
Evolutionary Neural Architecture Search
for Remaining Useful Life Prediction

Hyunho Moa,b, Leonardo Lucio Custodea, Giovanni Iaccaa,∗

aDepartment of Information Engineering and Computer Science
University of Trento

Via Sommarive 9, 38123 Trento, Italy
bBlueTensor Srl,

Via I Maggio 9, 38123 Trento, Italy

Abstract

With the advent of Industry 4.0, making accurate predictions of the remaining useful life (RUL)

of industrial components has become a crucial aspect in predictive maintenance (PdM). To this

aim, various Deep Neural Network (DNN) models have been proposed in the recent literature.

However, while the architectures of these models have a large impact on their performance, they

are usually determined empirically. To exclude the time-consuming process and the unnecessary

computational cost of manually engineering these models, we present a Neural Architecture Search

(NAS) technique based on an Evolutionary Algorithm (EA) applied to optimize the architecture of

a DNN used to predict the RUL. The EA explores the combinatorial parameter space of a multi-

head Convolutional Neural Network with Long Short Term Memory (CNN-LSTM) to search for

the best architecture. In particular, our method requires minimum computational resources by

making use of an early stopping policy and a history of the evaluated architectures. We dub the

proposed method ENAS-PdM. To our knowledge, this is the first work where an EA-based NAS

is used to optimize a CNN-LSTM architecture in the field of PdM. In our experiments, we use

the well-established Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset

from NASA. Compared to the current state-of-the-art, our method obtains better results in terms

of two different metrics, RMSE and Score, when aggregating across all the C-MAPSS sub-datasets.

Without aggregation, we achieve lower RMSE in 3 out of 4 sub-datasets. Our experimental results

verify that the proposed method is a reliable tool for obtaining state-of-the-art RUL predictions

∗Corresponding author
Email addresses: hyunho.mo@unitn.it (Hyunho Mo), leonardo.custode@unitn.it (Leonardo Lucio Custode),

giovanni.iacca@unitn.it (Giovanni Iacca)

Preprint submitted to Elsevier March 21, 2021

and as such it can have a strong impact in several industrial applications, especially those with

limited available computing power.

Keywords: Evolutionary Algorithm, Convolutional Neural Network, Long Short Term Memory,

Remaining Useful Life, C-MAPSS.

1. Introduction

Predictive Maintenance (PdM) is a new trend in research and industry to provide a benefit in

terms of performance and costs of downtime. This is achieved by making better maintenance deci-

sions based on predictions regarding the future state of physical assets. Lately, PdM has received

increased attention especially for preventing unexpected failures of machines to accomplish an effec-

tive automation of industrial practices. In Industry 4.0, the Prognostics and Health Management

(PHM) of industrial components is considered as a key concept for PdM [1], and Remaining Useful

Life (RUL) prediction has become a mainstream element of PHM.

This prediction can be achieved by observing degradation-based measures using multiple sensors

which monitor physical properties of the target machine[2]. In other words, an accurate RUL

prediction for PdM requires to analyze the degradation patterns in time series collected by the

sensor. Machine Learning (ML) has been used to recognize such patterns in the data. Recently,

many Deep Learning (DL)-based methods have been proposed to make accurate predictions via

end-to-end learning frameworks without complex feature engineering. Early work in this research

area employed Convolutional Neural Networks (CNNs) [3] to estimate the RUL of components.

Recurrent Neural Networks (RNNs) including Long Short Term Memory (LSTM) [4] have also

been used, to consider long term dependencies in sensor input sequences, rather than convolutional

features. More recently, a deep CNN (DCNN) [5] and an RNN-based deep architecture [6] has been

proposed to get more precise predictions. Moreover, their combination, such as in CNN-LSTM

[7, 8], proved to be promising.

Despite the promising performance of Deep Neural Networks (DNNs) in RUL prediction, these

techniques largely depend on various parameters. Even researchers who are knowledgeable in both

DL and PdM struggle to analyze how the parameter settings affect the performance of the available

models. Furthermore, the number of parameters of the available models has been increasing because

the most recent works in this field tend to employ deeper or more complex models to achieve better

results. This entails that exploring such large parameter spaces to improve performance has become

2

harder than ever. Therefore, relying on the knowledge of the experts, or empirically searching for

the best parameters by trial-and-error, may not be the most efficient approaches.

In this paper, we propose to use an Evolutionary Computation (EC)-based Neural Architecture

Search (NAS) method to explore a DNN parameter space and find the best model for RUL predic-

tion. Since multi-head CNN-LSTM models [9] have shown advantages in RUL prediction, we use

the high-level structure of this DNN to determine the search space explored by the Evolutionary

Algorithm, and apply NAS on this search space specifically for PdM purposes. In the following, we

refer to the proposed method as ENAS-PdM.

The main contributions of this work are as follows. We introduce a way of applying EC-based

NAS on top of the high-level structure of a multi-head CNN-LSTM. We then develop the best

architecture as a RUL predictors for PdM purposes. Our study highlights that a solution obtained

on a specific sub-dataset by ENAS-PdM can be generalized to other sub-datasets. In other words,

the optimized architecture performs well on all the sub-datasets. In addition, the computational

cost of the evolutionary search is reduced by implementing specific techniques, so that the proposed

method is suitable for industrial applications which may have limited access to large computational

resources. Finally, the best architecture discovered by ENAS-PdM improves the accuracy of the

RUL prediction compared to the state-of-the-art methods.

The rest of paper is structured as follows. Section 2 introduces related works in the field of NAS.

In Section 3, the background concepts along with the multi-head CNN-LSTM model are introduced.

The details of the ENAS-PdM algorithm are presented in Section 4. Then, Section 5 discusses the

details of our experimental setup and Section 6 discusses the results of our experimentation. Finally,

we provide our conclusions in Section 7.

2. Related work

The field of NAS has seen an incredible development in recent years. [10, 11, 12] make a

summary (from different perspectives) of the state-of-the-art in the NAS field. One common aspect

highlighted in the existing literature is that most NAS approaches are very specific to the model at

hand, and focus on computer vision tasks. On the other hand, as highlighted in [10], it would be

very important to apply and test NAS outside the computer vision domain to assess its capabilities

outside fields where significant human effort has been put in engineering optimized architectures.

Some common approaches to the NAS problem are described below.

3

Bayesian approaches make use of Bayesian Optimization (BO) to optimize the structure of

DNNs. In [13] the authors introduce a new kernel that captures the relevant parameters. Kan-

dasamy et al., in [14], introduce a distance metric that can be computed efficiently. In [15], the

authors introduce a neural network kernel to perform optimization on neural networks. Other works

[16, 17] focus on reducing the computational budget needed to perform Bayesian NAS. In [18], BO

is used to optimize jointly both the DNN architecture and its hyper-parameters.

Reinforcement Learning (RL) approaches cast the NAS problem into a RL one. The approaches

presented in [19, 20] tackle the NAS problem by using Q-learning. In [21], the authors speed up the

search process described in [19] by predicting the performance using a predictor. In [22] the authors

use a RNN to produce NN architectures. Cai et al. [23] use a similar approach but improving its

efficiency. In [24], the authors allow for intra-layer modifications to further improve the efficiency

of the process. In [25], the authors use an RNN to produce a convolutional cell. Pham et al. [26]

aim to increase the velocity of the search process by making all the neural networks share their

parameters. In [27], RL is used to reduce the size of a NN while keeping satisfactory performance.

Gradient-based techniques perform NAS by creating a differentiable version of the NAS problem

and optimizing the parameters via gradient descent. In [28, 29], the authors make use of a NN to

predict the validation accuracy of other NNs. In [30], graph hyper-networks are used to considerably

reduce the NAS runtime. In [31] the authors perform a continuous relaxation of the NAS problem

that, by using backpropagation, “chooses” only the relevant parts of the starting NN. Xu et al.,

in [32], extend [31] to reduce the redundancy in the search space, thus increasing the efficiency of

the process. Xie et al. [33] cast the problem as the continuous optimization problem of a basic

cell. In [34], the authors propose an efficient approach to NAS by reducing the memory footprint.

Cai et al. [35] present an approach to NAS that aims to reduce both memory consumption and

training time. In [36], the authors propose a search method that allows to search also for the depth

of the architecture. Chang et al. [37] propose an approach that allows to convert binary flags

to probabilities and vice-versa, so that the architecture can be optimized via back-propagation.

In [38], the authors address the problem of the generalization in DARTS-like approaches [31] by

dividing the problem into sub-problems. In [39], a continual-learning approach is proposed to avoid

catastrophic forgetting in NAS. Other works conduct NAS by using simpler approaches, such as

hill-climbing [40] or random search [41].

Finally, among the most widely-known NAS approaches, there is Evolutionary Computation.

4

The application of EC approaches to NNs is termed neuroevolution. Neuroevolution refers to the

optimization, by using EC approaches, of the architecture and weights of a NN. NAS can be

considered as a special case of neuroevolution where only the architecture is optimized by using

EC approaches. A considerable number of approaches to evolutionary NAS have been proposed.

In [42, 43], the authors use a mutation-only Genetic Algorithm (GA), using the DNNs as both

genotype and phenotype. In [44, 45], special-purpose representations for DNNs are introduced. In

[46], the NASNet encoding [25] is employed for evolutionary NAS. A similar attempt, although

with limited computational resources, was done in [47]. A co-evolutionary approach to NAS has

been recently introduced in [48]. In [49, 50, 51], the authors propose custom encodings to evolve

“simple” (i.e., with single-input single-output layers) CNNs. In [52], the author introduces a GA

that evolves cascades of convolutional filters for classification. In [53], the authors use a GA to tune

the parameters of a machine learning model based on Boosted smoothing spline.

Other works have used Genetic Programming (GP) [54] to perform NAS. For instance, the

approaches presented in [55, 56] use Strongly Typed GP [57] to evolve CNNs that perform either

feature extraction or classification. In [58, 59, 60], the authors use Cartesian GP [61] to encode and

evolve DNNs. The approaches proposed in [62], instead, make use of Grammatical Evolution [63]

to evolve DNNs. In [64], GP is used to design CNNs to perform image saliency fusion.

As a final remark, as shown in [10, 11, 12], it is worth to note that evolutionary approaches to

NAS yield NNs that have a good trade-off between performance and size.

3. Background

We present now the background concepts on CNN and LSTM (section 3.1), followed by the

details of the multi-head CNN-LSTM architecture that is at the basis of this work (section 3.2).

3.1. CNN-LSTM

The idea of CNN used today were first established and applied by LeCun et al. [65], who pre-

sented a CNN and applied it to the classification task of two-dimensional (2D) images of handwritten

digits. However, CNN models can be used also to analyze patterns in one-dimensional (1D) time

series, as those ones available for RUL prediction purposes. Accordingly, we first describe 2D-CNN

for extracting features from 2D image, then introduce the 1D-CNN employed in our study.

