizations and are suitable for examining the

scalability of an algorithm.

In the majority-on problems, the output depends on the

number of ones in the input instance. If the number of ones

is greater than the number of zeros, the problem instance is

of class one, otherwise class zero. In the majority-on problem

domain, the complete solution consists of strongly overlapping

classifiers, which is therefore difficult to learn. For example,

‘1##11:1’ and ‘11#1#:1’ are two maximally general and ac-

curate classifiers, but they overlap in the “11*11” subspace.6

In the carry problem, two binary numbers of the same length

are added. If the result triggers a carry, then the output is one

otherwise zero. For example, in case of three bits numbers

101 and 010, the output is 0, whereas for the numbers 110

and 100 the output is 1. Similar to the majority-on problems,

the complete solution in the carry problem domain consists of

overlapping classifiers, and in addition it is a niche imbalance

problem domain.

The even-parity problems are similar to the majority-on

problems in that the output depends on the number of ones in

the input instance. If the number of ones is even, the output

will be one, or zero otherwise. Using the ternary alphabet

based conditions with the static numeric actions, no useful

generalizations can be made for the even-parity problems.

B. Experimental Setup

The system uses the following parameter values, commonly

used in the literature, as suggested by Butz in [65], and

by Butz and Wilson in [45]: learning rate β = 0.2; fitness

fall-off rate α = 0.1; prediction error threshold ǫ0 = 10;

fitness exponent ν = 5; threshold for GA application in the

action set θGA = 25; two-point crossover with probability

χ = 0.8; mutation probability µ = 0.04; experience threshold

for classifier deletion θdel = 20; fraction of mean fitness

for deletion δ = 0.1; classifier experience threshold for

subsumption θsub = 20; probability of ‘don’t care’ symbol

in covering Pdon′tCare = 0.33; reduction of the prediction

error predictionErrorReduction = 0.25; reduction of the

fitness fitnessReduction = 0.1; and the selection method

is tournament selection with a tournament size ratio 0.4. Both

GA subsumption and action set subsumption are activated. The

function set for the code fragments used is {AND, OR, NAND,

NOR, NOT}, for all four problem domains. Explore and

exploit problem instances are alternated. The reward scheme

used is 1000 for a correct classification and 0 otherwise. All

the experiments have been repeated 30 times with a different

seed in each run.

V. RESULTS

In order to test the performance of XCSCFC, the results

have been compared with standard XCS on the four problem

domains used in experimentation. In addition, the results

obtained from the related layered learning GP-systems in the

even-parity and the majority-on problem domains have also

been compared with XCSCFC.

6Here, * can be 0, 1, or #.

Each result obtained in this work is the average of the 30

independent runs. In all graphs presented here, the X-axis is

the number of problem instances used as training examples

and the Y-axis is the classification performance measured

as the moving average over the last 1000 exploit problem

instances. This is different from standard supervised learning

(batch processing) GP approaches, due to the online nature

and descriptive purpose of LCS.

A. Results Comparison with XCS

1) The Multiplexer Problem Domain: The performance

of standard XCS and XCSCFC in the multiplexer problem

domain is shown in Fig. 10. The number of classifiers used,

denoted by N , is 500, 1000, 2000, 5000, 10000, and 50000 for

the 6-, 11-, 20-, 37-, 70-, and 135-bits multiplexer problems

respectively. The number of training examples used is half a

million for the 6-, 11-, and 20-bits multiplexers and one mil-

lion, two million, and five million for the 37-, 70-, and 135-bits

multiplexer problems respectively. Standard XCS was not able

to solve the 37-bits MUX problem with Pdon′tCare = 0.33 and

N = 5000,7 so Pdon′tCare was increased to 0.5 in Fig. 10(b).

For the 70-bits and the 135-bits MUX problems, Pdon′tCare is

set to 1.0 and µ is set to 0.01 in standard XCS. The condition

length of a classifier rule in XCSCFC is set to 70/2 = 35, and

135/4 = 33 for the 70-bits and the 135-bits MUX problems

respectively. Standard XCS failed 13 times out of 30 runs to

solve the 70-bits MUX problem with N = 10000, so N was

increased to 20000, Fig. 10(c). Here p# and N denote the

probability of ‘don’t care’ symbol and the number of classifiers

used respectively.

