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Abstract—In recent research, hyper-heuristics have attracted
increasing attention in various fields. The most appealing feature
of hyper-heuristics is that they aim to provide more generalized
solutions to optimization problems by searching in a high-level
space of heuristics instead of direct problem domains. Despite the
promising findings in hyper-heuristics, the design of more general
search methodologies still presents a key research. Evolutionary
multitasking is a relatively new evolutionary paradigm which
attempts to solve multiple optimization problems simultane-
ously. It exploits the underlying similarities among different
optimization tasks by transferring information among them, thus
accelerating the optimization of all tasks. Inherently, hyper-
heuristics and evolutionary multitasking are similar in the
following three ways: 1) they both operate on third-party search
spaces; 2) high-level search methodologies are universal; and
3) they both conduct cross-domain optimization. To integrate
their advantages effectively, i.e., the knowledge-transfer and
cross-domain optimization of evolutionary multitasking and the
search in the heuristic spaces of hyper-heuristics, in this article,
a unified framework of evolutionary multitasking graph-based
hyper-heuristic (EMHH) is proposed. To assess the generality
and effectiveness of the EMHH, population-based graph-based
hyper-heuristics integrated with evolutionary multitasking to
solve exam timetabling and graph-coloring problems, separately
and simultaneously, are studied. The experimental results demon-
strate the effectiveness, efficiency, and increased the generality
of the proposed unified framework compared with single-tasking
hyper-heuristics.

Index Terms—Evolutionary multitasking, exam timetabling,
graph coloring, hyper-heuristics.

I. INTRODUCTION

META-HEURISTICS are highly effective in solving vari-
ous combinational optimization problems [1], [2]. They

quite often concern one particular problem, but tend to perform
poorly on other problems or even other instances of the same
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problem. The performance of these approaches also strongly
depends on domain-specific knowledge and expertise such as
complicated parameter tunings [3]–[5]. Such tailor-made set-
tings limit their generality, making them expensive to adapt to
other problems.

Motivated by this, more recent research has focused on gen-
eralized and adaptive algorithms [6]. Hyper-heuristics, which
are heuristics that choose heuristics, can be regarded as such
general algorithms [3], [6]–[10]. Instead of searching directly
in the solution space like conventional meta-heuristics, hyper-
heuristics work at the higher-level search space of a set of
low-level heuristics. The goal is to solve the problem at hand
by selecting existing low-level heuristics or generating new
low-level heuristics. The only requirement for developing a
hyper-heuristic for a problem is a set of low-level heuristics
that are easy-to-implement and a problem-specific objective
function. These are used at the low-level in hyper-heuristics,
which are general addressing different problems.

After the term was first proposed in [4], hyper-heuristic
approaches have been successfully used to solve a range of
combinational optimization problems, such as Boolean satis-
fiability problems [11], [12], vehicle routing problems [13],
[14], packing problems [15], [16], educational timetabling
problems [9], and many more [8], [10]. The search spaces of
hyper-heuristics either comprise existing low-level heuristics
or components and operators that are used to construct low-
level heuristics. Based on these properties, hyper-heuristics
can be categorized into heuristic selection and heuristic gen-
eration hyper-heuristics, respectively [17]. Heuristic selection
hyper-heuristics select a given set of low-level heuristics to
construct or improve solutions, while heuristic generation
hyper-heuristics generate new heuristics using a given set of
components and operators. Furthermore, in both the heuristic
selection and heuristic generation hyper-heuristics, construc-
tive and perturbative low-level heuristics can be used to build
solutions step by step or to modify and improve complete
solutions. This article concerns a new framework of selection
constructive hyper-heuristic.

The paradigm of evolutionary multitasking optimization
(EMO) was first proposed in [18] to solve multifacto-
rial optimization (MFO) problems, which are categorized
as the third category of optimization problems in addition
to single-objective and multiobjective optimization problems.
EMO has been successfully extended since then to sev-
eral domains, including continuous optimization, discrete
optimization, combinational optimization, and multiobjective
optimization [18]–[25]. EMO can optimize two or more tasks
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simultaneously instead of evaluating every task at each step
of the evaluation. Under the assumption that each individ-
ual is at least skilled at one task, in EMO, the population
is split into different skill groups. The success of EMO lies
in the transfer of knowledge among different skill groups;
that is, the genetic experience within one group can be trans-
ferred to other groups, thus accelerating the convergence of
all tasks [18], [24]. Moreover, the computational cost can
be greatly decreased compared with that in solving all tasks
separately and sequentially.

Inspired by EMO, a generalized EMO framework was
proposed in [24], where the knowledge learned from compu-
tationally cheap problems is utilized to assist the optimization
of computationally expensive problems via the knowledge-
transfer mechanism. Li et al. [26] extended the evolutionary
multitasking framework to a multitasking sparse reconstruc-
tion framework for solving sparse reconstruction problems.
In [27], instead of performing knowledge transfer implicitly
via genetic operators, a denoising autoencoder was designed
to explicitly transfer the solutions among different tasks. To
utilize the limited resources more efficiently, Gong et al. [28]
deigned an online dynamic resource allocation strategy that
can allocate computational resources to tasks based on their
computational complexities. The literature above extends the
original EMO in various aspects, including but not limited
to knowledge-transfer efficiency, computational efficiency, and
the applications. However, they are built on the direct solution
space, which is still subject to specific problems.

