
Optimizing Deep Learning by Hyper Heuristic
Approach for Classifying Good Quality Images

Muneeb ul Hassan1, Nasser R. Sabar2, Andy Song1

1 RMIT University, Melbourne, VIC 3000, Australia,
2 LaTrobe University, Melbourne, VIC 3083, Australia

Abstract. Deep Convolutional Neural Network (CNN), which is one of
the prominent deep learning methods, has shown a remarkable success in
a variety of computer vision tasks, especially image classification. How-
ever, tuning CNN hyper-parameters requires expert knowledge and a
large amount of manual effort of trial and error. In this work, we present
the use of CNN on classifying good quality images versus bad quality im-
ages without understanding the image content. The well known data-sets
were used for performance evaluation. More importantly we propose a
hyper-heuristics approach on CNN for tuning its hyper-parameters. The
proposed method encompasses of a high level strategy and various low
level heuristics. The high level strategy utilises search performance to de-
termine how to apply low level heuristics to automatically find an optimal
set of CNN hyper-parameters. Our experiments show the effectiveness of
this hyper-heuristic approach which can achieve high accuracy even when
the training size is significantly reduced and conventional CNNs can no
longer perform well. In short the proposed hyper-heuristic method does
enhance CNN deep learning.

Keywords: Hyper-Heuristics, Deep Learning, CNN, Optimisation

1 Introduction

Deep learning is a fast growing area in Artificial Intelligence as it has achieved
remarkable success in many fields apart from the well publicised Go player -
AlphaGo [19]. These fields include real time object detection [12], image classifi-
cation [7] and video classification [9]. It also performed well in speech recognition
[5] and natural language processing [6]. Major deep learning methods are Convo-
lutional Neural Network, Deep Belief Network and Recurrent Neural Network.
One of the problems of these deep learning methods is the configuration of the
learning process because these learning algorithms are sensitive to parameters
and a good performance is often the result of a good parameter combination.
However finding a good combination is not a trivial task. For example the pa-
rameters in Convolutional Neural Network typically involve batch size, drop out
rate, learning rate and training duration. They all can significantly impact the
learning performance of deep learning on a particular task. In this study we
will address this issue by introducing a hyper-heuristic based method to auto-
matically tune these parameters. The particular problem in this study is image



2 Muneeb et al.

classification. We would like to train a deep network classifier to differentiate
good quality images versus bad ones regardless the image content. The problem
itself is novel.

Image Classification has been studied of many decades and is one of the key
areas in computer vision. The task of image classification is to differentiate be-
tween images according to their categories. Image classification usually has a set
of targets for example handwritten digits in images[10], human faces appeared
on photos [20], various human behaviours captured in video image frames [8]
and target objects like cars and books. However, in many real world scenar-
ios, image quality, which is independent of image content, is also of significant
importance. It is highly desirable that good photos can be separated from bad
photos automatically. Bad images then could be improved or rejected from an
image collection so less resources would be consumed. An extension on this is
to even automatically select aesthetic images. The aim of this study is the first
step, utilising deep learning to differentiate good images from images of obvious
poor quality such as blurred images and noisy images. In particular the research
goal of this study is to answer the following questions:

1. How to formulate deep learning to differentiate between images of good
quality and images of bad quality without understanding the image content?

2. To what extend the training samples can be reduced still maintaining good
accuracy in classifying good vs bad images?

3. How to automatically tune the deep learning parameters to achieve optimal
classification results?

Hence our investigation is also organised in three components. The first part
is try to determine a suitable convolutional network structure as a classifier for
good and bad images. Secondly, we study the impact of the training size on
the classification performance. Thirdly, a hyper heuristic based mechanism is
introduced to evolve the optimal parameter combinations.

In Section 2 the image datasets are introduced. Section 3 describes the deep
learning methodology while Section 4 describes the hyper heuristic methodology.
Section 5 shows the experiments with results. The conclusion is presented in
Section 6.

2 Image Data Sets

In this study the well know image classification benchmark, the MNIST dataset is
used to represent the good images [10]. MNIST is a standardized image collection
which consists of handwritten digits from 0 to 9. Each digit is a 28x28 pixel gray
scale image. MNIST comes with a training set which consists of 60000 such
images of digits and a test set which contains 10000 similar images.