XCSCFC needs more training examples than standard XCS

to learn the 6-bits and the 11-bits MUX problems, but less

training examples for the 20-bits MUX problem, as shown

in Fig. 10(a). Standard XCS, with parameter tuning, needs

approximately 800k and 3000k problem instances to solve

the 37-bits and the 70-bits MUX problems, see Fig. 10(b)

and Fig. 10(c) respectively. However, XCSCFC takes approx-

imately 200k and 500k problem instances to solve the 37-bits

and the 70-bits MUX problems respectively, without parameter

tuning. The performance curves for the 70-bits MUX problem

using XCSCFC are almost coincident in Fig. 10(c).

Standard XCS was not able to solve the 135-bits MUX

problem, either in the literature or with further parameter

tuning conducted here. However, if a stepped reward function

is used to guide learning [69] then the state-of-the-art in the

field was to solve the 135-bits MUX problem. XCSCFC,

reusing the extracted domain knowledge, successfully solved

the standard 135-bits MUX problem taking approximately

two million training instances, Fig. 10(d), without needing

stepped reward. Considering the number of possible instances

is 2135 ≈ 4 × 1040, and that XCSCFC takes only 2 × 106

instances (i.e. sampling only one in 1034 instances) to be able

to solve the problem, this result is remarkable.

7In simple problems the conventional parameter values set produces robust
performances, but requires adjustment in complex domains, e.g. 37-bits MUX
and above.
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(a) Results for the 6-, 11-, and 20-bits multiplexer problems. (b) Results for the 37-bits multiplexer problem.

(c) Results for the 70-bits multiplexer problem. (d) Results for the 135-bits multiplexer problem.

Fig. 10. Results of the multiplexer problems using XCS and XCSCFC. The performance curves for the 70-bits MUX problem using XCSCFC are almost
coincident in (c).

2) The Majority-on Problem Domain: The performance

of standard XCS and XCSCFC in the majority-on problem

domain is shown in Fig. 11. The number of classifiers used

is 500, 1000, and 2000 for the 3-, 5-, and 7-bits majority-on

problems respectively. The number of training examples used

is half a million.

Fig. 11. Results of the majority-on problems using XCS and XCSCFC.

The complete solution of the majority-on problem domain

consists of strongly overlapping classifiers. The overlapping

nature of classifiers in the final solution makes it harder to

learn the problem. XCSCFC successfully learned the 3-, 5-,

and 7-bits majority-on problems, whereas standard XCS failed

to learn the 5-bits and the 7-bits majority-on problems.

To test statistical significance of XCSCFC with comparison

to standard XCS, the Wilcoxon signed rank test was con-

ducted, see Table II. The values in column two and column

three are the average performance values of the last 100

test cases along with the standard deviation. The last column

shows the p-value obtained with confidence interval of 95%.

The performance improvement of XCSCFC is statistically

significant as for both cases the p-value is much less than

0.05.

TABLE II
THE WILCOXON SIGNED RANK TEST FOR PERFORMANCE COMPARISON IN

THE MAJORITY-ON PROBLEM DOMAIN.

Majority-On XCS XCSCFC p-value

5-bits 95.17 ± 2.49 100.00 ± 0.00 3.54e−6

7-bits 94.43 ± 2.65 100.00 ± 0.00 1.66e−6

3) The Carry Problem Domain: The performance of stan-

dard XCS and XCSCFC in the carry problem domain is shown

in Fig. 12. The number of classifiers used is 1000, 2000,

4000, and 6000 for the 2-, 3-, 4-, and 5-bits carry problems

respectively. The number of training examples used for the 2-,

and 3-bits carry problems is half a million whereas for the 4-,

and 5-bits carry problems one million training examples have

been used.

The complete solution in the carry problem domain consists

of overlapping classifiers, in addition it is a niche imbalance

domain, therefore very difficult to learn. Standard XCS was not

able to reach consistent 100% performance even for the 2-bits

carry problem, see Fig. 12(a), whereas XCSCFC successfully

solved the 2-bits and the 3-bits carry problems. XCSCFC also

learned the 4-bits carry problem and in the case of the 5-bits

carry problem XCSCFC outperformed standard XCS, albeit

not reaching 100% consistent and stabilized performance as

shown in Fig. 12(b).

The results of the Wilcoxon signed rank test conducted to

measure the statistical significance of XCSCFC compared with
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(a) Results for the 2-, and 3-bits carry problems. (b) Results for 4-, and 5-bits carry problems.