This article proposes a unified framework of graph-based
evolutionary multitasking hyper-heuristic (EMHH) that inher-
ently integrates hyper-heuristics and EMO based on the three
synergies between them. First, they both operate in a third-
party search space rather than the direct problem-solution
space. In EMO, the variables of different tasks are mapped
into a unified representation, while hyper-heuristics search in
a high-level space of heuristics. Second, the high-level algo-
rithms in hyper-heuristics are equivalent to the general solvers
in EMO. Third, both methodologies concern cross-domain
searches, but with different mechanisms. Inspired by these syn-
ergies and similarities, the EMHH combines their advantages,
namely, the knowledge transfer and the cross-domain search of
EMO and the high-level search of hyper-heuristics, to further
enhance the generality of the integrated approach to a higher
level.

Among the different categories of hyper-heuristics, graph-
based hyper-heuristics have been mostly studied to solve
educational timetabling problems [9], [10]. This article focuses
on the integration of EMO with population-based graph-based
hyper-heuristics as the precursor to multitasking the hyper-
heuristics. Carter’s benchmark [29] is used to assess the effec-
tiveness of EMHH. In particular, exam timetabling problems
(ETTPs) and graph-coloring problems (GCPs) derived from
Carter’s benchmark, in separate and simultaneous manners,
are investigated. The experimental results demonstrate that
EMHH provides superior effectiveness, efficiency, and gen-
erality compared with single-tasking hyper-heuristics, espe-
cially on asynchronous optimization and synchronous cross-
domain optimization. More importantly, the results show

that EMHH is able to learn the implicit commonalities
between solutions of different tasks in the high-level search
space via knowledge-transfer mechanism, and efficiently share
them across tasks to facilitate convergence of all tasks.
Additionally, the knowledge-transfer mechanism in EMHH
shows to improve its ability escaping from local optima.

The novelty of this article lies on the introduction of, for the
first time, the concept of evolutionary multitasking into hyper-
heuristics, leading to the following two contributions: first, a
unified framework, i.e., EMHH, is developed which coher-
ently integrates the two methodologies to achieve a higher
level of generality. While the existing hyper-heuristics focus
on handling one task at a time, which is still of limited gen-
erality, the proposed EMHH is capable of handling multiple
tasks, either intradomain or cross-domain, simultaneously, thus
extending the generality and scope of the general algorithms
addressing multiple optimization problems. Moreover, the gen-
erality of the concept of unification in multitasking is extended,
i.e., the unified representation should not be limited to the
solution representation space. Other unification schemes may
be promising in terms of exploiting the potential of multi-
tasking as well. Second, this article explores the underlying
communalities in the selections of heuristics for solving dif-
ferent problems via evolutionary multitasking with knowledge
transfer in the heuristic space.

The remainder of this article is organized as follows.
Section II introduces the background of graph-based hyper-
heuristics and EMO, followed by the motivations. The EMHH
framework is presented in Section III. Section IV presents and
discusses the experimental studies on ETTPs and GCPs. The
potential applications and future challenges are also provided
in this section. Finally, Section V concludes this article and
provides directions for future work.

II. BACKGROUND

A. Graph Heuristics

Welsh and Powell [30] established the connection between
timetabling and scheduling problems with graph coloring,
which subsequently inspired the application of graph heuristics
in solving these problems. Graph heuristics order the vertexes
in a graph according to the difficulties of coloring them using
feasible colors. By representing the events in timetabling prob-
lems as vertices and the edges as clashes between the events,
the timetabling of events with timeslots is transferred into the
problem of assigning vertices with colors. The degree of an
event indicates the number of conflicting events, i.e., the events
associated to it. Graph heuristics can then be used to order the
events according to the difficulties of scheduling them into
feasible timeslots.

The following five graph heuristics and a random heuristic
have been widely used in timetabling [9], [10], [31].

1) The saturation degree (SD) indicates the number of fea-
sible timeslots for an event. A smaller SD value indicates
that fewer feasible timeslots are available for an event,
thus scheduling it is more difficult than scheduling those
with more available timeslots. The smallest SD heuris-
tic selects and schedules the events with the smallest SD
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values first, after which the SD values for the remaining
events will be updated.

2) The largest degree (LD) heuristic selects and schedules,
at each step, the event with the highest degree.

3) The largest colored degree (LCD) heuristic selects and
schedules, at each step, the event with the highest num-
ber of conflicts with those scheduled in the timetable.
The LCD values of the remaining unscheduled events
will be updated afterward.

4) The largest weighted degree (LWD) indicates the LD
weighted by the number of participants (such as students
in exam timetabling) involved in the conflicting events.
This heuristic selects and schedules the event with the
LWD at each step.

5) The largest enrollment (LE) heuristic selects and sched-
ules, at each step, the event with the largest number of
participants involved.

6) Random ordering (RO) randomly selects and schedules
an event which has not yet been scheduled.

The EMHH framework developed in this article is a
selection constructive hyper-heuristic, which is defined in
Definition 1 [10]. In this article, the low-level construction
heuristic set H in Definition 1 comprises two of the above
six constructive graph heuristics. EMHH is population-based,
i.e., it evolves on a set of low-level heuristic sequences in a
population.

Definition 1: Given a problem β and a set of low-level
construction heuristics H = {h0, h1,. . . , hn} for the problem
domain, a selection constructive hyper-heuristic constructs a
complete solution s for β from its initial state s0 to the
final state s by repeatedly selecting and applying a low-level
heuristic from H to change from one solution state si to the
next si+1.