A variation of MNIST dataset which is called noisy MNIST or n-MNIST, is
used to represent the bad images [3]. There are three subsets of n-MNIST:

1. MNIST with motion blur
2. MNIST with additive white gaussian noise(awgn)



Optimizing DL Parameters by Hyper Heuristic Approach 3

3. MNIST with AWGN and reduced contrast.

These datasets are the exact replicas of original MNIST but with additional
noise. Each image in n-MNIST is also 28x28 gray scale. There are 60000 training
examples and 10000 test examples. The labels in training and test data-sets are
hard encoded, e.g. each label is a 1× 10 vector.

Fig. 1. Example of images from
MNIST Dataset[11]

Fig. 2. Example of images from
Motion Blur Dataset.

Fig. 3. Example of images from
AWGN Dataset

Fig. 4. Example of images from
Additive White AWGN Dataset.

The MNIST with motion blur filter is created by imitating a motion of came
by 5 pixels with an angle of 15 degrees which makes the filter a vector for hori-
zontal and vertical motions. The MNIST with AWGN is created by introducing
additive white Gaussian noise with signal to noise ratio of 9.5. The MNIST
with reduced contrast and AWGN is created by introducing contrast range with
AWGN with signal to noise ratio of 12 [3].



4 Muneeb et al.

3 Deep Learning Methodology

In this study we use the well know convolutional network through Keras and
Tensorflow. Keras is a high-level neural network API which is built on top of
Tensorflow. With keras, we can define models with different standalone config-
urable modules which then can be combined to form a neural network model.
Tensorflow is a deep learning library developed by Google [1]. Tensorflow is a
directed graph which consists of nodes and it also maintain and update the state
of the node. Every node has zero or more input and zero or more outputs. Value
flow among the node to node and values are arbitrary long arrays called tensors.
An example of a tensor graph is shown in figure 5. That is a simple equation of
cost computed as a function of rectified Linear Unit(ReLu) in which the matrix
of weights W and input x are multiplied then adding a bias b.

Fig. 5. A Tensorflow Computation Graph[2]

For our image classification tasks, we use two 2D convolution layers (convo-
lution2D), with a 2D max pooling layer (MaxPooling) placed after the second
convolution layer. The output of MaxPooling is flattened to a one dimensional
vector which will be passed through a fully connected dense layer. The dense
layer and a drop out layer are introduced after the MaxPooling2D layer to pro-
duce better generalization. For all the layers the Rectified Linear Unit (ReLu)
activation is used. The output of dense layer uses the softmax activation for
probabilistic classification.



Optimizing DL Parameters by Hyper Heuristic Approach 5

The hyper-parameters of the CNN learning are listed below. The optimization
target in this study is to find a good combination of these hyper-parameters and
ultimately lead to a better accuracy:

1. The batch size - the number of training examples used in one iteration.
2. The number of epochs - representing the number of iteration over the entire

data set.
3. The number of neurons in the fully connected layer.
4. Drop out probability
5. The learning rate
6. The Rho factor
7. The epsilon factor

During the learning, we split the training data into a training set and a
validation set. Validation data consist of 20% of the original training set and
the training set uses the rest. During training, the validation loss is monitored.
When it stops decreasing or starts increasing then the training will terminate to
avoid overfitting.

Once the learning is terminated, the trained network will be applied on the
test image set to obtain test accuracy. The accuracy in this study is simply
classification accuracy which is calculated as

Accuracy =

∑
True Positive+

∑
True Negative

Total number of Images
(1)

There are other ways to evaluate the model, for example ROC, F-measure and
MSE. Only classification accuracy measure described above is used for simplicity
reason. Also our image datasets are quite balanced and true and false cases are
equally important. Hence training and test accuracies are sufficient to guide the
learning and to indicate the performance of learned models.

Our second aim is to see how training size would impact the learning. It
is obvious that the computational cost will be less if the training set is small.
However a data set, which is too small, would not be representative enough to
enable good learning. Therefore it is important to find the right balance between
good performance vs computational cost, especially in real world applications.
In this study we try to find minimum size for training which can still lead to
reasonable test performance. Logarithmic scale is used here, in the order of 2n,
2n−1, 2n−2, until 23 and 22.

Note the size reduction only applies on the training data. The test set, which
contains 10000 MNIST images (good) and 10000 n-MNIST images (bad), is
consistently used in all experiments. Only test accuracy is used to report the
learning performance unless specified otherwise.

4 Hyper-Heuristics Parameter Optimisation

Hyper heuristics have been proposed for selecting and generating heuristics to
solve a particular problem [4]. Hyper-heuristics has been successful in many dif-
ferent fields [4][16][18][14][15]. The aim of hyper heuristics optimisation is to



6 Muneeb et al.

find and assemble good optimisation heuristics. Different operations or tech-
niques can be introduced as heuristics so the overall optimisation could be more
effective and more efficient.