Fig. 12. Results of the carry problems using XCS and XCSCFC.

standard XCS are shown in Table III. The values in column

two and column three are the average performance values of

the last 100 test cases along with the standard deviation. The

performance improvement of XCSCFC is statistically signif-

icant as for all cases the p-value, obtained with confidence

interval of 95%, is far less than 0.05.

TABLE III
THE WILCOXON SIGNED RANK TEST FOR PERFORMANCE COMPARISON IN

THE CARRY PROBLEM DOMAIN.

Carry XCS XCSCFC p-value

2-bits 99.17 ± 1.19 100.00 ± 0.00 7.80e−3

3-bits 96.30 ± 2.67 100.00 ± 0.00 1.66e−6

4-bits 93.47 ± 2.60 100.00 ± 0.00 1.64e−6

5-bits 92.10 ± 3.12 99.87 ± 0.43 1.59e−6

4) The Even-Parity Problem Domain: The performance

of standard XCS and XCSCFC in the even-parity problem

domain is shown in Fig. 13. The number of classifiers used

is 200, 300, 400, 500, 1000, and 2000 for the 2-, 3-, 4-, 5-,

6-, and 7-bits problems respectively. Each run is stopped after

half a million training examples.

It is observed that XCSCFC needs more training examples

than standard XCS to learn the 2-, 3-, and 4-bits even-

parity problems, see Fig. 13(a). As the problem scales to 6-

bits, standard XCS cannot learn the even-parity problem, see

Fig. 13(b), whereas XCSCFC successfully solved up to the

7-bits even-parity problems.

The results of the Wilcoxon signed rank test conducted to

measure the statistical significance of XCSCFC with compar-

ison to standard XCS are shown in Table IV. The values in

column two and column three are the average performance

values of the last 100 test cases along with the standard

deviation. The performance improvement of XCSCFC is statis-

tically significant as for all the three cases the p-value, obtained

with confidence interval of 95%, is far less than 0.05.

TABLE IV
THE WILCOXON SIGNED RANK TEST FOR PERFORMANCE COMPARISON IN

THE EVEN-PARITY PROBLEM DOMAIN.

Parity XCS XCSCFC p-value

5-bits 93.77 ± 9.79 100.00 ± 0.00 4.88e−4

6-bits 79.23 ± 9.26 100.00 ± 0.00 8.07e−6

7-bits 76.47 ± 6.18 100.00 ± 0.00 2.49e−6

If a classifier rule is encoded using the standard ternary

alphabet based conditions and the static numeric actions,

then the even-parity problem domain does not allow any

generalizations. Therefore, each bit must be specific for a

classifier rule to be accurate in standard XCS. For small-

scale problems, it is relatively easy to learn each bit, so

standard XCS successfully learnt up to the 5-bits even-parity

problems. As the problem scaled to 6-bits and higher levels,

standard XCS was not able to solve them, having typically

used XCS parameter settings where probability of ‘don’t care’

symbol and that of mutation was set 0.33 and 0.04 respectively.

However, in XCSCFC the number of ‘specific’ code fragments

is essentially messy as the system can choose the number of

‘don’t care’ fragments it uses. Also, utilizing code fragments

for the matching component of the LCS removes the implicit

linking between the position of a condition bit in a rule and

the corresponding feature in the problem input. Therefore,

the XCSCFC system, having the ability to generalize, has

performed efficiently in the even-parity problem domain.

For example, consider an experienced, accurate, correct and

general classifier rule ‘L1 7 D2 D0D0∼| : 1’, taken from the

final rule base of the 3-bits (i.e. Level 2) even-parity problem

where L1 7 is a Level 1 (i.e. 2-bits even-parity problem) code

fragment given by D1D0|D1D0d&. In XCSCFC, a classifier

rule is said to be matched against an environmental input

state if the computed value of all the code fragments in the

classifier’s condition is equal to 1. Now, L1 7 is equivalent

to ‘D1 XOR D0’ that outputs 1 if and only if D0 and D1

have different values and D0D0∼| is the ‘don’t care’ code

fragment that always outputs 1. Therefore, this rule will match

an environmental state if D0 and D1 have different values and

D2 is equal to 1 (as the second code fragment is just D2 in

this rule) in the environmental state. So, this general rule is

equivalent to two specific rules: ‘011 : 1’ and ‘101 : 1’. The

generalization ability of XCSCFC in the even-parity problems

will be further discussed in Section VI.