B. Evolutionary Multitasking Optimization

EMO is a new branch of evolutionary algorithms (EAs) [18]
to address the MFO problems defined in (1)

{x1, x2, . . . , xK} = argmin {f1(x1), f2(x2), . . . , fK(xK)}
s.t. xk ∈ �k, k ∈ {1, 2, . . . , K} (1)

where K is the number of tasks involved. xk =
(xk,1, xk,2, . . . , xk,Dk ) represents a feasible solution for the
kth task Tk, fk is its objective function, Dk denotes its
dimensionality, and �k is the search space, respectively.

Compared to multiobjective optimization, there are two
major distinctive features in MFO. First, no dependence exists
between tasks, i.e., no prior knowledge on the relationship
among the K tasks needs to be identified beforehand, while
the tasks in multiobjective optimization explicitly conflict with
each other. Second, the variable spaces of K tasks are heteroge-
neous, namely, each task is evaluated in its own design space.

To compare the individuals in the population and clarify
the relationships between individuals and tasks, the following
definitions are proposed in [18] for EMO.

1) Factorial Rank: The factorial rank ri
k of individual pi

for the kth task is the index of pi sorted in an ascending
order by the objective function value fk of the kth task.

2) Skill Factor: The skill factor τi of individual pi indicates
the task that pi is most skillful in, i.e., τi = argmink{ri

k},
k ∈ {1, 2, . . . , K}.

3) Scalar Fitness: The scalar fitness φi of individual pi is
calculated as φi = 1/min{ri

k}, k ∈ {1, 2, . . . , K}.

C. Motivations

Although hyper-heuristics search in heuristics space, their
current paradigms still focus on solving isolated problems or
isolated problem domains independently. However, as stated
in [20], real-world problems seldom exist in isolation, thus the
potential of hyper-heuristics might be underestimated. EMO
shown to perform well in solving MFO problems based on
the unified representation and the knowledge-transfer mech-
anism [18]–[28]. It also generalize well in handling multiple
optimization tasks simultaneously.

In addition, the direct solutions of different problems usually
have no common structures or connection with each other, e.g.,
the 2-D timetable compared to the 1-D coloring of a graph.
However, the solutions of these two problems in the heuris-
tic space may share similar patterns. For example, in [32],
it is found that LWD rather than SD tends to generate better
solutions at the early stage of solution construction for ETTPs.

Given the above facts, this article proposes an efficient and
more general hyper-heuristic framework by building the evo-
lutionary multitasking in the heuristic space. To be specific,
on the one hand, this article combines evolutionary multitask-
ing with hyper-heuristics to raise the generality of both of
them to a higher level, namely, endow hyper-heuristics the
ability to handle multitasking problems, besides, extend the
concept of the unification scheme in evolutionary multitasking
to the heuristic space. Moreover, the integration of unifica-
tion schemes into hyper-heuristics may be adopted in other
hyper-heuristic approaches, and the same unification schemes
in evolutionary multitasking may be applied to solving dif-
ferent problems. On the other hand, the proposed framework
aims to investigate the underlying similar patterns among dif-
ferent tasks in the heuristic space based on the concept of
evolutionary multitasking and knowledge transfer to facilitate
effective convergence of optimization.

III. EVOLUTIONARY MULTITASKING HYPER-HEURISTIC

FRAMEWORK

A. Framework of EMHH

In the unified framework of EMHH shown in Algorithm 1,
each individual is associated with one of the K tasks in the
population to address them simultaneously. In the initial pop-
ulation on the low-level heuristic space, every individual is
evaluated on all tasks initially, according to lines 2–7 in
Algorithm 1. Then, in line 8, the factorial ranks and skill
factors are calculated and assigned to all individuals. In the
following generations, individual pi will only be evaluated on
the task indicated by its skill factor τi. The fitness values of all
other unevaluated tasks are set to infinite values (i.e., a large
enough number). The offspring in the unified representation,
thus, inherit the skill factors from their parents, and the genetic
materials of one task can be transferred to address other tasks

Authorized licensed use limited to: Northwest University. Downloaded on February 25,2021 at 02:06:26 UTC from IEEE Xplore.  Restrictions apply. 



38 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 25, NO. 1, FEBRUARY 2021

Algorithm 1 EMHH
Input:

N: Population size.
K: The number of tasks.
H : A set of low-level construction heuristics.

Output:
The best solutions of all tasks.

1: Initialize population P with randomly generated N low-
level heuristic sequences composed from H.

2: for i = 1 to N do
3: for k = 1 to K do
4: Construct solution si,k by heuristic sequence pi for

task k.
5: Evaluate si,k for task k.
6: end for
7: end for
8: Initialize skill factor τi of pi, i ∈ {1, 2, . . . , N}. // see

Section II-B
9: while termination criteria are not satisfied do

10: Generate offspring population P′ using the cross-task
mating operator on P. // see Algorithm 2

11: Evaluate every individual in P′ on the task indicated by
its skill factor.

12: R = P ∪ P′.
13: Update scalar fitness of every individual in R.
14: Select the N fittest individuals from R according to the

scalar fitness as the next generation P.
15: end while
16: Output the best solution obtained.

Algorithm 2 Cross-Task Mating
Input:

pa, pb: Randomly selected parents.
rmp: Predefined random mating probability.

Output:
offspring o1, o2.