Hyper Heuristics often begins from randomly generated initial solutions and
then iteratively improve the solutions. A hyper-heuristic has two key compo-
nents: Low Level Heuristics and High Level Strategy respectively. The low level
heuristics operate on the solution space. The quality of solution is being eval-
uated by the objective function from the domain. Whereas high level strategy
operate on the heuristic space. It will form the heuristics to improve the result
and secondly it will also determine whether to accept or reject the generated so-
lution by the acceptance criterion. The components of this framework are briefly
described below:

4.1 High Level Strategy

The high level strategy uses the past search performance of low level heuristics
to decide which heuristic should be applied at each decision point. It selects
one from a pool of heuristics in the low level. This work uses the Multi-Armed
Bandit(MAB) as an on-line heuristic selector. MAB is based on the record of
past performance, e.g. the performance in previous iterations. The record stores
an empirical reward and confidence level. The former is the average rewards
achieved by that heuristic. The confidence level is the number of times that the
heuristic has been selected. Obvious higher values of these two scores indicate
better quality of the heuristic [17]. MAB goes through all heuristics one by one
and selects the one which returns the maximum value when applied Equation
(2).

arg max
i=LLH1...LLHn

qi(t) + c

√√√√2log
∑LLHn

i=LLH1
ni(t)

ni(t)

 (2)

where LLHn is the total number of heuristics in the low level, ni(t) is number

of times that ith heuristic has been applied up to time t and qi(t) is the empirical

reward of the ith heuristics up to time t which is calculated as follows: qi(t)=qi(t)
+ ∆, where ∆ is the difference between the quality of the old and new solutions.

4.2 Acceptance Criterion

Acceptance criterion is in the high level and is independent of task domain.
Monte Carlo acceptance criterion is used in this study [14]. A solution that
improve the objective function will be accepted if the following condition is met
[17].

R < exp(∆f) = exp(ft − ft−1) (3)

where R is the random number between [0,1] and ∆f is the difference between
performance at (t− 1)th and (t)th iterations.



Optimizing DL Parameters by Hyper Heuristic Approach 7

4.3 Low level heuristics

In this work 18 heuristics are included in the set. Every heuristic has different
characteristics hence may lead to different search behaviours. In this work, we use
the following six heuristics to form the set of low level heuristics. Each heuristic
is used in several ways to change one, two, three, real values parameters only,
integer parameters only or all parameters.

Parameterized Gaussian Mutation

Xi = Xi +N(0, σ2) (4)

where σ2 is 0.5 times the standard deviation [17].

There another three operators which are the same as above but with different
σ values ranged from 0.2, 0.3 and 0.4 of the standard deviation.

Differential Mutation

Xi = Xi + F × (X1i −X2i)∀i = 1...n (5)

where Xi is the decision variable for a given solution and X1i is the best solution
and F is the scaling factor[17].

Arithmetic Crossover

Xi = λ×Xi + (1− λ)×X1i,∀i = 1...N (6)

where λ is random number with range 0 to 1. Xi is the current solution and X1i
is the current best solution [17].

4.4 Initial Solution

This in our study is a set of CNN parameters that need to be tuned. These
parameters are represented as an array. Each parameter initially is randomly
generated. The random function is as follows:

xp = lp +Randp(0, 1)× (up − lp), p = 1...p (7)

where p is the total number of parameters to be tuned. Randp returns a random
number within 0 and 1. lp and up are lower bound and upper bound respectively
for that parameter[17].



8 Muneeb et al.

Table 1. Experiment with training on MNIST and testing on n-MNIST

Datasets Optimiser Learning Rate Train Accuracies Test Accuracies Epochs

mnist-m-b Adam 0.2 0.9828 0.9631 4

mnist-m-b Adadelta 0.2 0.9732 0.9660 4

mnist-awgn Adam 0.2 0.9810 0.7023 4

mnist-awgn Adadelta 0.2 0.9737 0.7897 4

mnist-rc-awgn Adam 0.2 0.9814 0.5287 4

mnist-rc-awgn Adadelta 0.2 0.9740 0.6676 4

5 Experiments and Results

The first set of experiments are for image classifications. There are two most
commonly used optimisers that were studied, namely Adam and Adadelta. In
[13], it was mentioned that Adam and Adadelta provide the best convergence
during the learning process. Table 1 show the classification performance on noisy
MNIST sets with these two optimisers. The learning rate was set as 0.2 for
all experiments. This preliminary experiments show that Adadelta can achieve
better accuracy in comparison with Adam.