With reference to Figure 1, the first characteristic of a CNN is to use a kernel (i.e., a convolution

matrix) to get the kernel response of the local receptive field. The latter is the part of the input on

5

(a) (b)

Figure 1. Illustration of the convolution operation for: (a) 2D-CNN; (b) 1D-CNN.

which the kernel is applied, and its response to the kernel is also called feature map. Figure 1 (a)

visualizes the convolution operation of a 2D-CNN on an image. In the figure, an image I lies on a

2D plain, and a kernel K slides across the x and y axes. With a kernel size of (2a+ 1)× (2b+ 1),

the feature map S is defined by:

S(x, y) = (I ∗K)(x, y) =

a∑
s=−a

b∑
r=−b

I(x− s, y − r)K(s, r) (1)

where ∗ denotes the convolution operation, and a and b are positive integers, such that the kernel

has a fixed size (odd numbers).

In the 1D case, the same operation can be applied by simply ignoring the y axis. In Figure 1 (b),

a 1D kernel K slides over a time series T . The algebraic expression of the convolution operation

along t can then be written as:

S(t) = (T ∗K)(t) =

a∑
s=−a

T (t− s)K(s). (2)

Instead of using fixed values for the kernel, the elements of the kernel (the so-called weights) can be

learned. For instance, the kernel shown in Figure 1 (a) consists of (2a+1)× (2b+1) weights. When

the output of the convolution defined by Eq. (1) or Eq. (2) is fed into a neuron in the following

layer, the same weights w and bias b are used for all neurons. This second characteristic of CNNs

is called weight sharing. Eventually, during the feedforward computation of a CNN the output at

6

the spatial position (x, y) is defined by:

σ

(∑
s

∑
r

Ix−s,y−r · ws,r + b

)
(3)

where σ(·) denotes the sigmoid activation function. For the time series described in Figure 1 (b),

the feedforward output obtained from the measurement at time t can be computed as:

σ

(∑
s

Tt−s · ws + b

)
. (4)

Figure 2. Scheme of an LSTM cell.

The second element of the DNN model we use in this work is the LSTM. As we will show later,

we employ the LSTM to consider long term dependencies between concatenated features extracted

by preceding CNNs. In fact, this is not possible with traditional RNNs, which suffer from an

exponentially decaying gradient when those networks are trained with backpropagation through

time. Because of this vanishing gradient problem, RNNs cannot keep track of long dependencies.

On the other hand, LSTM networks are able to keep long term dependencies between inputs in

memory. This is made possible by the use of LSTM cells. Each LSTM cell, illustrated in Figure

2, can handle information by using a cell state, Ct, controlled by three gates: forget ft, input it,

and output ot. More specifically, the LSTM cell works as follows. In the following, we denote

with ht and xt the hidden state and the input observation respectively; the weight matrix and bias

7

vector are denoted byW and b respectively (with a different subscript, depending on the gate); σ(·)

denotes again the sigmoid activation function. Firstly, the forget gate decides what information

will be removed from the cell state. This decision is made based on the concatenation (indicated

with [·, ·]) of the previous hidden state, ht−1, and the current input observation, xt:

ft = σ(Wf · [ht−1, xt] + bf). (5)

Similarly, the input gate decides to add information based on the concatenation of ht−1 and xt:

it = σ(Wi · [ht−1, xt] + bi) (6)

A new candidate value C̃t is then computed based on ht−1 and xt, using the tanh activation function:

C̃t = tanh(Wc · [ht−1, xt] + bc). (7)

Then, the LSTM cell updates its internal state, Ct, based on ft, it and C̃t, as follows:

Ct = ft ⊗ Ct−1 + it ⊗ C̃t (8)

where ⊗ indicates the element-wise multiplication operator. The motivation of using the tanh

function is to normalize the cell state value in [−1, 1], without the vanishing gradient problem. As

shown in Eq. (5) and (6), the values of ft and it range in [0, 1], as a result of the sigmoid activation.

Therefore, the first term of the addition in Eq. (8) determines how much information should be

removed from Ct−1 in Ct. In other words, the previous cell state Ct−1 is completely “forgotten”

when ft = 1, while Ct−1 is preserved without forgetting when ft = 1. Similarly, the second term

of the addition determines how much information calculated by Eq. (7) should be included in the

current cell state Ct, based on the input gate value it.

Lastly, similarly to Eq. (5) and (6), the output of the LSTM cell is determined by the output

gate, ot, as:

ot = σ(Wo · [ht−1, xt] + bo) (9)

and eventually the hidden state of the LSTM cell, ht, is updated based on Eq. (9) and (8) as

follows:

ht = ot ⊗ tanh(Ct). (10)

where the value of the output gate, which ranges in [0, 1] because of the sigmoid activation function,

is multiplied by the tanh activation to normalize the hidden state value in [−1, 1].

8

Figure 3. The multi-head CNN-LSTM architecture.

3.2. Multi-head CNN-LSTM

In general, RUL prediction consists in developing a regression model for sensor data in multi-

sensor environments. In this work, the time series data from sensor measurements indicate the

state of the physical properties, such as temperature and pressure, of some target components

monitored by sensors. In industrial applications, it is usually required to process each times series

independently, because each sensor measures different properties.

As discussed in Section 1, DL-based models have been widely used to make accurate RUL

predictions, and the combination of CNN and RNN have shown promising results. However, most

of them do not discriminate the sensor readings from different sensors, because the high-level

structure of those models is inspired by their application in other domains such as human activity

recognition [66] or speech recognition [67]. To overcome this limitation, here we employ fully

independent convolutional “heads”, followed by a RNN. This architecture was proposed by Canizo

et al. and dubbed as a multi-head CNN-RNN [9]. The key characteristic of the multi-head structure

is that each head does not share its parameters with other heads, so that each convolutional layer

has its own specialized filter to extract appropriate features. All the extracted features from all

the heads are then concatenated before proceeding to the recurrent layers. Therefore, the layers

following the CNNs remember the features of the past sequences and realize the temporal patterns

9

throughout them.

As observed in [9], the multi-head CNN model is superior to a single multi-channel CNN con-

sisting of multi-channel inputs and a single feature map applied to multiple time series. In fact,

whereas the former keeps separate and independent extracted features for each time series, the latter

mixes them all together into a single feature map and therefore loses the specialized features of each

time series. The experiments in [9] proved that when this multi-head architecture is combined with

a RNN, the resulting multi-head CNN-RNN provides better results compared to a multi-channel

CNN-RNN. This shows that the independent feature maps used in the multi-head architecture are

advantageous for extracting information from multiple time series.

As for the RNN part of the model, a variety of network types can be used for this purpose. In

[9], the authors evaluated the results of five different types of recurrent layers in a multi-head CNN-

RNN architecture. Based on their experimental results, here we use LSTM layers because they

were shown to outperform other kinds of RNN when combined with the multi-head architecture.

Figure 3 shows the baseline multi-head CNN-LSTM architecture that we consider in this work.

The figure shows that the parallel branches of the convolutional layers, the heads, are followed by

LSTM layers. The convolutional heads are collectively called as a multi-head CNN. Each convolu-

tional head is responsible for extracting 1D convolutional features from the time series of a specific

sensor, which are then concatenated and fed to the LSTM layers. Lastly, the predicted RUL is ob-

tained by the following fully connected layer with linear activation. To train the regression model,

we consider as the loss function l(·) the Mean Squared Error (MSE) between the output of the

model and the ground truth:

l(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)2 (11)

where y indicates the ground truth (the actual RUL), ŷ represents the predicted RUL, i.e., the

output of the model, and n denotes the number of samples per batch of computation. For full-

batch learning, n is the size of the whole set of training samples. Otherwise, the mean squared error

can be calculated over a mini batch of n samples, with n smaller than the size of the training set.

One important aspect of the multi-head CNN-LSTM architecture is that it can be easily adapted

to any multi-sensor environment with different kind of sensors. In our previous work [7], we have

found in fact that the architectural replication of a convolutional head enables to use additional

inputs and improve the RUL prediction without manipulating other hyper-parameters. Hence, even

10

if different industrial applications might require to use a different number of sensors, one possibility

could be to discover a well-performing architecture under a certain environment, and then reuse the

optimized model in other environments without completely redesigning it, but simply by adding

other convolutional heads (one for each additional sensor) on top of the discovered architecture.

On the other hand, as we will see in the next Section the performance of the multi-head CNN-

LSTM architecture depends on various architecture parameters. Therefore, this kind of architecture

represents a particularly interesting opportunity for applying NAS to PdM, and possibly also other

kinds of industrial applications.

4. Evolutionary Neural Architecture Search for Predictive Maintenance (ENAS-PdM)

Since the CNN-LSTM architecture described above uses a serial combination of CNN heads

and LSTM layers, the features extracted by the CNN heads affect the training of the following

LSTM layers. Analyzing the relationship between the hyper-parameters of the CNN heads and

those of the LSTM layers is thus especially difficult. Because of these relationships, and due to the

size of the parameter space, manual engineering this kind of architecture is far from being trivial.

In addition, this architecture uses a sliding window to process the input sequences, which makes

trial-and-error architecture design even harder. This is because the performance of the model relies

on the configuration of the sliding window size as well as the parameters of the CNN and LSTM

parts.

Figure 4 illustrates how one head of the multi-head CNN processes the time series until the

convolutional features are extracted. In this work, we refer to the fixed number of data points

within the time series as a sequence. Each sequence is an input instance for one convolutional

head and its length is denoted by ls. For each sequence, a sliding window is then applied to slice

the sequence into fixed-length segments. If a sliding window of length lw runs over a sequence of

length ls, then the number of segments, k, is determined by k = ls−lw
stride +1. Then, 1D convolutional

filters are applied to each input in the convolutional layer. The number and length of the filters

are denoted by m and lf respectively. The convolutional layer is followed by batch normalization

and activation layer, and these three layers are stacked C times. Therefore, the total number of

filters in one head is k ·m ·C. The total number of parameters (i.e., the weights excluding the bias)

to be trained in the multi-head CNN is then given by p = lf · k ·m · C · n, where n denotes the

number of heads. Eventually, each convolutional head provides as output k convolutional features.

11

Figure 4. Framework of the multi-head CNN.

As shown in Figure 3, the extracted features of each k-th segment in each of the n heads are then

concatenated. Before the convolutions, we add zeros at the beginning and end of the segment, and

set the stride of the filter to one, so that each filter returns the extracted feature of length lw equal

to the length of the segment. With reference to Figure 3, fw1 , fw2 , . . . fwk
denote the concatenated

features, each of them of length determined by: lc = lw ·m · n.

12

The following stacked LSTM layers then process the sequence of those concatenated features.

The LSTM layers handle long term dependencies between the k concatenated features to make a

prediction based on the past information. The number of hidden units in the LSTM is a hyper-

parameter that affects the ability to keep track of these long term dependencies. To consider

different levels of abstraction, we use two stacked LSTM layers with L1 ·nlstm and L2 ·nlstm hidden

units respectively, where nlstm is a fixed multiplicand.

