
The Use of Automatic Test Data Generation for
Genetic Improvement in a Live System

Saemundur O. Haraldsson∗,John R. Woodward∗ and Alexander I.E. Brownlee∗∗Department of Computing Science and Mathematics

University of Stirling

Stirling, Scotland

Email: soh@cs.stir.ac.uk

Abstract—In this paper we present a bespoke live system in
commercial use that has been implemented with self-improving
properties. During business hours it provides overview and
control for many specialists to simultaneously schedule and
observe the rehabilitation process for multiple clients. However
in the evening, after the last user logs out, it starts a self-analysis
based on the day’s recorded interactions and the self-improving
process. It uses Search Based Software Testing (SBST) techniques
to generate test data for Genetic Improvement (GI) to fix any bugs
if exceptions have been recorded. The system has already been
under testing for 4 months and demonstrates the effectiveness of
simple test data generation and the power of GI for improving
live code.

Keywords-Search Based Software Engineering; Test data gen-
eration; Bug fixing; Real world application

I. INTRODUCTION

Genetic Improvement (GI) is a growing area within Search

Based Software Engineering (SBSE) [1] which uses compu-

tational search methods to improve existing software. When

improving programs, whether functional or non-functional

properties, it is necessary to ensure that the enhanced version

of the program behaves correctly. Traditionally GI has used

testing rather than other formal verification methods for that

purpose [2]. Moreover test cases have been used to evaluate the

improvements as well [3]–[5]. GI and SBST should therefore

be used in conjunction with each other, specifically when the

existing software has limited test data. It is then necessary to

generate more test cases. Earliest papers of the SBST literature

were mostly seeking to generate such test data automatically

with search methods [6] which fits with GI’s philosophy.

It is not uncommon to launch programs before they can be

completely tested. Often it is because the number of conceiv-

able use case scenarios is huge and therefore impossible to

test in practice. Instead the application is put in use after a

reasonable amount of testing and the developer collects data

from the users, both recording performance and reliability.

Then putting effort and resources into maintenance of the

software, regularly providing updates and patches throughout

the lifetime of the software.

In this paper we present a live system, Janus Manager (JM),

that collects data only when user input produces errors and

uses it to generate test data for fixing itself. This decreases

significantly the cost of maintenance after the initial delivery of

the product. It is a bespoke program for a vocational rehabilita-

tion centre, developed and maintained by Janus Rehabilitation

Centre in Reykjavik, Iceland.

The remainder of the paper is structured as follows. Sec-

tion II lists some related work and inspirations. Section III

details what the system does during business hours and how it

keeps records for later generating test data. Section IV explains

how the daily data is used to generate and utilise test data

and Section V summarises the current data gathered since the

launch of JM. Section VI gives an overview of what future

directions we are currently contemplating.

II. RELATED WORK

The SBSE literature has expanded considerably [7] since

Harman and Jones coined the term [1] and with it the SBST

literature [6]. Moreover the research challenges for software

engineering for self-adaptive systems are regularly being rec-

ognized [8], [9].

Much of the SBST research has been about the generation of

test data such as Beyene et al. [10] where they generated string

test data with the objective of maximising code coverage.

The essential objective of the test data generation process

is maximum code coverage, where every new instance of

test data has never been seen before and therefore might be

covering code that previous test cases have not. It is still a

simple random sampling of test data and not as sophisticated

as uniform sampling with Bolzman samplers [11] or like

Feldt and Poulding do when searching for data with specific

properties [12], [13]. The random search can also be replaced

with an alternatives such as hill-climbing [14], an Evolu-

tionary Algorithm [15] or less commonly used optimisation

algorithms [16].

The majority of the generated test data in JM comes from

emulating actual inputs from a graphical user interface (GUI).

There are however examples of work that generate test data

for GUI testing by representing input fields with symbolic

alternatives [17]. That however demands that the developer

knows in better detail about how the software will be used,

which in our case is near impossible since every client’s route

through the rehabilitation is unique.

Our set up is in practice a slower working example of test

data and program co-evolution for bug fixing [18], [19] with

the addition that the usage evolves as well.

2017 IEEE/ACM 10th International Workshop on Search-Based Software Testing (SBST)

978-1-5386-2789-1/17 $31.00 © 2017 IEEE

DOI 10.1109/SBST.2017..10

31

2017 IEEE/ACM 10th International Workshop on Search-Based Software Testing (SBST)

978-1-5386-2789-1/17 $31.00 © 2017 IEEE

DOI 10.1109/SBST.2017..10

28

2017 IEEE/ACM 10th International Workshop on Search-Based Software Testing (SBST)

978-1-5386-2789-1/17 $31.00 © 2017 IEEE

DOI 10.1109/SBST.2017..10

28

2017 IEEE/ACM 10th International Workshop on Search-Based Software Testing (SBST)

978-1-5386-2789-1/17 $31.00 © 2017 IEEE

DOI 10.1109/SBST.2017..10

28

Fig. 1. JM functionality divided into daytime processes and night-time
processes.