After a range of preliminary experiments, we settled on the settings include
the optimization algorithm, learning rate, drop out rate and number of neurons
in the dense layer to start our experiment on classifying the noisy-MNIST and
MNIST images. The images for training data are more than 60,000. We decrease
the data size by half starting from 216 = 65540 images to see the impact on
test accuracy. For each size we repeat the experiment 30 times. The results are
shown in Table 2 including the average training accuracies and test accuracies
of the 30 runs. The epochs are all set as 10 to be consistent.

As we can see from Table 2, the classification performance between training
on 65540 images and 512 images are not much different, meaning 512 is sufficient
for training image classifiers to recognise good quality images. The drop in per-
formance between 512 and 64 images is not major as well. The set of 32 images
starts showing significant performance loss indicating more training images are
required. When the training size is as small as 4, the test accuracy becomes 50%
which is pretty much random guessing for this binary classification task.

The above experiments confirm that the size of training dataset does impact
on training. In the next set of experiments the hyper heuristic method presented
in Section 4 is added in the learning process to tune the network parameters. The
results are shown in Table 3 which listed the average test accuracies of 30 runs on
training set of size 512 to that of size 4. Sizes above 512 are not included as the
results from these sets would be all similar and close to 100%. For comparison
purposes, the test results of training without the Hyper Heuristic optimisations
from Table 2 are repeated in the middle column of Table 3 .

From test accuracies listed in Table 3 we can see the big improvement intro-
duced by the hyper heuristics approach on sizes 32 and 16. For larger size there
are still performance increases but there are not much room for improvement.



Optimizing DL Parameters by Hyper Heuristic Approach 9

Table 2. Experiment with different training sizes

Training Size Training Accuracies Test Accuracies Epochs

65540 0.9999 1.0 10

32770 1.0 1.0 10

16384 0.9999 1.0 10

8192 0.9998 1.0 10

4096 0.9979 0.9998 10

2048 0.9866 0.9917 10

1024 0.9639 0.9922 10

512 0.9043 0.9910 10

256 0.7500 0.9891 10

128 0.6078 0.9898 10

64 0.7031 0.9824 10

32 0.7600 0.7905 10

16 0.5625 0.6959 10

8 0.5205 0.6469 10

4 0.5000 0.5022 10

Table 3. Experiment with different training size using Hyper Heuristic Approach

Size of Training Data Test Accuracies (No HH) Test Accuracies (with HH)

512 0.9910 0.9990

256 0.9891 0.9990

128 0.9898 0.9988

64 0.9824 0.9911

32 0.7905 0.9165

16 0.6959 0.9068

8 0.6469 0.6872

4 0.5022 0.5211

For smaller size like size 4, the sample is too few to be learnable hence the pa-
rameter tuning could not be much of help. This result indicates that with the
hyper heuristic tuning approach, it is possible to reduce the required training
size. For applications of which training examples are few or expensive to obtain,
our parameter optimisation could be very helpful.

To investigate the computational cost of the parameter optimisation, we also
measured the running time of the above experiments which were all conducted
on a machine with Intel core i3 with processor 1.90GHz, 4.00 GB RAM and
64-bit Windows 10. The results are presented in Figure 6 which shows the av-
erage time in seconds of 30 runs of learning on sizes 4, 8 up to 128, with and
without the hyper-heuristic parameter optimisation. As can be seen on the fig-
ure, the optimisation process does take extra time. However the time increase
is acceptable, maximum of a double time in the case of 128 training images. In



10 Muneeb et al.

comparison, exact methods for combinatorial optimisation are too expensive to
be practical.

Fig. 6. Comparison on Running Time with and without Hyper-Heuristic Optimization

Fig. 7. Test accuracies with and without Hyper Heuristic Parameter Optimisation



Optimizing DL Parameters by Hyper Heuristic Approach 11

From the above experiments we can see the hyper heuristic method can
greatly improve learning without requiring too much extra computational re-
sources. To further illustrate the differences realised by our hyper heuristic
method, the test performance on different sizes are plotted as in Figure 7. The
lines represent the average of 30 runs, while the bars on size 4 to size 64 are the
standard deviation of these 30 runs of using and without using hyper heuristic
optimisation. As can be seen in this figure, the gap at size 16 and at size 32 are
significant. To verify the significance, T-tests are conducted on test accuracies
on size 16 which resulted a p-value of 0.000002, and on size 32 which resulted
a p-value of 0.000025. These p-values are way below the null hypothesis thresh-
old 0.05, showing the differences that hyper heuristic optimisation made on test
performance are indeed significant.