As described above, the parameters of the sliding window, CNN and LSTM are related to each

other. More specifically, the window length lw determines the number of segments k, which is

also the span of the data for the LSTM. The feature length lw also affects the decision of the

hyper-parameters of the CNN, because different numbers and lengths of convolutional filters are

required to extract proper features according to the input size. Overall, the parameters of the CNN

and LSTM eventually affect the performance of the model in a complex way. However, examining

manually a large number of possible architectures in order to obtain a meaningful empirical evidence

on the parameter effect, or trying to model the complex dependencies between these parameters, is

difficult and time-consuming. In this context, we propose the ENAS-PdM algorithm to overcome

these limitations.

4.1. Individual encoding

Given the baseline structure of the model proposed above, our goal is to find optimized that

are able to make better RUL predictions. To do that, we consider the optimization of the following

architecture parameters:

• lw, length of sliding window;

• lf , length of convolutional filters;

• m, number of convolutional filters;

• C, number of convolutional layers;

• L1, multiplier of hidden units number (1st LSTM layer);

• L2, multiplier of hidden units number (2nd LSTM layer).

In preliminary experiments, we observed that the best architectures are found with lw = lf . There-

fore, we fix this constraint such that the number of architecture parameters to be optimized is

13

reduced to 5. As for L1 and L2, the empirical evidence collected in our previous work [7] tells us

that underfitting occurs when the number of LSTM hidden units is less than 80, while the archi-

tectures with more than 400 hidden units are prone to overfitting. Because the range from 80 to

400 for the two LSTM layers is too large to be explored, we divide it by 20 to decrease the number

of possible genotype representations from the above range. The multiplier is then assigned to the

genotype, and the multiplicand, 20, is used to translate the genotype to phenotype. The bounds for

the other parameters are also set based on our previous knowledge. The lower and upper bounds

for each parameter considered in our experiments are shown in Table 1.

Table 1. Bounds of the parameters optimized by ENAS-PdM.

Parameter Min Max

lw 1 5
m 1 10
C 1 2
L1 4 20
L2 4 15

From an evolutionary NAS perspective, in our case the genotype is then a list of integers within

the bounds specified in Table 1. The phenotype is the resulting architecture. When translating

genotypes to phenotypes, we apply a correction mechanism on L2, to make sure that it is equal or

smaller than L1. This is because in our model we stack the layers to get hierarchical features: the

second layer is in fact used to derive high level abstraction from the feature representation of the

first layer. If L2 is greater than L1, this hierarchical feature abstraction is not possible, making

the model prone to overfitting. It this happens, we correct L2 according to the following saturation

scheme:

L2 =

L2, L2 < L1

L1, L2 ≥ L1

4.2. Proposed algorithm

The pseudo-code of the proposed ENAS-PdM algorithm is shown in Algorithm 1. In the follow-

ing we describe the details of each element indicated in the pseudo-code.

14

Algorithm 1 Pseudo-code of the proposed ENAS-PdM algorithm.
1: function Evolution(a, b)
2: pop← initialize_pop()
3: evaluated← Set() . Evaluated individuals
4: for (gen = 0; gen < generations; gen+ = 1) do
5: evaluate_fitness(evaluated, pop)
6: new_pop← select(pop)
7: new_pop← crossover(new_pop)
8: new_pop← mutation(new_pop)
9: pop← check_parents(pop, new_pop)
10: end for
11:
12: return best(pop)
13: end function
14:
15: procedure evaluate_fitness(evaluated, pop)
16: for ind ∈ pop do
17: if ind 6∈ evaluated then
18: ind.fitness← fitness(ind)
19: evaluated.add(ind)
20: else
21: ind.fitness← evaluated.get(ind).fitness
22: end if
23: end for
24: end procedure

4.2.1. Initialization

We initialize the population by generating npop−1 individuals at random. In our experiments, we

set npop to 50. The remaining individual is initialized by taking the parameters of the architecture

proposed in [7], i.e., we use the so-called super-fit mechanism [68] in order to start the evolutionary

process with a good individual in the initial population. This initialization strategy is implemented

in the initialize_pop() function that is used in line 5 of Algorithm 1.

4.2.2. Fitness evaluation

The fitness of an individual is computed by constructing the phenotype (a multi-head CNN-

LSTM architecture) associated to the given genotype (a vector containing the architecture’s pa-

rameters) and evaluating it (see Section 5.2 for details). To reduce the computational costs of the

evolutionary search, we implement a history mechanism in order to avoid the redundant computa-

tion of the fitness of individuals previously evaluated. The pseudo-code of this function is shown in

line 15 of Algorithm 1.

4.2.3. Genetic operators

In order to have a good trade-off between exploration and exploitation, we use both crossover

and mutation. Each operator is applied independently with a probability of pcx = pmut = 0.5. The

probabilities have been chosen such that, usually, individuals are produced by either mutation or

15

crossover (exclusively). This allows us to avoid disruptive combinations of mutation and crossover

that could lead to bad individuals.

As for crossover (line 7 of Algorithm 1), we use a specialized one-point crossover that first ranks

the individuals by their fitness (line 6), and then mates, according to the crossover probability, the

individual in the (2i)-th position with the one in the (2i + 1)-th position, with i ∈ [0,
npop

2 − 1].

This means that crossover can occur between the best individual and the second best (0-th position

and 1st position, respectively), the third best and the fourth best (2nd position and 3rd position,

respectively) and so on. This operator allows us to exploit the best individuals, trying to combine

them in even better individuals, and to explore, by combining bad solutions which can lead to

regions of the state space that are far from the region in which the current best individuals lie.

We then apply uniform mutation on the population (containing the offspring generated by

crossover and individuals that did not undergo crossover), in which each gene (i.e., one of the archi-

tecture parameters), according to a probability pgene, can be mutated to another value uniformly

drawn from its bounds (line 8 of Algorithm 1). The pgene parameter has been set to 0.3, so that

the expected number of mutations is set between 1 and 2. The rationale behind this choice is the

following: we need more than one expected mutated gene, to have individuals that are different

from their parents (in case they are produced only by means of mutation). Moreover, mutating

one gene at a time may lead to a slow search process, which should be avoided since the fitness

evaluation phase is quite computationally heavy. For this reason, we set pgene such that, on average,

we have 1.5 mutated genes (out of 5) per individual (E[
5∑

i=1

rand() < pgene] = 1.5). This allows us

to have a relatively faster search process while avoiding disruptive mutations in the individuals.

When creating the population for the next generation, we check the fitness of the parents for

each offspring. If the offspring has better fitness than one of its parents, we replace the worst parent

with it. This way, we ensure that the mean fitness of the population is monotonically decreasing

(i.e., we use implicit elitism). This mechanism is implemented in the check_parents() function (line

9 of Algorithm 1).

4.2.4. Stop criterion

We use a stop criterion on the number of generations, in our experiments set to 50. When this

criterion is met, the algorithm returns the best individual, according to the specific fitness, found

during the evolutionary process.

16

5. Experimental setup

In the following, we present the details of our experimentation: the C-MAPSS benchmark

dataset (section 5.1), the evaluation metrics used as fitness for the NAS process (section 5.2), the

details of the training process (section 5.3), and the computational setup with some considerations

on reproducibility (section 5.4).

5.1. C-MAPSS benchmark dataset

In our experiments, we use the Commercial Modular Aero-Propulsion System Simulation (C-

MAPSS) [69] as the benchmark dataset. The C-MAPSS contains the simulation of various NASA

turbofan engine degradation, and it is one of the most widely used dataset in RUL prediction

research. This allows us to validate our proposed method in comparison with the state-of-the-art

algorithms from the literature. As described in Table 2, the dataset includes four sub-datasets,

FD001, FD002, FD003 and FD004, according to different simulation settings.

While the training set of each sub-dataset consists of run-to-failure histories of different engines,

the simulation of each test engine is terminated before its failure because the RUL of each engine

in the test set is required to be predicted for reporting the final results. The data of each engine

consists of 21 multi-variate time series collected from multi-sensor environment. Among them, 7

time series that do not show changes over time are discarded, thus we use only 14 time series as

inputs. All the sensor readings and the RUL prediction are updated at the same frequency. In the

next, we refer to a time unit of both the RUL prediction and sensor measurements as cycle.

Table 2. C-MAPSS dataset overview [7].

Sub-dataset FD001 FD002 FD003 FD004

Number of engines in training set 100 260 100 249
Number of engines in test set 100 259 100 248
Max/min cycles in training set 362/128 378/128 525/145 543/128
Max/min cycles in test set 303/31 367/21 475/38 486/19

Operating conditions 1 6 1 6
Fault modes 1 1 2 2

Based on [70], we apply a piece-wise linear function to the target RUL. This set the all the

target RUL greater than 125 to 125. Then, the target RUL linearly decrease over cycles. For most

engines, the target RUL does not decrease at the very beginning of the time series, because the

17

degradation of the engine starts after a number of operations. This approach is commonly used in

the recent literature [5, 6, 7].

Lastly, the minimum cycles in the test set listed in the Table 2 indicate the minimum cycles

among all engines in each sub-dataset, a value related to the sequence length ls introduced before.

More specifically, for each sub-dataset ls must be smaller than the minimum cycles, so that the

determined architecture with input length ls can be used for all the engines in the test set. Hence,

we set the ls as 31, 21, 38 and 19 respectively for FD001, FD002, FD003 and FD004.

5.2. Evaluation metrics

The goal of our work is to search for the CNN-LSTM architecture that can predict the RUL most

accurately. To evaluate such a model, we use two evaluation metrics based on the error between the

predicted and target RUL, which is defined by di = RULpredicted
i − RULtarget

i , where di denotes

the difference between two RUL values of the i-th instance.

The first metric is Root-Mean-Square Error (RMSE), which is given by:

RMSE =

√√√√ 1

N

N∑
i=1

d2i (12)

where N is the total number of test samples fed into the model during the test. The other metric is

the so-called Score function [69]. This metric was proposed to differentiate between early and late

predictions, and it is computed as follows:

Score =

N∑
i=1

SFi, SF =

e
− di

13 − 1, di < 0

e
di
10 − 1, di ≥ 0

(13)

i.e., it assigns a larger Score value to late predictions w.r.t. early ones, based on the intuition that

late predictions are usually disadvantageous in terms of preventing failures.

These two metrics are used to evaluate the performance of the trained model, therefore we

employ both of them for the fitness evaluation in ENAS-PdM. To search for the best architecture

by using only the data in the original C-MAPSS training set, we divide the training set into two

sets, respectively for training and validation. More specifically, 90% of the engines in the original

training set are used to train the model constructed from each individual genotype. The remaining

10% of the engines are used to evaluate either validation RMSE or Score. Thus, 10, 26, 10 and 25

engines are separated from the original training set as the validation set for evaluating the fitness.