1: if τa = τb then
2: Crossover and mutation are applied sequentially on pa

and pb to generate o1 and o2.
3: τ1 = τ2 = τa(or τb).
4: else
5: if rand < rmp then
6: Crossover and mutation are applied sequentially on

pa and pb to generate o1 and o2.
7: Randomly assign τa or τb to τ1 and τ2.
8: else
9: Mutate pa to generate o1, τ1 = τa.

10: Mutate pb to generate o2, τ2 = τb.
11: end if
12: end if

during the evolution. The workflow of EMHH is presented in
Fig. 1.

In EMHH, a cross-task mating operator is used to gener-
ate the offspring, as shown in Algorithm 2. This follows the
same paradigm as that used in [26]. In Algorithm 2, if the

Fig. 1. Workflow of EMHH.

selected parents have identical skill factors such as in case 1
in Fig. 2, the offspring generated by the crossover and muta-
tion operators inherent the same skill factors as those of their
parents. Otherwise, the transfer of genetic materials between
parents depending on a predefined probability rmp, as shown
in lines 5–11 in Algorithm 2, is conducted. As seen from
Fig. 2, the knowledge transfer among tasks occurs in case 3.
Since the selected parents have different skill factors, each of
their offspring has two alternative skill factors to inherit. This
eventually results in four possible combinations of offspring,
as shown in the dashed rectangle of case 3, where all have
genetic materials transferred. For example, assume o1 and o2
are derived from pa and pb, respectively, then in the first com-
bination, o2 inherits pa’s skill factor rather than pb’s, and it
will be evaluated on the task indicated by the skill factor of
pa. Consequently, the genetic materials learned in optimizing
pb’s task are transferred to pa, which will likely be helpful in
transferring the meaningful building-blocks from one task to
the others.

B. Solution Representation and Evaluation

The chromosome of the individual is represented as a
sequence of heuristics. Recall that the dimensionalities of
the direct solutions for the K tasks could be different. The
length of individual heuristic sequences is denoted by Dmax =
max{Dk}, k ∈ {1, 2, . . . K}. Fig. 3 shows an example of how
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Fig. 2. Process of cross-task mating. The light and dark grayed cycles
represent different skill factors.

Fig. 3. Example of solution representation.

the chromosome of two tasks T1 and T2 with the dimensional-
ities of D1 and D2, respectively, where D1 < D2, are encoded.
Each bit in Fig. 3 represents a low-level heuristic. If the indi-
vidual pi in Fig. 3 is associated with task T1, that is, the skill
factor of pi is τi = 1, then, D1 heuristics selected from the
beginning of pi are employed to construct the solution for
T1, while the remaining D2 − D1 heuristics are discarded.
Otherwise, if τi = 2, all the heuristics are employed to con-
struct the solution for T2. The representation for problems with
more than two tasks follows the same scheme. In cases where
the prior experience is unavailable, the representations for dif-
ferent tasks all start from the beginning of the chromosome
by default [26].

The heuristic sequence pi itself cannot be evaluated directly
without associating it with a specific task or problem; that
is, the fitness of a heuristic sequence depends on the quality
of the solution constructed by pi. For example, in the ETTP,
every heuristic in the heuristic sequence is used to schedule
one or several exams. The heuristic is scanned one by one in
the heuristic sequence pi. At each construction step, the first
unused heuristic hi in the heuristic sequence pi is employed to
select and then schedule the exams. After a complete timetable
is constructed, its soft constraint penalty cost is calculated and
used as the fitness of the heuristic sequence pi.

IV. STUDY ON EXAM TIMETABLING AND

GRAPH-COLORING PROBLEMS

In this section, the performance of EMHH is evaluated
on two to five-task intra and cross-domain MFO problems

generated by 16 Carter exam timetabling benchmarks and their
corresponding GCP variants. The effectiveness, efficiency, and
generality of EMHH for solving both intradomain and cross-
domain problems are analyzed. Note that a task in EMHH
represents an instance of ETTPs or GCPs in the following
context unless otherwise stated.

A. Test Problems

ETTPs involve assigning a given number of exams to a
set of predefined timeslots subject to certain constraints [7].
The constraints can be classified into two categories, namely,
hard and soft constraints. The solutions that satisfy all hard
constraints are called feasible solutions. Soft constraints are
generally used as criteria in evaluating the quality of feasible
solutions. In real cases, both hard and soft constraints vary
from institution to institution. The most common constraints
in ETTPs are listed as follows.

1) Student Conflict: Students cannot have more than one
exam in one timeslot (hard constraint).

2) Room Capacity: The total number of students assigned
cannot exceed the room capacity in one timeslot or
session (hard constraint).

3) Exam Distribution: The exams of one student should be
as sparsely distributed as possible in the timetable (soft
constraint).

Three variants of ETTPs, namely, the GCP, uncapacitated
ETTPs (uETTPs), and capacitated ETTPs (cETTPs), have been
studied in the existing literature.

1) GCPs aim to find the smallest number of colors for all
vertices without conflicts; that is, adjacent vertices are
assigned different colors. An ETTP degrades to a GCP if
only student conflict is taken into consideration [7], [33].

2) In uETTPs, the room capacity constraint is relaxed. A
penalty wt = 25−t, t ∈ [1, 5] occurs if two exams
of a student are assigned t timeslots apart [7]. The
objective is to minimize the soft constraint penalty
cost φ = Total_penalty/Number_of_students, where
Total_penalty is the summation of the penalties caused
by all students. This objective represents a preference to
timetables where each student’s exams are distributed as
sparsely as possible.