6 Conclusions

In this work, we utilised deep learning to classify images of good quality versus
images of poor quality without understanding or examining the image content.
Based on our investigation using MNIST and n-MNIST benchmark, we can con-
clude that deep learning with convolutional neural networks can handle this
type of image classification tasks and can achieve high performance with suf-
ficient amount of training images. Our study also confirms that the learning
performance is affected by training size. Learning image quality classifiers does
not need large amount of samples. However the learning would still suffer if the
training set is too small.

Another important part of this study is introducing hyper heuristic based pa-
rameter optimisation to automatic config the learning. Through our experiments
it is clear that this optimisation method can improve the learning especially when
the training size is not sufficient but not too few. Furthermore, the additional
computational cost introduced by our hyper heuristic method is not too expen-
sive. That makes this method attractive especially in real world applications
where training samples might be expensive or difficult to obtain.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S.,
Davis, A., Dean, J., Devin, M., et al.: Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

2. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S.,
Davis, A., Dean, J., Devin, M., et al.: Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

3. Basu, S., Karki, M., Ganguly, S., DiBiano, R., Mukhopadhyay, S., Gayaka, S.,
Kannan, R., Nemani, R.: Learning sparse feature representations using probabilis-
tic quadtrees and deep belief nets. Neural Processing Letters pp. 1–13 (2015)

4. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.R.: A
classification of hyper-heuristic approaches. In: Handbook of metaheuristics, pp.
449–468. Springer (2010)



12 Muneeb et al.

5. Graves, A., Mohamed, A.r., Hinton, G.: Speech recognition with deep recurrent
neural networks. In: Acoustics, speech and signal processing (icassp), 2013 ieee
international conference on. pp. 6645–6649. IEEE (2013)

6. Hermann, K.M., Kocisky, T., Grefenstette, E., Espeholt, L., Kay, W., Suleyman,
M., Blunsom, P.: Teaching machines to read and comprehend. In: Advances in
Neural Information Processing Systems. pp. 1693–1701 (2015)

7. Ji, S., Xu, W., Yang, M., Yu, K.: 3d convolutional neural networks for human action
recognition. IEEE transactions on pattern analysis and machine intelligence 35(1),
221–231 (2013)

8. Ji, S., Xu, W., Yang, M., Yu, K.: 3d convolutional neural networks for human action
recognition. IEEE transactions on pattern analysis and machine intelligence 35(1),
221–231 (2013)

9. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-
scale video classification with convolutional neural networks. In: Proceedings of
the IEEE conference on Computer Vision and Pattern Recognition. pp. 1725–1732
(2014)

10. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

11. Liu, C.L., Nakashima, K., Sako, H., Fujisawa, H.: Handwritten digit recognition:
benchmarking of state-of-the-art techniques. Pattern recognition 36(10), 2271–2285
(2003)

12. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified,
real-time object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 779–788 (2016)

13. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747 (2016)

14. Sabar, N.R., Ayob, M.: Examination timetabling using scatter search hyper-
heuristic. In: Data Mining and Optimization, 2009. DMO’09. 2nd Conference on.
pp. 127–131. IEEE (2009)

15. Sabar, N.R., Ayob, M., Kendall, G., Qu, R.: Grammatical evolution hyper-heuristic
for combinatorial optimization problems. strategies 3, 4 (2012)

16. Sabar, N.R., Kendall, G.: Population based monte carlo tree search hyper-heuristic
for combinatorial optimization problems. Information Sciences 314, 225–239 (2015)

17. Sabar, N.R., Turky, A.M., Song, A.: Optimising deep belief networks by hyper-
heuristic approach. In: CEC 2017-IEEE Congress on Evolutionary Computation
(2017)

18. Sabar, N.R., Zhang, X.J., Song, A.: A math-hyper-heuristic approach for large-
scale vehicle routing problems with time windows. In: Evolutionary Computation
(CEC), 2015 IEEE Congress on. pp. 830–837. IEEE (2015)

19. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Master-
ing the game of go with deep neural networks and tree search. Nature 529(7587),
484–489 (2016)

20. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: Closing the gap to human-
level performance in face verification. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 1701–1708 (2014)