18

5.3. Training details

The architectures based on the individuals generated during the evolutionary process are trained

at the fitness evaluation stage of ENAS-PdM. During the training process, we conduct a supervised

learning with labeled training samples. For training the model to predict the RUL, we employ the

MSE, see Eq. (11), as the loss function. The weights of the model are then optimized to minimize

the loss using RMSprop algorithm. Based on the empirical evidences from our previous work [7],

we set the batch size of gradient descent to 400, and we limit the maximum number of training

epochs to 20.

In order to reduce the computing time, we introduce an early stopping mechanism in the op-

timizer based on learning rate decay. In detail, we drop the learning rate down to 10-4 after 10

epochs, and then we divide it again by 10 after 5 epochs. Figure 5 shows the effect of learning

rate decay: both figures show that the optimizer requires a certain amount of patience, 5 epochs in

the example, to ignore the sudden spikes in the validation. Otherwise, the training stops too early,

e.g., at epoch 4. In the Figure 5 (a), the training loss cannot converge because of overfitting, and

the validation RMSE keeps fluctuating for all the epochs. The model cannot stop training within

20 epochs, because it keeps finding lower validation RMSE values within the patience. This means

that the early stopping would not work well even if it was applied. On the other hand, when we

apply the learning rate decay, as depicted in Figure 5 (b), the validation RMSE reaches the lowest

value at epoch 14, and the training is early stopped at epoch 19. The training can be stopped

within the patience after the training loss has converged. Because we schedule the learning rate

properly, the validation RMSE does not fluctuate anymore and is flattened (or, it increases) after

overfitting starts.

5.4. Computational setup and reproducibility

All the experiments have been conducted on a workstation with Intel(R) Core i9-7940X CPU

and NVIDIA TITAN Xp GPU. The multi-head CNN-LSTM models are implemented in TensorFlow

2.3. The ENAS-PdM algorithm is implemented in Python, using the DEAP library [71]. The source

code of our implementation is publicly available on GitHub1.

An important aspect to highlight here is that, while most NAS tasks require large-scale com-

putational resources, the proposed ENAS-PdM algorithm can conduct the search effectively within

1https://github.com/mohyunho/ENAS-PdM

19

https://github.com/mohyunho/ENAS-PdM

1 3 5 7 9 11 13 15 17 19

Epochs

102

103

Training
loss
Validation
RMSE

2×101

3×101

4×101

(a)

1 3 5 7 9 11 13 15 17 19

Epochs

102

103

Training
loss
Validation
RMSE

2×101

3×101

4×101

(b)

Figure 5. The loss on the training data and RMSE on the validation data: (a) the optimizer without learning rate
decay; (b) the optimizer with learning rate decay.

a reasonable time (from 8 to 18 hours, depending on the sub-dataset) by the single GPU above.

The reason for this is twofold. Firstly, the history mechanism discussed in Section 4.2.2 allows

to evaluate a smaller number of individuals w.r.t. the size of the population in each generation,

by simply re-using, in case of duplicates, the fitness of the individuals evaluated in the previous

generations. Secondly, the early stopping policy introduced in Section 5.3, by avoiding overfitting,

enables to use a large initial learning rate of 10-3 that in turn allows to save a few training epochs

for each individual, and a considerable amount of time overall.

Another note regards reproducibility. In general, reproducible results should be guaranteed and

might even be needed in some industrial contexts. Nevertheless, some operations of the DNNs

implemented by the DL TensorFlow framework result in non-deterministic outputs when executed

on a GPU. This issue is caused by the non-deterministic order of the operations running in parallel

on the GPU, in addition to the limited-precision floats. To get reproducible results, we considered

using the determinism library that provides deterministic outputs by addressing the issues above.

However, we noted that the determinism library dramatically slows down the GPU computation.

Table 3 presents the lower and upper bounds of the training time on the largest sub-dataset,

20

FD004. For the smallest architecture, constructed from the lower bounds shown in Table 1, the

use of determinism does not affects too much the training time. However, it almost doubles the

training time of the largest architecture (constructed from the upper bounds). Because our goal

here is to search for the best architecture, we deemed not necessary to use determinism. Hence,

instead of enduring the slow down, we repeat the ENAS-PdM process without determinism three

times for each sub-dataset and fitness function, and compare its results across the different trials.

Table 3. Training time of the architectures on FD004.

Framework
Training time (s)

Smallest architecture in search space Largest architecture in search space

TensorFlow 75 183
TensorFlow + Determinism2 96 373

6. Experimental results

The first goal of our experiments is to test if an architecture optimized for one sub-dataset is

actually able to generalize to other sub-datasets. In other words, we verify if the model found by

ENAS-PdM on a certain sub-dataset also provides promising results on the others. Furthermore,

we verify if (and how) the choice of the fitness function between the two different metrics defined

above, validation RMSE and Score, affects the test results. Finally, we compare the performance of

the best architectures discovered by ENAS-PdM with that of the methods from the state-of-the-art.

To achieve the first goal, we test the architecture discovered by ENAS-PdM on all the sub-

datasets, regardless of which sub-dataset was used for the optimization conducted by ENAS-PdM.

Due to the non-deterministic GPU operations discussed in Section 5.4, we run ENAS-PdM three

times under exactly the same settings, to show the reliability of the optimization process. Further-

more, we run separate evolutionary processes using either the validation RMSE or Score as fitness

function. Altogether, we run ENAS-PdM six times, i.e., three trials for each of the two fitness func-

tions, for each sub-dataset. Eventually, we collect the best architectures discovered by ENAS-PdM

on the four sub-datasets at the end of the 24 total trials. Among them, the two architectures that

2https://github.com/NVIDIA/framework-determinism

21

https://github.com/NVIDIA/framework-determinism

Table 4. Results of the best architectures found by ENAS-PdM with validation RMSE on FD001.

EA specifications
Pop. × Gen. 50 × 50
Fitness Validation RMSE on FD001

Test specifications
Metrics RMSE Score
Sub-datasets FD001 FD002 FD003 FD004 Sum FD001 FD002 FD003 FD004 Sum

Test results

State-of-the-art [5], [6] 11.94 19.29 12.10 22.14 65.47 220 2250 251 2840 5561
A1 (ENAS-PdM trial-1) 11.48 17.47 12.48 20.59 62.02 240 2074 412 3592 6318
A2 (ENAS-PdM trial-2) 11.54 17.79 12.10 20.93 62.36 250 2260 234 3908 6652
A3 (ENAS-PdM trial-3) 11.71 17.55 12.88 20.38 62.52 254 1695 564 3395 5908

Table 5. Results of the best architectures found by ENAS-PdM with validation Score on FD001.

EA specifications
Pop. × Gen. 50 × 50
Fitness Validation Score on FD001

Test specifications
Metrics RMSE Score
Sub-datasets FD001 FD002 FD003 FD004 Sum FD001 FD002 FD003 FD004 Sum

Test results

State-of-the-art [5], [6] 11.94 19.29 12.10 22.14 65.47 220 2250 251 2840 5561
A4 (ENAS-PdM trial-1) 11.28 17.83 12.24 20.55 61.90 230 2556 325 3778 6889
A5 (ENAS-PdM trial-2) 11.70 17.68 13.81 20.48 63.67 242 2324 834 3883 7283
A6 (ENAS-PdM trial-3) 11.10 19.16 13.65 20.67 64.58 214 3013 910 3634 7771

Table 6. Results of the best architectures found by ENAS-PdM with validation RMSE on FD002.

EA specifications
Pop. × Gen. 50 × 50
Fitness Validation RMSE on FD002

Test specifications
Metrics RMSE Score
Sub-datasets FD001 FD002 FD003 FD004 Sum FD001 FD002 FD003 FD004 Sum

Test results

State-of-the-art [5], [6] 11.94 19.29 12.10 22.14 65.47 220 2250 251 2840 5561
A7 (ENAS-PdM trial-1) 12.01 17.76 13.24 19.73 62.74 263 5158 926 3004 9351
A8 (ENAS-PdM trial-2) 12.55 18.20 12.81 20.46 64.02 292 5740 425 4027 10484
A9 (ENAS-PdM trial-3) 12.57 18.48 11.68 21.40 64.13 302 7124 241 5163 12830

Table 7. Results of the best architectures found by ENAS-PdM with validation Score on FD002.

EA specifications
Pop. × Gen. 50 × 50
Fitness Validation Score on FD002

Test specifications
Metrics RMSE Score
Sub-datasets FD001 FD002 FD003 FD004 Sum FD001 FD002 FD003 FD004 Sum

Test results

State-of-the-art [5], [6] 11.94 19.29 12.10 22.14 65.47 220 2250 251 2840 5561
A10 (ENAS-PdM trial-1) 11.65 18.08 13.40 20.02 63.15 238 1946 998 4346 7528
A11 (ENAS-PdM trial-2) 11.56 17.67 12.98 20.19 62.40 247 1745 808 3051 5851
A12 (ENAS-PdM trial-3) 11.80 17.76 13.42 20.27 63.25 258 1683 929 3459 6329

22

Table 8. Results of the best architectures found by ENAS-PdM with validation RMSE on FD003.

EA specifications
Pop. × Gen. 50 × 50
Fitness Validation RMSE on FD003

Test specifications
Metrics RMSE Score
Sub-datasets FD001 FD002 FD003 FD004 Sum FD001 FD002 FD003 FD004 Sum

Test results

State-of-the-art [5], [6] 11.94 19.29 12.10 22.14 65.47 220 2250 251 2840 5561
A13 (ENAS-PdM trial-1) 12.16 17.83 12.82 20.53 63.34 280 1766 498 4062 6606
A14 (ENAS-PdM trial-2) 13.06 18.85 14.11 20.78 66.80 295 6610 1053 4085 12043
A15 (ENAS-PdM trial-3) 11.76 17.84 12.64 20.58 62.82 271 2641 408 3613 6933

Table 9. Results of the best architectures found by ENAS-PdM with validation Score on FD003.

EA specifications
Pop. × Gen. 50 × 50
Fitness Validation Score on FD003

Test specifications
Metrics RMSE Score
Sub-datasets FD001 FD002 FD003 FD004 Sum FD001 FD002 FD003 FD004 Sum

Test results

State-of-the-art [5], [6] 11.94 19.29 12.10 22.14 65.47 220 2250 251 2840 5561
A16 (ENAS-PdM trial-1) 12.40 19.25 12.87 21.30 65.82 262 2381 264 5504 8411
A17 (ENAS-PdM trial-2) 12.32 17.97 12.31 20.66 63.26 287 1759 290 4169 6505
A18 (ENAS-PdM trial-3) 11.49 18.91 13.74 20.44 64.58 234 2232 761 4316 7543

Table 10. Results of the best architectures found by ENAS-PdM with validation RMSE on FD004.