B. Results Comparison with GP Systems

The LCS and GP systems are two different evolutionary

techniques that solve a problem in different ways, i.e. LCS

is an online reinforcement learning system whereas GP is a

supervised learning batch processing approach. The primary

aim of the work presented here was not to develop a competitor

for the GP systems or other layered learning approaches, and it

is not straightforward to compare the proposed system with a
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(a) Results for the 2-, 3-, and 4-bits even-parity problems. (b) Results for the 5-, 6-, and 7-bits even-parity problems.

Fig. 13. Results of the even-parity problems using XCS and XCSCFC.

GP system. However some attempt at comparison with layered

learning GP approaches has been made to clarify the benefits

of the proposed approach in terms of scalability.

The first comparison is with a layered learning GP system,

called LLGP, developed by Jackson and Gibbons [32] using

a two-layered approach where the solutions of the bottom

layer were encapsulated as parametrized modules and reused

to learn the main task in the top layer. They tested the

LLGP system on the even-parity problems and the majority-

on problems. The 2-bits even-parity problem was used at

the bottom layer to solve the 4-, 5-, and 6-bits even-parity

problems having the function set {AND, OR, NAND, NOR}.
Each experiment was repeated 100 times with maximum 50

generations in each run. The population size used for the 4-bits

even-parity problem was 500 and it was increased to 2000 for

the 5-, and 6-bits even-parity problems. The layered learning

approach outperformed the standard monolithic GP [24] and

the GP with ADFs [38], albeit not achieving 100% success

rate as shown in Table V.

TABLE V
PERFORMANCE OF DIFFERENT GP SYSTEMS, IN TERMS OF SUCCESS RATE

OUT OF 100 RUNS, FOR THE EVEN-PARITY PROBLEMS [32].

Problem GP GP with ADFs LLGP

4-bits 14 43 95

5-bits 0 32 92

6-bits 0 16 70

To compare XCSCFC with the LLGP system for the even-

parity problems, the function set of XCSCFC was changed

to {AND, OR, NAND, NOR}. The number of classifiers

used is 200, 300, 400, 500, and 1000 for the 2-, 3-, 4-, 5-,

and 6-bits even-parity problems respectively. The number of

training examples used is half a million. The performance of

XCSCFC for the 2-bits to 6-bits even-parity problems is shown

in Fig. 14. XCSCFC solved all these problems successfully in

each of the 30 conducted experiments.

The second comparison is with the LLGP system for

the majority-on problems. In LLGP, the 3-bits majority-on

problem was used at the bottom layer to solve the 5-, and 7-

bits majority-on problems having the function set {AND, OR,

NOT}. Each experiment was repeated 100 times with maxi-

mum 50 generations in each run. The population size used for

Fig. 14. Results of the even-parity problems obtained using XCSCFC with
the function set {AND, OR, NAND, NOR}.

the 5-bits majority-on problem was 500 and it was increased to

1000 for the 7-bits majority-on problem. The layered learning

approach outperformed the standard monolithic GP [24] and

the GP with ADFs [38], albeit not achieving 100% success

rate for the 7-bits majority-on problem as shown in Table VI.

TABLE VI
PERFORMANCE OF DIFFERENT GP SYSTEMS, IN TERMS OF SUCCESS RATE

OUT OF 100 RUNS, FOR THE MAJORITY-ON PROBLEMS [32].

Problem GP GP with ADFs LLGP

5-bits 62 7 100

7-bits 18 not attempted 90

To compare XCSCFC with LLGP for the majority-on prob-

lems, the function set of XCSCFC was changed to {AND, OR,

NOT}. The number of classifiers used is 500, 1000, and 2000

for the 3-, 5-, and 7-bits majority-on problems respectively.

The number of training examples used is half a million. The

performance of XCSCFC for the 3-, 5-, and 7-bits majority-on

problems is shown in Fig. 15. XCSCFC solved successfully

all these problems in each of the conducted experiments.

The third comparison is with the DTAG3P system developed

by Hoang et al. [33]. Using the DTAG3P system, the 8-bits

even-parity problem was experimented in a layered learning

fashion using the function set {AND, OR, NOT, XOR}, the

population size maxpop = 250, and the number of maximum

generations at each problem level maxgen = 101. Although

DTAG3P outperformed the two single-short learning GP sys-

tems, the standard tree-GP system [24] and the TAG3P system

[41], it could not achieve 100% success rate for the 8-bits
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Fig. 15. Results of the majority-on problems obtained using XCSCFC with
the function set {AND, OR, NOT}.

even-parity problem. The reported success rates are 6.67%,

10%, and 86.67% for the standard tree-GP, the TAG3P, and

the DTAG3P systems, respectively [33].