3) In contrast to uETTPs, in cETTPs, room capacity restric-
tions apply per timeslot [34], [35] or per session [33].
The objective of cETTPs is to minimize the number
of students taking two exams consecutively during one
day [34], and it can also be extended to overnight
cases [33], [35].

In this article, we employ version I, II and IIc (the cor-
rected version II) of the Carter benchmarks summarized
in [7] as the uETTP and GCP test sets. A brief sum-
mary of the properties of these benchmarks can be found
at http://www.cs.nott.ac.uk/pszrq/data.htm and in Table SI in
the supplementary material. For uETTPs, instead of using the
above-mentioned penalty wt, a modified penalty w′

t, as shown
in (2), is adopted to calculate Total_penalty in this article,
where a large penalty occurs for each pair of conflicting exams.
The resulting search space of the proposed algorithm thus
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Algorithm 3 Adaptive One-Point Mutation
Input:

p: Parent heuristic sequence.
gen: Current generation.
G: Total number of generations.

Output:
o: Offspring.

1: mLength = max(1, |p| · gen/G). // Decide the mutation
part in p, i.e. p(1) ∼ p(mLength).

2: pm = 1/mLength. // Probability of mutation.
3: o = p.

4: for each position i = 1 to mLength do
5: if rand < pm then
6: //rand ∈ (0, 1) is a random real number.
7: randomly change o(i) to another heuristic.
8: end if
9: end for

10: return o.

contains infeasible solutions; however, the fitness landscape
becomes connected. The greedy strategy in [5] and [32] is
used to choose the timeslots for the selected exams

w′
t =

{
25−t, t ∈ [1, 5]
10 000, t = 0.

(2)

For the GCPs, the direct use of the number of colors in the
objective function is very likely to form a fitness landscape
with large plateaus; thus, it is difficult to distinguish between
different solutions with the same number of colors. In this
article, we modified the evaluation function in [5] to include
two measures on the coloring, namely, the coloring sum as
used in [5] and the cube of the number of colors used. The
coloring sum is calculated as the sum of the product of the
size and the color index of each color class that comprises a
set of vertices with the same color. Thus, this new evaluation
function considers not only the number of colors but also the
sizes of the color classes.

B. Genetic Operators

In [32] and [36], it is shown that the heuristics at the
later stage of solution construction tend to make less differ-
ence in the quality of the solutions. To dynamically allocate
the computational resources in EMHH, the adaptive one-point
mutation operator shown in Algorithm 3 is used to first mod-
ify early parts of the heuristic sequences and then extend to
later parts along with the evolution. |p| represents the length
of individual p. As a result, the earlier heuristics in the heuris-
tic sequences have more opportunities to evolve toward proper
hybridizations. The uniform crossover [37] is used in EMHH.

C. Experimental Setup

In this article, only the SD and LWD are employed as the
candidate low-level heuristics in EMHH. According to [29],
[31], and [38], when used alone, SD outperforms the other
graph heuristics, and was shown to be effective in [32] when
hybridized with LWD. Each of the graph heuristics will
schedule two events, as in [31], to construct the solutions.

In EMHH, the population size is set to 30 and the total
number of generations is set to 100. The single-tasking
optimization framework, termed as SOHH, is developed with
every setting identical to EMHH, except that only one task is
optimized.

The predefined probability rmp controls how often the
evolved knowledge is transferred among different tasks in
EMHH. As suggested in [25], rmp should be close to 1 if there
exists prior knowledge that the handling tasks are correlated;
otherwise, a smaller rmp value should be set. In the literature,
no effective measurement between uETTP instances exists due
to the difficulty in assessing their similarity. In a set of pre-
liminary experiments, the range of rmp is set to [0.1, 1], with
an increasing stepsize of 0.1, to examine the impact of rmp on
the performance of EMHH for solving three MFO problems
(hec92, hec92 II), (hec92, sta83), and (hec92, tre92). The
average results from 30 independent runs, as plotted in Fig. 4,
show that EMHH performed relatively well on (hec92, hec92
II) and (hec92, tre92) with rmp = 0.8, and the performance
on (hec92, sta83) is less sensitive to the settings of rmp. We,
therefore, set rmp to 0.8 in the remaining experiments.

All the algorithms were implemented in C++ using Visual
Studio 2017. The experiments were conducted on a desktop
with Intel Core i7-3820 CPU (3.60 GHz) 16.0-GB memory
and 64-bit Windows 10. The average results are obtained over
30 independent runs of the algorithms.

D. Experimental Results

An additional five sets of experiments were conducted to
evaluate the EMHH framework. The first three experiments
demonstrate the effectiveness, efficiency, and generality of
asynchronous optimization of EMHH for intradomain prob-
lems. The fourth set of experiments presents the generality
of EMHH in addressing cross-domain optimization problems.
The generality of EMHH is further examined on problems with
over two tasks in the fifth set of the experiment. Finally, com-
parisons between EMHH and other existing hyper-heuristics
are presented.

1) Comparison Between EMHH and SOHH on uETTPs:
First, we set K to 2; thus, in total, 120 MFO problems are
created from the 16 Carter exam timetabling benchmarks.
The best, average, and standard deviations of objective values
obtained by EMHH and SOHH are presented in Table I, where
T1 and T2 represent task 1 and task 2 in an MFO problem,
respectively. For example, in the first MFO problem (car91,
car92), T1 and T2 represent car91 and car92, respectively. The
Wilcoxon rank-sum test with a 95% confidence level is con-
ducted between the results of EMHH and SOHH. In Table I,
the significantly better results are highlighted in gray, and the
better results are in light gray. The detailed p and h values are
provided in Table SIII in the supplementary material, where
h = 1 or p < 0.05 denotes a significantly better performance at
the confidence level of 95%. Table II compares the EMHH and
SOHH results listed in Table I using three indicators, which
are defined as follows.