EA specifications
Pop. × Gen. 50 × 50
Fitness Validation RMSE on FD004

Test specifications
Metrics RMSE Score
Sub-datasets FD001 FD002 FD003 FD004 Sum FD001 FD002 FD003 FD004 Sum

Test results

State-of-the-art [5], [6] 11.94 19.29 12.10 22.14 65.47 220 2250 251 2840 5561
A19 (ENAS-PdM trial-1) 11.39 17.69 13.74 20.02 62.84 224 5170 1028 2897 9319
A20 (ENAS-PdM trial-2) 12.49 17.70 13.76 18.97 62.92 246 4052 834 2712 7844
A21 (ENAS-PdM trial-3) 11.39 17.69 13.74 20.02 62.84 224 5170 1028 2897 9319

Table 11. Results of the best architectures found by ENAS-PdM with validation Score on FD004.

EA specifications
Pop. × Gen. 50 × 50
Fitness Validation Score on FD004

Test specifications
Metrics RMSE Score
Sub-datasets FD001 FD002 FD003 FD004 Sum FD001 FD002 FD003 FD004 Sum

Test results

State-of-the-art [5], [6] 11.94 19.29 12.10 22.14 65.47 220 2250 251 2840 5561
A22 (ENAS-PdM trial-1) 11.32 17.93 13.73 19.73 62.71 210 5360 967 2391 8928
A23 (ENAS-PdM trial-2) 12.02 17.66 13.39 19.27 62.34 242 4369 930 2595 8136
A24 (ENAS-PdM trial-3) 11.05 18.06 13.32 22.26 64.69 193 1897 532 3920 6542

show the best test results in terms of either the sum of RMSE or the sum of Score are eventually

considered as the results of our proposed method and compared against the state-of-the-art.

23

Regarding the parametrization of the EA, as discussed earlier for all the experiments we set

both the population size and the number of generations to 50, which allows enough evaluations to

ensure the convergence of the fitness across generations. Using the same fixed values for all the

experiments also allows us to compare the results fairly by running each ENAS-PdM under the

same evolutionary process.

Table 4 provides the test results of the best architecture found by every independent trial of

ENAS-PdM on FD001 using the validation RMSE as fitness function. In the next, A denotes the

architecture derived in the independent trials, and its subscript numbering follows the order of the

trials in our experiments. For reference, the state-of-the-art results shown in the tables are taken

from two recent papers, [5] and [6]: more specifically, for each sub-dataset we combine the best

results from these two works, and include them into the tables to compare them with our results.

The last three rows in Table 4 show the results of the three trials of ENAS-PdM. Due to the non-

deterministic computing on the GPU, we indeed get three different architectures, denoted by A1,

A2 and A3. Although the architectures are different, their performance are close to each other, and

the test results are significantly better than the current state-of-the-art in terms of sum of RMSE.

On the other hand, their Score results are promising, but not as much as the RMSE, since they do

not provide a lower Score w.r.t. the current state-of-the-art sum of Score.

Since the state-of-the-art methods are not easily outperformed by ENAS-PdM when using the

validation RMSE as fitness function, we replicate the same experiments using the validation Score

as fitness function, instead of the validation RMSE. As shown in Table 5, however, the results show

that the optimization in terms of validation Score performs slightly worse than the one conducted on

the validation RMSE. This difference might be due to the fact that since the RMSE is a quadratic

function (thus unimodal), the fitness landscape is easier to minimize w.r.t. the landscape produced

by the Score function, which may contain local minima.

For each run of ENAS-PdM performed in this work, we report in the Appendix the related

boxplots of the fitness distribution across generations, using either RMSE or Score as the fitness.

For instance, Figure A.7 and A.10 result in A1 and A4 respectively. In both figures, we can see

that the populations adapt quite quickly to the problem. In fact, we can see that in both cases the

standard deviation of the fitness becomes small in the early generations, while in the last generations

the mean gets closer the best individual found. This suggests that the diversity of the individuals

may be low, indicating that the evolution has come to a stagnation phase.

24

Table 12. Average number of evaluations across trials.

FD001 FD002 FD003 FD004

Number of evaluations
(average across 3 trials) 869/2500 830/2500 837/2500 656/2500

Table 13. Specifications of the architectures discovered by ENAS-PdM and their comparison.

Architecture
Used
sub-dataset
for EA

Used
fitness
for EA

Phenotype
(lw, m, lf , C, L1 · 20, L2 · 20)

RMSE
(sum)

Score
(sum)

A1

FD001

Validation
RMSE

(2, 3, 2, 1, 400, 260) 62.02 6318
A2 (2, 3, 2, 1, 400, 240) 62.36 6652
A3 (2, 5, 2, 1, 300, 240) 62.52 5908

A4 Validation
Score

(2, 3, 2, 1, 340, 140) 61.90 6889
A5 (2, 3, 2, 1, 160, 140) 63.67 7283
A6 (2, 3, 2, 1, 220, 80) 64.85 7771

A7

FD002

Validation
RMSE

(1, 9, 1, 1, 160, 140) 62.74 9351
A8 (1, 8, 1, 1, 260, 260) 64.02 10484
A9 (1, 7, 1, 1, 320, 260) 64.13 12830

A10 Validation
Score

(2, 4, 2, 1, 400, 120) 63.15 7528
A11 (2, 5, 2, 1, 360, 260) 62.40 5851
A12 (2, 5, 2, 1, 320, 280) 63.25 6329

A13

FD003

Validation
RMSE

(2, 4, 2, 1, 260, 240) 63.34 6606
A14 (2, 3, 2, 2, 280, 240) 66.80 12043
A15 (2, 3, 2, 1, 360, 300) 62.82 6933

A16 Validation
Score

(1, 3, 1, 1, 200, 200) 65.82 8411
A17 (2, 4, 2, 1, 280, 280) 63.26 6505
A18 (1, 4, 1, 1, 260, 120) 64.58 7543

A19

FD004

Validation
RMSE

(2, 10, 2, 2, 100, 100) 62.84 9319
A20 (1, 9, 1, 2, 80, 80) 62.92 7844
A21 (2, 10, 2, 2, 100, 100) 62.84 9319

A22 Validation
Score

(2, 10, 2, 2, 160, 80) 62.71 8928
A23 (1, 7, 1, 2, 280, 80) 62.34 8136
A24 (2, 5, 2, 1, 340, 80) 64.69 6542

We conduct similar experiments also for FD002, FD003 and FD004. The results of these exper-

iments are reported in Table 6-11. Regardless of the sub-dataset used for the EA, we can achieve a

lower RMSE compared to the state-of-the-art, whereas we always get a higher value for the Score

metric. In addition, in each experiment at least one of the three discovered architectures always

largely outperforms the existing methods in terms of RMSE, except for FD003. Despite this one

exception, we observe successful results in the aggregated RMSE across all sub-datasets, due to the

significant improvement on 3 out of 4 sub-datasets. Moreover, the results obtained from the exper-

iments suggest that the proposed method can easily generalize from one sub-dataset to the others.

25

0 20 40 60 80 100
Test engine number

0

25

50

75

100

125

150
RU

L(
cy
cle

s)
Predicted RUL
Ground truth RUL

(a)

0 50 100 150 200 250
Test engine number

0

25

50

75

100

125

150

RU
L(
cy
cle

s)

Predicted RUL
Ground truth RUL

(b)

0 20 40 60 80 100
Test engine number

0

25

50

75

100

125

150

RU
L(
cy
cle

s)

Predicted RUL
Ground truth RUL

(c)

0 50 100 150 200 250
Test engine number

0

25

50

75

100

125

150

RU
L(
cy
cle

s)

Predicted RUL
Ground truth RUL

(d)

Figure 6. Predicted RUL of each engine in the last given cycle by the proposed method, A4: (a) FD001 dataset; (b)
FD002 dataset; (c) FD003 dataset; (d) FD004 dataset.

For instance, Table 10 proves that the best architectures for FD004 also show a good performance

on the other sub-datasets.

When we use the validation RMSE as fitness function, we also count the number of evaluations

across the trials, to measure the saved computational costs of ENAS-PdM. As it can be seen in

Table 12, while a total of 2500 individuals (50 individuals × 50 generations) should be evaluated

during the evolutionary search, we only compute less than 900 individuals on average, by saving

and reusing the fitness. Therefore, the number of fitness evaluations is less than 40% of the total

number of individuals appeared in the evolutionary process. Moreover, we can observe that our

approaches finds good solutions while evaluating less than 4.3% of the 20400 possible combinations

described in Table 1. While a search space of this size may seem small to justify the use of a NAS

approach, it should be noted that an exhaustive search would require up to 400 hours of computing

time, as opposed to a maximum of 18 hours for one trial of our proposed method.

Table 13 gives a comparison of all the architectures discovered by all the experiments above,

along with the phenotype corresponding to the configuration of each architecture. Among them,

26

A4 and A11 provide the best performance in terms of the sum of RMSE and Score respectively.

The detailed results of A4 are reported in Table 5, while the results of A11 are reported in Table 7.

The RUL predictions of A4 on the four sub-datasets are depicted in Fig. 6, to visualize the

results. The horizontal axis indicates the number of test engines listed in Table 2, while the vertical

axis represents the RUL. In each subfigure, the difference between the two graphs represents the

error on the RUL prediction.

Additionally, the best experimental results of our proposed method are compared to the results

of the best methods from the current state-of-the-art. Table 14 and 15 display the compared

methods and their results in terms of the test RMSE and Score respectively. The methods in the

tables are reported in chronological order, and they gradually provide better RMSE and Score over

year. To reflect the robustness of the methods across the sub-datasets, we also report the sum of

RMSE and Score across the C-MAPSS sub-datasets.

Table 14. RUL prediction comparison with state-of-the-art methods (sorted by year), in terms of RMSE.

Method RMSE
FD001 FD002 FD003 FD004 Sum

CNN, 2016 [3] 18.45 30.29 19.82 29.16 97.72
LSTM, 2017 [4] 16.14 24.49 16.18 28.17 84.98
BiLSTM, 2018 [72] 13.65 23.18 13.74 24.86 75.43
DCNN, 2018 [73] 12.61 22.36 12.64 23.31 70.92
Semi-supervised DL, 2019 [6] 12.56 22.73 12.10 22.66 70.05
DAG network, 2019 [8] 11.96 20.34 12.46 22.43 67.09
Multi-head CNN-LSTM, 2020 [7] 13.27 19.49 13.21 23.89 69.86
AdaBN-DCNN, 2020 [5] 11.94 19.29 12.31 22.14 65.68

The proposed method (A4) 11.28 17.83 12.24 20.55 61.90
The proposed method (A11) 11.56 17.67 12.98 20.19 62.40

Table 15. RUL prediction comparison with state-of-the-art methods (sorted by year), in terms of Score.

Methods Score
FD001 FD002 FD003 FD004 Sum

CNN, 2016 [3] 1290 13600 1600 7890 24380
LSTM, 2017 [4] 338 4450 852 5550 11190
BiLSTM, 2018 [72] 295 4130 317 5430 10172
DCNN, 2018 [73] 274 10400 284 12500 23458
Semi-supervised DL, 2019 [6] 231 3370 251 2840 6692
DAG network, 2019 [8] 229 2730 553 3370 6882
Multi-head CNN-LSTM, 2020 [7] 330 2880 401 6520 10131
AdaBN-DCNN, 2020 [5] 220 2250 260 3630 6360

The proposed method (A4) 230 2556 325 3778 6889
The proposed method (A11) 247 1743 808 3051 5851

27

The first method (CNN) [3] is a conventional Feed-Forward NN with two convolutional layers.