To compare XCSCFC with DTAG3P, the function set of

XCSCFC was changed to {AND, OR, NOT, XOR}. The

number of classifiers used is 200, 300, 400, 500, 1000, 1500,

and 2000 for the 2-, 3-, 4-, 5-, 6-, 7-, and 8-bits even-parity

problems respectively. The number of training examples used

is half a million. The performance of XCSCFC for the 2-bits

to 8-bits even-parity problems is shown in Fig. 16. XCSCFC

solved successfully all these problems in each of the conducted

experiments.

Fig. 16. Results of the even-parity problems obtained using XCSCFC with
the function set {AND, OR, NOT, XOR}.

Poli and Page [70] have developed a single-short learning

GP system by using smooth uniform crossover, sub-machine

code GP, and distributed demes to solve higher-order even-

parity problems. It is reported that the 12-, 13-, 15-, 17-, 20-

and 22-bits even-parity problems were solved successfully, but

they have used all the 16 Boolean operators of two variables

[71] in the function set. Thus the experiment setting is very

different from this paper, so a direct comparison is not very

meaningful – we leave this to future work.

VI. INTERPRETATION OF RESULTS

The XCSCFC system has solved up to and including the

135-bits multiplexer problems by extracting and reusing the

building blocks of domain knowledge. The reuse of extracted

knowledge has shown generalization ability in the even-parity

domain problems that is not possible using the standard ternary

alphabet based representation. The following subsection de-

scribes in detail the reuse of the extracted knowledge in the

multiplexer and even-parity problem domains. This is followed

by a discussion of messy code-fragment conditions.

A. Reuse of Extracted Knowledge

A classifier rule from the final rule base of the 20-bits

multiplexer problem is depicted in Fig. 17, along with the code

fragments being used by the classifier. Here A and p represent

action and prediction of the classifier, respectively. It is to be

noted that only specific code fragments in the condition are

shown, the 16 ‘don’t care’ code fragments occurring in the

condition are not shown to save space. This is a compact rule,

using just four code fragments. These code fragments in the

20-bits MUX are using three building blocks of knowledge, in

the form of code fragments, from the 6-bits MUX (i.e. Level

1), namely L1 29, L1 12 and L1 21, and one from the 11-

bits MUX (i.e. Level 2), namely L2 3 that is further using a

code fragment from the 6-bits MUX, namely L1 6.

Fig. 17. A classifier rule from the final rule base obtained for a typical run
of the 20-bits multiplexer problem.

In XCSCFC, a classifier rule is said to be matched against

a problem instance if the computed values of all the code

fragments in the classifier’s condition are equal to 1. The

fourth code fragment ‘L1 21’ in the classifier rule shown

in Fig. 17 is just D2, therefore, D2 must be 1 in the

environmental instance to be matched by this classifier.

The first code fragment ‘L1 29 D1 d D4 D2 | d’ is using

three environmental features, i.e. D1, D2, and D4. Now, D2
must be 1 if the environmental instance is to be matched by

this classifier, so the code fragment ‘L1 29 D1 d D4 D2 | d’

will output 1 if and only if the value of the feature D1 is 1,

as shown in Table VII.

TABLE VII
TRUTH TABLE FOR THE CODE FRAGMENT ‘L1 29 D1 d D4 D2 | d’,

WHERE ‘L1 29’ IS ‘D1 D2 r ∼’.

Sr. No. D1 D2 D4 L1 29 L1 29D1d D4D2| L1 29D1dD4D2|d

1 0 1 0 1 1 1 0

2 0 1 1 1 1 1 0

3 1 1 0 1 0 1 1

4 1 1 1 1 0 1 1

The second code fragment ‘L1 12 D0 d ∼’ is using three

environmental features, i.e. D0, D1, and D3. Now, D1 must

be 1 if the environmental instance is to be matched by this

classifier, so the code fragment ‘L1 12 D0 d ∼’ will output 1
if and only if D0 = 1 and D3 = 0, as shown in Table VIII.

The third code fragment ‘L2 3 D18 & ∼’ = ‘D0 D9 |
D1 & D18 & ∼’ is using four environmental features, i.e.
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TABLE VIII
TRUTH TABLE FOR THE CODE FRAGMENT ‘L1 12 D0 d ∼’, WHERE

‘L1 12’ IS ‘D3 D1 & ∼’.