1) All-Win: If the results on both tasks, i.e., T1 and T2,
in an MFO problem obtained by approach A are all
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TABLE I
MINIMUM, MEAN, AND STANDARD DEVIATIONS OBTAINED BY EMHH AND SOHH ON THE UETTPS

significantly better than those obtained by approach B,
the count of all-wins for A is increased by one.

2) One-Win: If approach A achieves a significantly better
result on one of the two tasks, and better, worse or equal

results than B on another task, then the count of one-
wins for A is increased by one.

3) Tie: Otherwise, increase the tie count by
one.
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Fig. 4. Impact of different probabilities rmp on EMHH. (a) (hec92, hec92 II). (b) (hec92, sta83). (c) (hec92, tre92).

TABLE II
STATISTIC COMPARISONS BETWEEN EMHH AND SOHH ON

RESULTS IN TABLE I

The comparison results show that EMHH is highly effective
against SOHH on uETTPs. It outperformed SOHH on 43 MFO
problems, achieved significantly better results for one of the
two tasks than SOHH on 63 MFO problems, and performed
similarly on 13 MFO problems. SOHH won on only one
MFO problem in terms of the one-win indicator. Moreover,
the results demonstrate that multitasking works effectively in
the low-level heuristic space. In summary, EMHH is shown to
be an effective hyper-heuristic framework for solving uETTPs.

2) Comparisons Between the Computational Costs of
EMHH and SOHH: Compared with SOHH under the same
parameter settings, the number of evaluations in EMHH can
be reduced to almost 1/K of that in SOHH. In EMHH, each
individual is evaluated on only one of the K tasks indicated
by its skill factor, which eventually leads to a reduction in
computational costs. As the baseline, Table III presents the
average time used by SOHH to solve the 16 uETTP instances.
To demonstrate the efficiency of EMHH, the average com-
putational costs for solving all MFO problems comprising
instance lse91 and the other 15 instances are presented in
Fig. 5. For comparison, SOHH is used to solve both single
tasks sequentially in these MFO problems (i.e., the average
time consumed by the first and second tasks are denoted as
SO-T1 and SO-T2, respectively, in Fig. 5). Instance lse91 con-
sumes the median average time according to Table III; thus, the
performance of EMHH on multitasking lse91 with the other
instances consuming longer and shorter time can be clearly
presented.

In most of the cases shown in Fig. 5, the time consumed
by EMHH is approximately half of that by SOHH. Moreover,
EMHH significantly reduces the time consumed by the first
task that represents the computationally expensive task in an
MFO. Note that the orders of tasks in an MFO do not affect
the performance of EMHH; here we subject the computation-
ally expensive task to T1 for demonstration purposes. We can
conclude that EMHH works more efficiently in the low-level

Fig. 5. Time comparison between SOHH and EMHH for MFO problems.

heuristic space than SOHH in solving uETTPs. The same con-
clusion can be drawn from the time comparisons of other
instances, as shown in Fig. S1 in the supplementary material.

3) Generality on Asynchronous Optimization: The results
in Table II indicate that in the low-level heuristic space, the
solutions for different instances may share some commonly
evolved knowledge. Although the direct timetable solutions
for different instances could be highly distinctive, the low-
level heuristic sequences used to construct them may possess
similar patterns, which subsequently indicates that the heuristic
sequences obtained in solving one task could be reused for
solving other tasks. To verify this, another set of experiments
is conducted, where a single task is first optimized by SOHH;
then, after a number of iterations, the second task is inserted
into the evolution; thus, the paradigm turns into EMHH for
the remaining generations.

Based on the average time shown in Table III, instance
hec92 consumes relatively less time than other instances, and,
therefore, is processed first as task T1 to save computational
resources. All the parameters are kept unchanged and the
second task is started after half of the total generations.

As seen from Table IV, compared with SOHH, EMHH
achieved significantly better results on T2 in ten test cases,
better results in three, and equal result in one test case; while
SOHH obtained a better result in only one test case. Although
the second task is introduced halfway through the evolution,
EMHH still outperformed SOHH. This demonstrates that the
low-level heuristic sequences learned from optimizing hec92
are applicable to other instances, i.e., the solutions of different
uETTP instances in the low-level heuristic space may share
some common patterns or knowledge. Moreover, EMHH is
capable of retaining such knowledge in the low-level heuristic
space via the knowledge-transfer scheme, showing a higher
level of generality on asynchronous optimization.

Authorized licensed use limited to: Northwest University. Downloaded on February 25,2021 at 02:06:26 UTC from IEEE Xplore.  Restrictions apply. 



HAO et al.: UNIFIED FRAMEWORK OF GRAPH-BASED EVOLUTIONARY MULTITASKING HYPER-HEURISTIC 43

TABLE III
AVERAGE TIME CONSUMED BY SOHH IN SOLVING CARTER BENCHMARKS (IN MINUTES)

TABLE IV
COMPARISONS BETWEEN EMHH AND SOHH, WHERE IN EMHH THE SECOND TASK IS TRIGGERED IN LATE GENERATIONS

4) Generality on Synchronous Cross-Domain Optimization:
To examine the generality of EMHH on synchronous cross-
domain optimization, 16 MFO problems are created, each
consisting of a uETTP task and its GCP variant. All the param-
eters used in this section are consistent with those in the above
experiments. The comparison between EMHH and SOHH on
solving these cross-domain MFO problems and their single-
objective optimization variants, respectively, are presented in
Table V.