The following two rows prove that standard LSTM [4] and Bi-directional LSTM (BiLSTM) [72]

outperform the CNN. The next method, DCNN [73], provide lower RMSE w.r.t. the methods

using LSTM. The following four methods have been proposed more recently. In [6], a RNN-based

deep architecture is used for RUL prediction under a semi-supervised setup, and a GA approach

is used to tune its training hyper-parameters, rather than its architecture. The directed acyclic

graph (DAG) network [8] is a variant of the CNN-LSTM architecture which employs a parallel

path of CNN and LSTM to extract features. The following method is our previous work [7], which

uses a handcrafted multi-head CNN-LSTM. Then, the DCNN with adaptive batch normalization

(AdaBN) [5] achieves the lowest values in both metrics compared to the previous methods.

The last two rows of the tables report the experimental results obtained with our proposed

method. Of note, by using ENAS-PdM the automatically discovered architectures give significantly

better results w.r.t. those that we handcrafted in [7]. Most importantly, the proposed method

outperforms any other DL-based method developed manually by human experts, in terms of ag-

gregation of both metrics (with A4 and A11 resulting, respectively, the best models w.r.t. sum of

RMSE and sum of Score). Hence, our results considerably advance the state-of-the-art in RUL

predictions.

To conclude our analysis, we provide some brief considerations about the training time of the

best models found by our NAS approach. Although minimizing the training time was not one of the

objectives of this work, we note that the best models discovered by ENAS-PdM are competitive,

in terms of training time, with the state-of-the-art. In particular, we consider our best model (in

terms of RMSE) found on FD001, namely A4. To prove that this model can be trained with limited

computation resources, we use Google Colab to measure its training time on FD001, and compare it

with two of the best methods from the state-of-the-art, the DAG network [8] and AdaBN-DCNN [5].

The results of this comparison are shown in Table 16, where the training details and time of A4

are compared with the details reported in the original papers proposing the DAG network and

AdaBN-DCNN. Of note, the training time needed for the two compared methods is higher than

120 seconds, as opposed to approximately 80 seconds needed by our A4 model. Notwithstanding

this training time reduction, as we have seen our model can provide better RUL predictions.

28

Table 16. Training details and time of A4 vs DAG network and AdaBN-DCNN on FD001.

Methods Batch size Epochs Training time(s)

DAG network [8] 200 40 138.17
AdaBN-DCNN [5] 642 40 121.52

The proposed method (A4) 400 20 80.61

6.1. Complexity

Finally, we discuss the time complexity of the proposed method. As seen, the multi-head CNN-

LSTM is a DNN combining a multi-head CNN with an LSTM. Therefore, we first calculate the time

complexity of the convolutional layers and that of the LSTM. After that, those two components are

added up to analyze the time complexity of the CNN-LSTM architecture as a whole.

For h heads with C layers, the complexity of the convolutional layers can be defined as O(C ·h ·

m · lf · o), where m denotes the number of convolutional filters, lf indicates the length of the filter,

and o indicates the size of the output feature map (using the same notation used in Section 4.1).

Essentially, the complexity is determined by the convolution operation discussed in Section 3.1.

Considering the LSTM, its complexity is defined by O(w), where w denotes the number of

weights. The number of weights in an LSTM is defined as 4(U2 +U + S ·U), where U denotes the

number of units and S indicates the length of the input sequence to the LSTM. The DNN used in

our study contains two LSTM layers with U = 20 ·L1 and U = 20 ·L2 units respectively. Moreover,

S is the same as the number of segments k, defined as ls−lw
stride + 1. Based on the bounds of lw, L1

and L2 shown in Table 1, the value of U , either 20 ·L1 or 20 ·L2, is then much larger than S. This

indicates that the value of U2 dominates all the other terms and determines the number of weights

in the LSTM, i.e., O(w) ≈ O(4U2). Hence, considering the fact that L1
2 is much larger than L2

2

for the worst case, the time complexity of the two stacked LSTM layers can be approximated as

O(c · L1
2), where the constant c is equal to 4 · 202.

Consequently, the complexity of the multi-head CNN-LSTM, per time step, is O(C · h ·m · lf ·

o + c · L2
1). In the largest possible network, c · L1

2 � C · h · m · lf · o, i.e., we can approximate

the complexity per time step as O(c · L2
1). Therefore, the complexity of the training process of the

multi-head CNN-LSTM can be written as O(c ·L2
1 · i ·e), where i and e denote the number of inputs

and epochs respectively.

29

Finally, considering that the training is performed for each individual at each generation, the

computational complexity of the whole NAS process is O(c ·L2
1 · i · e ·npop ·ngen), where npop is the

size of the population and ngen is the number of generations.

7. Conclusions

In this work, we presented a NAS approach that uses evolutionary search to tune the archi-

tecture parameters of a multi-head CNN-LSTM model specialized to make RUL predictions by

processing multi-variate time series for PdM purposes. An important aspect of the proposed ap-

proach is its minimal computational cost. In many industrial contexts, there is usually no access

to expensive computing infrastructures, but only limited computing resources are available. To

make our approach suitable for such scenarios, we applied several mechanisms to shorten the NAS

evaluation time and save computational cost. Firstly, we scheduled learning rate decay in such a

way to shorten the evaluation time as well as to avoid overfitting. In addition, we used a history

of the models evaluated during evolutionary process, to allow the algorithm to quickly converge to

promising solutions without unnecessary evaluations.

By testing our approach on the C-MAPSS dataset we found that, in general, the best model

discovered in one sub-dataset provides good results on other sub-datasets. When we compared the

results of our proposed method with the methods from the state-of-the-art, we obtained relevant

improvements in terms of aggregated RMSE and Score across the four sub-datasets. Without

aggregation, we found that our approach is able to outperform the state-of-the-art in 3 out of

4 sub-datasets when using the RMSE. It is worth to note that by using evolutionary NAS we

were able to find satisfactory CNN-LSTM architectures while exploring less than 4.3% of the total

combinatorial search space. Overall, with our method the computation of one GPU for 8 to 18

hours is enough to obtain state-of-the-art RUL predictions. In fact, the resources available on free

online services, such as Google Colab, or on cheap AWS cloud instances, also can afford to execute

our algorithm.

Our work opens up several interesting research opportunities as to what concerns e.g. the use

of network performance predictors, or the knowledge transfer across different datasets. In addition,

a multi-objective optimization of both RMSE and Score can be an interesting direction to explore

in the future.

30

Acknowledgements

This work was partially supported by Trentino Sviluppo. We also acknowledge the support of

NVIDIA Corporation with the donation of the TITAN Xp GPU used for this research.

References

[1] W. Zhang, D. Yang, H. Wang, Data-driven methods for predictive maintenance of industrial

equipment: A survey, IEEE Systems Journal 13 (3) (2019) 2213–2227. doi:10.1109/JSYST.

2019.2905565.

[2] K. Kaiser, N. Gebraeel, Predictive maintenance management using sensor-based degradation

models, IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans

39 (2009) 840 – 849. doi:10.1109/TSMCA.2009.2016429.

[3] G. S. Babu, P. Zhao, X.-L. Li, Deep convolutional neural network based regression approach

for estimation of remaining useful life, in: Proceedings of the International Conference on

Database Systems for Advanced Applications, Springer, 2016, pp. 214–228.

[4] S. Zheng, K. Ristovski, A. Farahat, C. Gupta, Long short-term memory network for remaining

useful life estimation, in: Proceedings of the International Conference on Prognostics and

Health Management, IEEE, 2017, pp. 88–95. doi:10.1109/ICPHM.2017.7998311.

[5] J. Li, D. He, A Bayesian optimization AdaBN-DCNN method with self-optimized structure

and hyperparameters for domain adaptation remaining useful life prediction, IEEE Access 8

(2020) 41482–41501. doi:10.1109/ACCESS.2020.2976595.

[6] A. Listou Ellefsen, E. Bjørlykhaug, V. Æsøy, S. Ushakov, H. Zhang, Remaining useful life

predictions for turbofan engine degradation using semi-supervised deep architecture, Reliability

Engineering & System Safety 183 (2019) 240 – 251.

[7] H. Mo, F. Lucca, J. Malacarne, G. Iacca, Multi-Head CNN-LSTMwith prediction error analysis

for remaining useful life prediction, in: Proceedings of the Conference of Open Innovations

Association, IEEE, 2020, pp. 164–171.

31

http://dx.doi.org/10.1109/JSYST.2019.2905565
http://dx.doi.org/10.1109/JSYST.2019.2905565
http://dx.doi.org/10.1109/TSMCA.2009.2016429
http://dx.doi.org/10.1109/ICPHM.2017.7998311
http://dx.doi.org/10.1109/ACCESS.2020.2976595

[8] J. Li, X. Li, D. He, A directed acyclic graph network combined with CNN and LSTM for

remaining useful life prediction, IEEE Access 7 (2019) 75464–75475. doi:10.1109/ACCESS.

2019.2919566.

[9] M. Canizo, I. Triguero, A. Conde, E. Onieva, Multi-head CNN–RNN for multi-time series

anomaly detection: An industrial case study, Neurocomputing 363 (2019) 246 – 260. doi:

https://doi.org/10.1016/j.neucom.2019.07.034.

[10] T. Elsken, J. H. Metzen, F. Hutter, Neural architecture search: A survey, Journal of Machine

Learning Research 20 (2019) 1–21.

[11] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, X. Chen, X. Wang, A comprehensive survey

of neural architecture search: Challenges and solutions, arXiv preprint arXiv:2006.02903.

[12] Y. Liu, Y. Sun, B. Xue, M. Zhang, G. G. Yen, A survey on evolutionary neural architecture

search, arXiv preprint arXiv:2009.10937.

[13] K. Swersky, D. Duvenaud, J. Snoek, F. Hutter, M. A. Osborne, Raiders of the lost archi-

tecture: Kernels for Bayesian optimization in conditional parameter spaces, arXiv preprint

arXiv:1409.4011.

[14] K. Kandasamy, W. Neiswanger, J. Schneider, B. Póczos, E. P. Xing, Neural architecture search

with Bayesian optimisation and optimal transport, in: Proceedings of the International Con-

ference on Neural Information Processing Systems, Curran Associates Inc., 2018, p. 2020–2029.

[15] H. Jin, Q. Song, X. Hu, Auto-Keras: An efficient neural architecture search system, in:

Proceedings of the International Conference on Knowledge Discovery & Data Mining, ACM

SIGKDD, 2019, pp. 1946–1956.

[16] K. Swersky, J. Snoek, R. P. Adams, Freeze-Thaw Bayesian optimization, arXiv preprint

arXiv:1406.3896.