Sr. No. D0 D1 D3 L1 12 L1 12D0d L1 12D0d∼

1 0 1 0 1 1 0

2 0 1 1 0 1 0

3 1 1 0 1 0 1

4 1 1 1 0 1 0

D0, D1, D9, and D18. Now, D0 and D1 must be 1 if the

environmental instance is to be matched by this classifier, so

the code fragment ‘L2 3 D18 & ∼’ will output 1 if and only

if D18 = 0, as shown in Table IX.

TABLE IX
TRUTH TABLE FOR THE CODE FRAGMENT ‘L2 3 D18 & ∼’, WHERE

‘L2 3’ IS ‘L1 6 D9 | D1 &’ AND ‘L1 6’ IS ‘D0’.

Sr. No. D0 D1 D9 D18 X = D0D9| Y = XD1& Z = YD18& Z∼

1 1 1 0 0 1 1 0 1

2 1 1 0 1 1 1 1 0

3 1 1 1 0 1 1 0 1

4 1 1 1 1 1 1 1 0

Therefore, the classifier rule ‘L1 29D1dD4D2|d
L1 12D0d∼ L2 3D18&∼ L1 21: 1’ will match all the

problem instances having features D0 = 1, D1 = 1,

D2 = 1, D3 = 0, and D18 = 0. This classifier is maximally

general and accurate, being equivalent to the classifier

‘1110##############0# : 0’ represented in ternary alphabet

based form.

To illustrate the generalization ability of XCSCFC in the

even-parity problems, a classifier rule from the final rule base

of the 4-bits even-parity problem, depicted in Figure 18, is

analyzed. Here A and p represent action and prediction of

the classifier, respectively. It is to be noted that only specific

code fragments in the condition are shown, the two ‘don’t

care’ code fragments occurring in the condition are not shown

to save space. These code fragments in the 4-bits even-parity

problem (i.e. 4EP) are using a code fragment from the 3EP (i.e.

Level 2), namely L2 4 that is further using a code fragment

from the 2EP (i.e. Level 1), namely L1 7.

Fig. 18. A classifier rule from the final rule base obtained for a typical run
of the 4-bits even-parity problem.

The first code fragment ‘D3 ∼’ in the classifier rule shown

in Fig. 18 is just negation of D3, therefore, D3 must be 0 in

the environmental instance to be matched by this classifier.

The second code fragment ‘L2 4’ = ‘D2 L1 7 | ∼’ = ‘D2

D1 D0 | D1 D0 d & | ∼’ uses three environmental features,

i.e. D0, D1, and D2. The code fragment ‘L1 7’ is equivalent

to ‘D1 XOR D0’ that outputs 1 if and only if D0 and D1 have

different values, so the code fragment ‘L2 4’ will output 1 if

and only if D2 = 0 and D0 = D1, as shown in Table X. The

ability to consider the features’ property, such as D0 = D1,

is not expressible in the ternary alphabet based representation.

TABLE X
TRUTH TABLE FOR THE CODE FRAGMENT ‘L2 4’, WHERE L2 4 IS ‘D2

L1 7 | ∼’ AND L1 7 IS ‘D1 D0 | D1 D0 d &’ = ‘D1 XOR D0’.

Sr. No. D0 D1 D2 L1 7 D2L1 7| D2L1 7|∼

1 0 0 0 0 0 1

2 0 0 1 0 1 0

3 0 1 0 1 1 0

4 0 1 1 1 1 0

5 1 0 0 1 1 0

6 1 0 1 1 1 0

7 1 1 0 0 0 1

8 1 1 1 0 1 0

Therefore, the classifier rule ‘D3∼ L2 4: 1’ will match all

the problem instances having features D0 = D1, D2 = 0, and

D3 = 0. This general classifier is equivalent to two specific

classifiers ‘0000 : 1’ and ‘1100 : 1’.