As seen from Table V, for uETTP tasks (T1), EMHH
obtained significantly better and better results than SOHH in
nine and five instances, respectively, and equal results in the
other two instances. For all the graph-coloring tasks (T2), both
approaches obtained the same best results except for instance
yor83, where the performance of EMHH is slightly more
robust than that of SOHH. To conclude, the results in Table V
demonstrate a high generality of EMHH on synchronous cross-
domain optimization. Moreover, in the low-level heuristic
space, such as the graph heuristic space here, the solutions
for different problems, such as uETTPs and GCPs, may share
some common patterns evolved by solving the companion
tasks in MFO. Therefore, the knowledge in the solutions of
the heuristic space obtained from optimizing in one domain
could be utilized by other domains, which could reduce the
computational cost significantly and, more importantly, may
accelerate the convergence of optimization in every domain.

5) Generality on Many-Task Optimization Problems: To
further evaluate the generality of EMHH, experiments on
many-task optimization (MTO) problems that include more
than two tasks are conducted. The problem sets include:
1) six three-task problems and two five-task problems, with
all uETTP tasks and 2) two four-task cross-domain problems

TABLE V
MINIMUM, AVERAGE, AND STANDARD DEVIATIONS FOR

CROSS-DOMAIN MFO PROBLEMS

with two uETTP tasks and two GCP tasks. Tables SIV, SV, and
SVI in the supplementary material present the three-task, four-
task, and five-task problem sets, respectively. These problem
sets are designed to cover MTO problems with tasks of various
scales, i.e., dimensions. For example, the scales of the tasks
in Set 1 are close to each other, while the middle-scale task
tre92 in Set 2 and the large-scale task car91 in Set 3 are of
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TABLE VI
COMPARISONS BETWEEN EMHH AND A SELECTION OF ALGORITHMS ON UETTPS

even larger differences among the tasks in these two problem
sets. We keep all parameters consistent with the above exper-
iments. The experimental results of 30 independent runs on
Sets 1–6, Sets 7–8, and Sets 9–10 are shown in Tables SVII,
SVIII, and SIX, respectively, in the supplementary material.

As seen from Table SVII in the supplementary material,
the proposed EMHH outperformed SOHH in all three-task
problem sets, except that in Set 5, SOHH obtained bet-
ter average objective value in T1. The results in Table SIX
in the supplementary material also demonstrate that EMHH
can still perform better than SOHH on five-task problems.
Moreover, in Table SVIII in the supplementary material,
EMHH performs equally to SOHH on GCP tasks but slightly
better than SOHH on uETTP tasks. Given that the total
generations used in EMHH and SOHH are identical, the
average computational resources allocated to each task in
three, four, and five-task problems in EMHH are only one-
third, a quarter, and one-fifth, respectively, of that used in
SOHH. Based on these observations, we can conclude that
the proposed EMHH still generalize well on MTO problems
with more.

6) Comparisons of EMHH With Other Hyper-Heuristics:
The above comparisons are between the conventional EA-
based and the multitask EA-based hyper-heuristics. In this
section, we compare our approach with other state-of-the-art
hyper-heuristics in the literature on both uETTPs and GCPs.
The chosen algorithms for comparison include the selection
constructive hyper-heuristics with graph heuristics and were
evaluated on uETTPs and GCPs in Tables VI and VII, respec-
tively. Note that the purpose of this comparison is to provide
an overall performance evaluation on the proposed method

from another point of view. There might be other indicators
or criteria that may provide comparisons on different aspects
of the algorithms.

Table VI presents three indicators in the last three columns.
fi−min−min refers to the best of the minimum objective value
obtained by EMHH in solving the intradomain MFO prob-
lems that consist of the pure uETTP tasks shown in Table I
for each instance. fi−avg−min represents the average of the min-
imum objective value of each instance in solving these MFO
problems. The minimum objective value produced by EMHH
in solving the cross-domain MFO problems, i.e., problems
that comprise uETTP and GCP tasks, are denoted by fc−min.
In the last two rows of Table VI, the average ranks over all
instances (INS (16)) and instances excluding ear83 IIc, hec92
II, sta83 IIc, and uta92 II (INS (12)) from all the compared
algorithms based on their best performance are provided. Due
to the lack of competitive algorithms in the existing literature,
the INS(16) ranks in Table VI are provided for future compar-
isons. The details of the ranks for each compared algorithm on
each instance can be found in Table SII in the supplementary
material.

From Table VI, we can see that EMHH ranks the second
and sixth out of 14 competitors using fi−min−min and fi−avg−min
regarding the INS (12) ranks, respectively. This indicates that
EMHH is competitive on the intradomain MFO problems.
Particularly, given that EMHH optimizes multiple instances in
a single run, the results strongly demonstrate the high gener-
ality of EMHH. Additionally, EMHH ranks the ninth using
fc−min in Table VI, and in Table VII, it obtains competi-
tive results on GCPs as well. Thus, the proposed EMHH has
better generality than the existing hyper-heuristics, given the
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TABLE VII
MINIMUM NUMBER OF COLORS FOUND BY EMHH AND

THE SELECTED ALGORITHMS

competitive results and its ability to tackle instances from dif-
ferent problem domains simultaneously, which has not been
addressed by other hyper-heuristics in the literature.