[17] A. Klein, S. Falkner, J. T. Springenberg, F. Hutter, Learning curve prediction with Bayesian

neural networks, preprint.

[18] A. Zela, A. Klein, S. Falkner, F. Hutter, Towards automated deep learning: Efficient joint

neural architecture and hyperparameter search, arXiv preprint arXiv:1807.06906.

32

http://dx.doi.org/10.1109/ACCESS.2019.2919566
http://dx.doi.org/10.1109/ACCESS.2019.2919566
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2019.07.034
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2019.07.034

[19] B. Baker, O. Gupta, N. Naik, R. Raskar, Designing neural network architectures using rein-

forcement learning, arXiv preprint arXiv:1611.02167.

[20] Z. Zhong, J. Yan, W. Wu, J. Shao, C.-L. Liu, Practical Block-Wise Neural Network Ar-

chitecture Generation, in: Proceedings of the Conference on Computer Vision and Pattern

Recognition, IEEE/CVF, 2018, pp. 2423–2432. doi:10.1109/CVPR.2018.00257.

[21] B. Baker, O. Gupta, R. Raskar, N. Naik, Accelerating neural architecture search using perfor-

mance prediction, arXiv preprint arXiv:1705.10823.

[22] B. Zoph, Q. V. Le, Neural architecture search with reinforcement learning, arXiv preprint

arXiv:1611.01578.

[23] H. Cai, T. Chen, W. Zhang, Y. Yu, J. Wang, Efficient architecture search by network trans-

formation, in: Proceedings of the Conference on Artificial Intelligence, AAAI, 2018, pp. 2787–

2794.

[24] H. Cai, J. Yang, W. Zhang, S. Han, Y. Yu, Path-level network transformation for efficient

architecture search, in: Proceedings of the International Conference on Machine Learning,

PMLR, 2018, pp. 678–687.

[25] B. Zoph, V. Vasudevan, J. Shlens, Q. V. Le, Learning transferable architectures for scalable

image recognition, in: Proceedings of the Conference on Computer Vision and Pattern Recog-

nition, IEEE/CVF, 2018, pp. 8697–8710.

[26] H. Pham, M. Guan, B. Zoph, Q. Le, J. Dean, Efficient neural architecture search via parameters

sharing, in: Proceedings of the International Conference on Machine Learning, PMLR, 2018,

pp. 4095–4104.

URL http://proceedings.mlr.press/v80/pham18a.html

[27] A. Ashok, N. Rhinehart, F. Beainy, K. M. Kitani, N2N learning: Network to network compres-

sion via policy gradient reinforcement learning, in: Proceedings of the International Conference

on Learning Representations, PMLR, 2018, pp. 1–20.

[28] A. Brock, T. Lim, J. M. Ritchie, N. J. Weston, SMASH: One-shot model architecture search

through hypernetworks, in: Proceedings of the International Conference on Learning Repre-

sentations, PMLR, 2018, pp. 1–21.

33

http://dx.doi.org/10.1109/CVPR.2018.00257
http://proceedings.mlr.press/v80/pham18a.html
http://proceedings.mlr.press/v80/pham18a.html
http://proceedings.mlr.press/v80/pham18a.html

[29] G. Bender, P.-J. Kindermans, B. Zoph, V. Vasudevan, Q. Le, Understanding and simplify-

ing one-shot architecture search, in: Proceedings of the International Conference on Machine

Learning, PMLR, 2018, pp. 550–559.

URL http://proceedings.mlr.press/v80/bender18a.html

[30] C. Zhang, M. Ren, R. Urtasun, Graph hypernetworks for neural architecture search, in: Pro-

ceedings of the International Conference on Learning Representations, PMLR, 2018, pp. 1–17.

[31] H. Liu, K. Simonyan, Y. Yang, DARTS: Differentiable architecture search, in: Proceedings of

the International Conference on Learning Representations, PMLR, 2018, pp. 1–13.

[32] Y. Xu, L. Xie, X. Zhang, X. Chen, G.-J. Qi, Q. Tian, H. Xiong, PC-DARTS: Partial chan-

nel connections for memory-efficient architecture search, in: Proceedings of the International

Conference on Learning Representations, PMLR, 2019, pp. 1–13.

[33] S. Xie, H. Zheng, C. Liu, L. Lin, SNAS: stochastic neural architecture search, in: Proceedings

of the International Conference on Learning Representations, PMLR, 2018, pp. 1–17.

[34] F. P. Casale, J. Gordon, N. Fusi, Probabilistic neural architecture search, arXiv preprint

arXiv:1902.05116.

[35] H. Cai, L. Zhu, S. Han, ProxylessNAS: Direct neural architecture search on target task

and hardware, in: Proceedings of the International Conference on Learning Representations,

PMLR, 2018, pp. 1–13.

[36] X. Chen, L. Xie, J. Wu, Q. Tian, Progressive differentiable architecture search: Bridging the

depth gap between search and evaluation, in: Proceedings of the International Conference on

Computer Vision, IEEE/CVF, 2019, pp. 1294–1303.

[37] J. Chang, Y. Guo, G. Meng, S. Xiang, C. Pan, et al., DATA: Differentiable architecture ap-

proximation, in: Proceedings of the International Conference on Neural Information Processing

Systems, Curran Associates Inc., 2019, pp. 876–886.

[38] G. Li, G. Qian, I. C. Delgadillo, M. Muller, A. Thabet, B. Ghanem, SGAS: Sequential greedy

architecture search, in: Proceedings of the Conference on Computer Vision and Pattern Recog-

nition, IEEE/CVF, 2020, pp. 1620–1630.

34

http://proceedings.mlr.press/v80/bender18a.html
http://proceedings.mlr.press/v80/bender18a.html
http://proceedings.mlr.press/v80/bender18a.html

[39] M. Zhang, H. Li, S. Pan, X. Chang, S. Su, Overcoming multi-model forgetting in one-shot

NAS with diversity maximization, in: Proceedings of the Conference on Computer Vision and

Pattern Recognition, IEEE/CVF, 2020, pp. 7806–7815.

[40] T. Elsken, J.-H. Metzen, F. Hutter, Simple and efficient architecture search for convolutional

neural networks, arXiv preprint arXiv:1711.04528.

[41] L. Li, A. Talwalkar, Random search and reproducibility for neural architecture search, in:

Proceedings of the Uncertainty in Artificial Intelligence Conference, PMLR, 2020, pp. 367–

377.

[42] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V. Le, A. Kurakin, Large-

scale evolution of image classifiers, in: Proceedings of the International Conference on Machine

Learning, PMLR, 2017, pp. 2902–2911.

URL http://proceedings.mlr.press/v70/real17a.html

[43] M. Wistuba, Deep learning architecture search by neuro-cell-based evolution with function-

preserving mutations, in: Proceedings of the Joint European Conference on Machine Learning

and Knowledge Discovery in Databases, Springer, 2018, pp. 243–258.

[44] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, K. Kavukcuoglu, Hierarchical representations

for efficient architecture search, in: Proceedings of the International Conference on Learning

Representations, PMLR, 2018, pp. 1–13.

[45] L. Xie, A. Yuille, Genetic CNN, in: Proceedings of the International Conference on Computer

Vision, IEEE/CVF, 2017, pp. 1388–1397. doi:10.1109/ICCV.2017.154.

[46] E. Real, A. Aggarwal, Y. Huang, Q. V. Le, Regularized evolution for image classifier archi-

tecture search, in: Proceedings of the Conference on Artificial Intelligence, AAAI, 2019, pp.

4780–4789.

[47] C. Saltori, S. Roy, N. Sebe, G. Iacca, Regularized evolutionary algorithm for dynamic neu-

ral topology search, in: Proceedings of the International Conference on Image Analysis and

Processing, Springer, 2019, pp. 219–230.

[48] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon, B. Raju, H. Shahrzad,

A. Navruzyan, N. Duffy, B. Hodjat, Evolving Deep Neural Networks, in: Artificial Intelligence

35

http://proceedings.mlr.press/v70/real17a.html
http://proceedings.mlr.press/v70/real17a.html
http://proceedings.mlr.press/v70/real17a.html
http://dx.doi.org/10.1109/ICCV.2017.154

in the Age of Neural Networks and Brain Computing, Academic Press, 2019, pp. 293–312.

doi:10.1016/B978-0-12-815480-9.00015-3.

[49] Y. Sun, B. Xue, M. Zhang, G. G. Yen, Completely automated CNN architecture design based

on blocks, IEEE Transactions on Neural Networks and Learning Systems 31 (4) (2020) 1242–

1254.

[50] Y. Sun, B. Xue, M. Zhang, G. G. Yen, J. Lv, Automatically designing CNN architectures using

the genetic algorithm for image classification, IEEE Transactions on Cybernetics 50 (9) (2020)

3840–3854.

[51] Y. Sun, B. Xue, M. Zhang, G. G. Yen, Evolving deep convolutional neural networks for image

classification, IEEE Transactions on Evolutionary Computation 24 (2) (2019) 394–407.

[52] D. Połap, An adaptive genetic algorithm as a supporting mechanism for microscopy image

analysis in a cascade of convolution neural networks, Applied Soft Computing 97 (2020) 106824.

[53] H. Nguyen, X.-N. Bui, Soft computing models for predicting blast-induced air over-pressure:

A novel artificial intelligence approach, Applied Soft Computing 92 (2020) 106292.

[54] J. R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural

Selection, MIT Press, 1992.

[55] Y. Bi, B. Xue, M. Zhang, An evolutionary deep learning approach using genetic program-

ming with convolution operators for image classification, in: Proceedings of the Congress on

Evolutionary Computation, IEEE, 2019, pp. 3197–3204.

[56] B. Evans, H. Al-Sahaf, B. Xue, M. Zhang, Evolutionary deep learning: A genetic programming

approach to image classification, in: Proceedings of the Congress on Evolutionary Computa-

tion, IEEE, 2018, pp. 1–6.

[57] D. J. Montana, Strongly typed genetic programming, Evolutionary Computation 3 (2) (1995)

199–230. arXiv:https://doi.org/10.1162/evco.1995.3.2.199, doi:10.1162/evco.1995.

3.2.199.

URL https://doi.org/10.1162/evco.1995.3.2.199

36

http://dx.doi.org/10.1016/B978-0-12-815480-9.00015-3
https://doi.org/10.1162/evco.1995.3.2.199
http://arxiv.org/abs/https://doi.org/10.1162/evco.1995.3.2.199
http://dx.doi.org/10.1162/evco.1995.3.2.199
http://dx.doi.org/10.1162/evco.1995.3.2.199
https://doi.org/10.1162/evco.1995.3.2.199

[58] M. Suganuma, S. Shirakawa, T. Nagao, A genetic programming approach to designing convo-

lutional neural network architectures, in: Proceedings of the Genetic and Evolutionary Com-

putation Conference, ACM, 2017, pp. 497–504. doi:10.1145/3071178.3071229.