Consider another general and interesting classifier rule

‘D2D2&L1 4| D0D0∼| D2L1 7d : 0’, taken from the final

rule base of the 3-bits even-parity problem. In this classifier

rule ‘L1 4’ and ‘L1 7’ are the code fragments from the

2-bits even-parity problem given by ‘D0D0rD1D1&r’ and

‘D1D0|D1D0d&’ respectively. The code fragment ‘L1 4’ out-

puts 1 if and only if D0 is 1 and D1 is 0. To determine the sub-

set of environmental instances being matched by this rule, con-

sider the truth tables for the code fragments ‘D2D2&L1 4|’
and ‘D2L1 7d’ shown in Table XI and Table XII respectively.8

This rule will match against an environmental instance if the

output values for both code fragments ‘D2D2&L1 4|’ and

‘D2L1 7d’ are equal to 1. Therefore, the instances numbered

2, 5, and 8 in Table XI and Table XII constitute the matching

subset of environmental instances for this rule. So, this general

rule is equivalent to three specific rules: ‘001 : 0’, ‘100 : 0’,

and ‘111 : 0’.

TABLE XI
TRUTH TABLE FOR THE CODE FRAGMENT ‘D2 D2 & L1 4 |’, WHERE

‘L1 4’ OUTPUTS 1 IF AND ONLY IF D0 IS 1 AND D1 IS 0.

Sr. No. D0 D1 D2 D2D2& L1 4 D2D2&L1 4|
1 0 0 0 0 0 0

2 0 0 1 1 0 1

3 0 1 0 0 0 0

4 0 1 1 1 0 1

5 1 0 0 0 1 1

6 1 0 1 1 1 1

7 1 1 0 0 0 0

8 1 1 1 1 0 1

B. Messy Code-Fragment Conditions

In XCSCFC, there is no linking between the position of a

condition bit in a classifier rule and the corresponding feature

in the environmental input state. Therefore, it is not necessary

to use the same number of code fragments in a classifier’s

condition as the number of problem features. For example,

8It is to be noted that the code fragment ‘D0D0∼|’ in the classifier being
analyzed here is the ‘don’t care’ code fragment.
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TABLE XII
TRUTH TABLE FOR THE CODE FRAGMENT ‘D2 L1 7 d’, WHERE ‘L1 7’

OUTPUTS 1 IF AND ONLY IF D0 AND D1 HAVE DIFFERENT VALUES.

Sr. No. D0 D1 D2 L1 7 D2L1 7d

1 0 0 0 0 1

2 0 0 1 0 1

3 0 1 0 1 1

4 0 1 1 1 0

5 1 0 0 1 1

6 1 0 1 1 0

7 1 1 0 0 1

8 1 1 1 0 1

different numbers of code fragments can be used to learn the

6-bits multiplexer problem as shown in Fig. 19.

Fig. 19. The performance of XCSCFC, using different number of code
fragments in the condition of a classifier rule, for the 6-bits multiplexer
problem (curve order same as in legend).

It is observed that the 6-bits multiplexer problem can be

solved using different numbers of code fragments in a classi-

fier’s condition, but to solve it effectively a minimum of three

code fragments should be used. If more than the minimum

required code fragments are used, then the performance is

found to be robust for the 6-bits multiplexer problem. The

minimum number of code fragments needed in any problem

in a domain is not optimized currently.

VII. CONCLUSIONS

Building blocks of knowledge were successfully extracted

from small-scale problems and reused to learn more complex,

large-scale problems in the domain. For example, in the

135-bits multiplexer problem, where the number of possible

instances is 2135 ≈ 4 × 1040, XCSCFC takes only 2 × 106

instances (i.e. sampling only one in 1034 instances) to suc-

cessfully solve the problem.

The XCSCFC system, using a GP-like rich encoding

scheme, has shown the generalization ability in the even-parity

domain problems that is not expressible using the standard

ternary alphabet-based representation.

The XCSCFC system is currently tested for only Boolean

problems. It will be adapted to other problem domains such

as symbolic regression, using interval based conditions in the

classifier rules and appropriate operators in the function set.

The current implementation of XCSCFC uses static code

fragments, extracted from smaller problems to generate code

fragments in the higher level problems in the domain. A mech-

anism is needed to introduce plausibly better code fragments

as training progresses, without disrupting existing classifiers.

XCSCFC readily solves problems of a scale that existing

classifier system and genetic programming approaches cannot,

e.g. the 135-bits MUX problem. However, the results obtained

cannot be proved to be general due to the messy rule-based

nature of the LCS approach. In the future, domain level knowl-

edge will be extracted, instead of problem level knowledge, in

the form of abstracted patterns, and reused in the function set

rather than just as the terminal set at present. It is anticipated

that using the extracted domain level knowledge from multiple

problem domains will result in a general scalable classifier

system.
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