E. Preliminary Discussions

To analyze success of EMHH, the landscape of the heuris-
tics search space consisting of sequences of graph heuristics
for the tested problems should be analyzed first. In previous
work [32], the trends of hybridizing LWD with SD in the
obtained best heuristic sequences for both uEPPTs and GCPs
were statistically analyzed. The visualized results indicated
that the best heuristic sequences vary significantly among dif-
ferent instances, whether from the same or different problem
domain. However, the overall trend is that they employ more
LWD in the early stages of the solution construction than in
the later stages. This presents a common pattern of different
problems in the heuristic space. Thus, one of our conjectures
for the success of EMHH is that the knowledge-transfer mech-
anism can promote the exchange of the learned patterns among
tasks, which eventually facilitates the convergence of all tasks.

Furthermore, according to [36], the landscape of the heuris-
tics search space for uETTPs has the following features: big
valley structure, large number of local optima, high rugged-
ness, wide plateaus, shallow valleys, and positional bias.
Based on these features, it can be inferred that search method-
ologies that work in the search space under discussion may
easily get stuck in local optima, especially considering that
there are wide plateaus in the search space. Therefore, we sus-
pect that part of the superiority of EMHH is that it can promote
the diversity of the heuristic sequences via the knowledge-
transfer mechanism, thus improving the possibility of jumping
out of the local optima. To verify this conjecture, we observed
the best ten heuristic sequences for all the instances based on
the results of EMHH and SOHH from Table I. The MFO
problem (ear83, sta83) is selected as the representative due
to the significant distinction between the best ten heuristic
sequences shown as Fig. S2 in the supplementary material.
In Fig. S2(a) and (b) in the supplementary material, the left
3 heuristics in the selected heuristic sequences of ear83 and
sta83 are obviously different. Therefore, EMHH intuitively
would suffer from a negative transfer. However, Table I shows
that EMHH achieved significantly better results than SOHH

in both tasks. Furthermore, from Fig. S2 in the supplementary
material, we can see that the results obtained by EMHH are
clearly closer to the best ten heuristic sequences than those
obtained by SOHH. Namely, SOHH is stuck in local optima,
while EMHH successfully escaped due to the knowledge-
transfer mechanism. Note that in [23], a same conjecture has
been made in the permutation-based encoding search space,
but verification was not provided. Finally, there may be neg-
ative transfers [18] in the process of knowledge-transfer, as
in the cases of MFO problems that including rye93, where
SOHH achieved better results than EMHH on rye93.

F. Potential Applications and Future Research Challenges

Other educational timetabling problems are possible appli-
cations that require multitasking hyper-heuristics. Another
scenario is the optimization of cloud services, where the server
is likely to face concurrent service requests from multiple
customers. The optimization of these requests might scale dif-
ferently or even belong to different domains. In this regard, the
multitasking hyper-heuristics present an appropriate approach
with a reduced computational cost from the multitasking and
knowledge-transfer schemes. In addition, the applications of
hyper-heuristics as presented in [10], such as vehicle rout-
ing problems, nurse rostering problems and packing problems,
might also be potential applications.

As mentioned in the Introduction, hyper-heuristics can be
classified into four categories, namely, selection construc-
tive/perturbative, generation constructive/perturbative. This
article concerns the selection constructive hyper-heuristic as
the precursor of extending the hyper-heuristics into the multi-
tasking scheme. Extensions of other classes of hyper-heuristics
remain to be studied. Several challenges may be encountered
in these extensions. The first is the design of the unified repre-
sentation. Although low-level heuristics constitute the search
space of hyper-heuristics, they are domain-specific; that is,
the graph heuristics used to solve educational timetabling
problems might not be suitable to solve other combina-
tional problems. Thus, careful attention should be paid to the
design of the unified representation when handling problems
with very distinct heuristics. Second, much effort is needed
to develop multitasking hyper-heuristics that combine differ-
ent categories of hyper-heuristics; for example, selection and
generation constructive hyper-heuristics. Third, the design of
efficient knowledge-transfer schemes in the heuristic space
challenging as well.

V. CONCLUSION

In this article, a unified framework of EMHH is proposed,
where the concept of evolutionary multitasking and graph
heuristics are used as the high-level search methodology and
low-level heuristics, respectively. The EMHH has been evalu-
ated on examination timetabling and graph coloring problems.
Given that the purpose is to propose a new general framework
instead of competing with particular algorithms on specific
single problems, we found the results encouraging.

In conclusion, the superiorities of EMHH compared with
the conventional single-tasking hyper-heuristic are twofold.
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1) It raises the generality of both the hyper-heuristic and
evolutionary multitasking to a higher level; i.e., it
extends the generality of hyper-heuristics in address-
ing multiple optimization problems and the scope of
unification in evolutionary multitasking.

2) EMHH is more effective and efficient. To be specific,
on the one hand, it can take advantages of the common-
alities among tasks to facilitate the convergence of the
algorithm. On the other hand, the search biases provided
by different tasks via the knowledge-transfer mechanism
can promote the diversity in the heuristic space, thus
improving the global search of EMHH.

In the future, we will investigate EMHH on other problem
domains. The properties of common solution structures in a
high-level space need to be further examined. The design of
more effective mechanisms to adapt the reusable knowledge
across multiple domains could be another interesting future
research direction.
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