URL https://doi.org/10.1145/3071178.3071229

[59] M. Loni, A. Majd, A. Loni, M. Daneshtalab, M. Sjödin, E. Troubitsyna, Designing compact

convolutional neural network for embedded stereo vision systems, in: Proceedings of the Inter-

national Symposium on Embedded Multicore/Many-core Systems-on-Chip, IEEE, 2018, pp.

244–251.

[60] M. Suganuma, M. Kobayashi, S. Shirakawa, T. Nagao, Evolution of deep convolutional neural

networks using Cartesian genetic programming, Evolutionary Computation 28 (1) (2020) 141–

163. doi:10.1162/evco_a_00253.

[61] J. Miller, A. Turner, Cartesian genetic programming, in: Proceedings of the Genetic and

Evolutionary Computation Conference – Companion, ACM, 2015, p. 179–198. doi:10.1145/

2739482.2756571.

URL https://doi.org/10.1145/2739482.2756571

[62] F. Assunçao, N. Lourenço, P. Machado, B. Ribeiro, DENSER: deep evolutionary network

structured representation, Genetic Programming and Evolvable Machines 20 (1) (2018) 5–35.

doi:10.1007/s10710-018-9339-y.

URL http://dx.doi.org/10.1007/s10710-018-9339-y

[63] M. O’Neill, C. Ryan, Grammatical Evolution: Evolutionary Automatic Programming in an

Arbitrary Language, Kluwer Academic Publishers, 2003.

[64] S. Bianco, M. Buzzelli, G. Ciocca, R. Schettini, Neural architecture search for image saliency

fusion, Information Fusion 57 (2020) 89 – 101. doi:https://doi.org/10.1016/j.inffus.

2019.12.007.

URL http://www.sciencedirect.com/science/article/pii/S1566253519302374

[65] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, L. Jackel, Handwritten

digit recognition with a back-propagation network, in: D. Touretzky (Ed.), Advances in Neural

Information Processing Systems, Vol. 2, Morgan-Kaufmann, 1990, pp. 396–404.

37

https://doi.org/10.1145/3071178.3071229
https://doi.org/10.1145/3071178.3071229
http://dx.doi.org/10.1145/3071178.3071229
https://doi.org/10.1145/3071178.3071229
http://dx.doi.org/10.1162/evco_a_00253
https://doi.org/10.1145/2739482.2756571
http://dx.doi.org/10.1145/2739482.2756571
http://dx.doi.org/10.1145/2739482.2756571
https://doi.org/10.1145/2739482.2756571
http://dx.doi.org/10.1007/s10710-018-9339-y
http://dx.doi.org/10.1007/s10710-018-9339-y
http://dx.doi.org/10.1007/s10710-018-9339-y
http://dx.doi.org/10.1007/s10710-018-9339-y
http://www.sciencedirect.com/science/article/pii/S1566253519302374
http://www.sciencedirect.com/science/article/pii/S1566253519302374
http://dx.doi.org/https://doi.org/10.1016/j.inffus.2019.12.007
http://dx.doi.org/https://doi.org/10.1016/j.inffus.2019.12.007
http://www.sciencedirect.com/science/article/pii/S1566253519302374

[66] J. B. Yang, M. N. Nguyen, P. P. San, X. L. Li, S. Krishnaswamy, Deep convolutional neural

networks on multichannel time series for human activity recognition, in: Proceedings of the

Conference on Artificial Intelligence, AAAI, 2015, p. 3995–4001.

[67] Y. Qian, P. C. Woodland, Very deep convolutional neural networks for robust speech recogni-

tion, in: Proceedings of the Spoken Language Technology Workshop, IEEE, 2016, pp. 481–488.

[68] G. Iacca, R. Mallipeddi, E. Mininno, F. Neri, P. N. Suganthan, Super-fit and population

size reduction in compact differential evolution, in: Proceedings of the Workshop on Memetic

Computing, IEEE, 2011, pp. 1–8.

[69] A. Saxena, K. Goebel, D. Simon, N. Eklund, Damage propagation modeling for aircraft engine

run-to-failure simulation, in: Proceedings of the International Conference on Prognostics and

Health Management, IEEE, 2008, pp. 1–9. doi:10.1109/PHM.2008.4711414.

[70] F. O. Heimes, Recurrent neural networks for remaining useful life estimation, in: Proceedings

of the International Conference on Prognostics and Health Management, IEEE, 2008, pp. 1–6.

doi:10.1109/PHM.2008.4711422.

[71] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, C. Gagné, DEAP: Evolutionary

algorithms made easy, Journal of Machine Learning Research 13 (2012) 2171–2175.

[72] J. Wang, G. Wen, S. Yang, Y. Liu, Remaining useful life estimation in prognostics using deep

bidirectional LSTM neural network, in: Proceedings of the Prognostics and System Health

Management Conference, IEEE, 2018, pp. 1037–1042. doi:10.1109/PHM-Chongqing.2018.

00184.

[73] X. Li, Q. Ding, J.-Q. Sun, Remaining useful life estimation in prognostics using deep convolu-

tion neural networks, Reliability Engineering & System Safety 172 (2018) 1 – 11.

38

http://dx.doi.org/10.1109/PHM.2008.4711414
http://dx.doi.org/10.1109/PHM.2008.4711422
http://dx.doi.org/10.1109/PHM-Chongqing.2018.00184
http://dx.doi.org/10.1109/PHM-Chongqing.2018.00184

Appendix A. Boxplots of the fitness distribution across generations for all the exper-
iments

We report below the boxplots of the fitness distribution across generations for three trials of

the proposed ENAS-PdM algorithm on each of the four C-MAPSS sub-datasets (FD001, FD002,

FD003, and FD004) and both fitness functions (RMSE and Score). See the main text for details.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Generations

13.5

14.0

14.5

15.0

15.5

F
it
n
es
s

Median

Mean

Outliers

Figure A.7. Boxplots of the fitness distribution across generations: trial-1 on FD001, validation RMSE.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Generations

13.5

14.0

14.5

15.0

15.5

F
it
n
es
s

Median

Mean

Outliers

Figure A.8. Boxplots of the fitness distribution across generations: trial-2 on FD001, validation RMSE.

39

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Generations

13.5

14.0

14.5

15.0

F
it
n
es
s

Median

Mean

Outliers

Figure A.9. Boxplots of the fitness distribution across generations: trial-3 on FD001, validation RMSE.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Generations

1000

1200

1400

F
it
n
es
s

Median

Mean

Outliers

Figure A.10. Boxplots of the fitness distribution across generations: trial-1 on FD001, validation Score.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Generations

1000

1200

1400

1600

F
it
n
es
s

Median

Mean

Outliers

Figure A.11. Boxplots of the fitness distribution across generations: trial-2 on FD001, validation Score.

40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Generations

1000

1200

1400
F
it
n
es
s

Median

Mean

Outliers

Figure A.12. Boxplots of the fitness distribution across generations: trial-3 on FD001, validation Score.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Generations

18.0

18.5

19.0

19.5

20.0

20.5

21.0

F
it
n
es
s Median

Mean

Outliers

Figure A.13. Boxplots of the fitness distribution across generations: trial-1 on FD002, validation RMSE.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Generations

18

19

20

21

F
it
n
es
s

Median

Mean

Outliers

Figure A.14. Boxplots of the fitness distribution across generations: trial-2 on FD002, validation RMSE.

41

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Generations

18

19

20

21

F
it
n
es
s

Median

Mean

Outliers

Figure A.15. Boxplots of the fitness distribution across generations: trial-3 on FD002, validation RMSE.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Generations

3000

4000

5000

F
it
n
es
s

Median

Mean

Outliers

Figure A.16. Boxplots of the fitness distribution across generations: trial-1 on FD002, validation Score.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Generations

3000

4000

5000

F
it
n
es
s

Median

Mean

Outliers

Figure A.17. Boxplots of the fitness distribution across generations: trial-2 on FD002, validation Score.

42

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Generations

3000

3500

4000

4500

5000

F
it
n
es
s

Median

Mean

Outliers

Figure A.18. Boxplots of the fitness distribution across generations: trial-3 on FD002, validation Score.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Generations

11.5

12.0

12.5

13.0

13.5

F
it
n
es
s

Median

Mean

Outliers

Figure A.19. Boxplots of the fitness distribution across generations: trial-1 on FD003, validation RMSE.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Generations

11.5

12.0

12.5

13.0

13.5

F
it
n
es
s

Median

Mean

Outliers

Figure A.20. Boxplots of the fitness distribution across generations: trial-2 on FD003, validation RMSE.

43

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Generations

11.5

12.0

12.5

13.0

13.5
F
it
n
es
s

Median

Mean

Outliers

Figure A.21. Boxplots of the fitness distribution across generations: trial-3 on FD003, validation RMSE.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Generations

1000

1200

1400

F
it
n
es
s

Median

Mean

Outliers

Figure A.22. Boxplots of the fitness distribution across generations: trial-1 on FD003, validation Score.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Generations

1000

1200

1400

F
it
n
es
s

Median

Mean

Outliers

Figure A.23. Boxplots of the fitness distribution across generations: trial-2 on FD003, validation Score.

44

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Generations

1000

1200

1400

1600
F
it
n
es
s

Median

Mean

Outliers

Figure A.24. Boxplots of the fitness distribution across generations: trial-3 on FD003, validation Score.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Generations

17

18

19

20

21

F
it
n
es
s

Median

Mean

Outliers

Figure A.25. Boxplots of the fitness distribution across generations: trial-1 on FD004, validation RMSE.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Generations

18

19

20

21

22

F
it
n
es
s

Median

Mean

Outliers

Figure A.26. Boxplots of the fitness distribution across generations: trial-2 on FD004, validation RMSE.

45

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Generations

18

19

20

21

22
F
it
n
es
s

Median

Mean

Outliers

Figure A.27. Boxplots of the fitness distribution across generations: trial-3 on FD004, validation RMSE.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Generations

4000

5000

6000

7000

8000

F
it
n
es
s

Median

Mean

Outliers

Figure A.28. Boxplots of the fitness distribution across generations: trial-1 on FD004, validation Score.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Generations

3000

4000

5000

6000

7000

8000

F
it
n
es
s

Median

Mean

Outliers

Figure A.29. Boxplots of the fitness distribution across generations: trial-2 on FD004, validation Score.

46

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Generations

4000

5000

6000

7000

8000

F
it
n
es
s

Median

Mean

Outliers

Figure A.30. Boxplots of the fitness distribution across generations: trial-3 on FD004, validation Score.

47

	Introduction
	Related work
	Background
	CNN-LSTM
	Multi-head CNN-LSTM

	Evolutionary Neural Architecture Search for Predictive Maintenance (ENAS-PdM)
	Individual encoding
	Proposed algorithm
	Initialization
	Fitness evaluation
	Genetic operators
	Stop criterion

	Experimental setup
	C-MAPSS benchmark dataset
	Evaluation metrics
	Training details
	Computational setup and reproducibility

	Experimental results
	Complexity

	Conclusions
	Boxplots of the fitness distribution across generations for all the experiments