III. JM DAILY ACTIVITY

JM is a software system that is developed by JR as a tool

in their vocational rehabilitation service. The motivation for

its development is to provide the best possible service to their

clients by giving the specialists a user friendly management

tool. Moreover it is a tool for the directors to be able to

continuously improve the rehabilitation process with statistical

analysis of client data and performance of methods and

approaches. It has to manage multiple connections between

users, specialists and clients.

A. Usage
The left side of Figure 1 displays the daily routine of JM

and Figure 2 is a simplified map of currently possible usage

and features. The users are all employees of JR, over 40

in total, including both, specialists and administrators. They

interact with JM by either requesting or providing data which

is then processed and saved. The requests are for an example

internal communications between the interdisciplinary team of

specialists about clients, a journal record from a meeting or an

update to some information regarding the client. The system

can also produce reports and bills in pdf format or rich text

files.
The clients have access to specialised and standardised ques-

tionnaires that measure various aspects of the clients welfare

and progress. The specialists then use those questionnaires to

plan a treatment or therapy.
While all of this is happening, every time an input data

causes an exception to be thrown JM logs the trace, input

data and the type of exception in a daily log file shown in the

middle of Figure 1.

B. Structure
JR provides individualised vocational rehabilitation and

as such users of JM regularly encounter unique use cases.

Fig. 2. A simplified map of JM current features.

Therefore JM is in active development while being in use.

Features are continuously added based on user experience,

feedback and convenience. Currently the system is over 25K

lines of Python (300 classes and more than 600 functions).

JM runs as a web service on an Apache server running on

a 64 bit Ubuntu server with 48GiB RAM and two 6 core Intel

processors. The GUI is a web page that JM serves up from

pre-defined templates.

IV. JM NIGHTLY ACTIVITY

After the last user logs off in the evening the nightly routine

in Figure 1 initiates. The process runs until the next morning

or until all bugs are fixed. During the night JM analyses the

logs, generates new test data and uses GI to fix bugs that have

been encountered during the day.

A. Log analysis

Going through the daily logs involves filtering the excep-

tions to obtain a set of unique errors in terms of input, type

and location. The input is defined as the argument list at every

function call on the trace route from the users’ request to the

location of the exception. The type of the exception can be

32292929

Procedure 1 Test data search

1: Θ← [θ] {Start with the original input}

2: n← 0
3: Θnew ← [θ]
4: while (n < 1000) AND (|Θnew|! = 0) do
5: extend Θ with Θlatest

6: Θlatest ← Θnew

7: Θnew ← []
8: for i = 1 until i == 100 do
9: θr ← random choice Θlatest

10: θmutated ← mutate θr

11: if θmutated → causes exception then
12: append θmutated to Θnew

13: end if
14: n+ = 1
15: end for
16: end while

any subclass of Exception in Python, both built in and locally

defined.

The errors are sorted in decreasing order of importance,

giving higher significance to errors that occurred more often,

arbitrarily choosing between draws. This measure of impor-

tance assumes that these are use case scenarios that happen

often and are experienced by multiple users and not a single

user who repeatedly submits the same request.

B. Generate test data

The test data generation is done with a simple random

search of the neighbourhood of the users’ input data. The input

is represented by a Python dictionary object, where elements

are key, value pairs and the values can be of any type or

class. However, most values are strings, dates, times, integers

or floating point numbers. The objective of the search is to

find as many versions of the input data as possible that trigger

the same exception. Procedure 1 details the search for new

test data,

Starting with the original input θ we make 100 instances

of θmutated where a single value has been randomly changed.

For each instance the value to be mutated is randomly se-

lected while all other values are kept fixed. Every θmutated

that causes the same exception as the original is kept in

Θ, essentially given fitness 1, others are discarded. This is

then repeated by randomly sampling from the latest batch of

θmutated, Θlatest (see line 9) until either no new instances are

kept or the maximum of 1000 instances have been evaluated

(line 4).

The mutation mechanism in line 10 first chooses randomly

between key, value pairs in θr only considering pairs where

values are of type string, date, time, integer or float. Then

depending on the type, the possible mutations are the following

String mutations randomly add strings from a predefined

dictionary with white space and special characters,

keeping the original as a sub-string.

Date mutations can change the format (e.g. 2017-01-27

becomes 27-01-17), the separator or randomly pick

a date within a year from the original

Time mutations can change the format (e.g. 7:00 PM

becomes 19:00), the separator or randomly pick a

time within 24 hours from the original

Int. mutations add or subtract 1, 2 or 3 from the original.

Float mutations change the original with a random sample

from the standardised normal distribution N(0, 1)

All of the instances in Θ along with the original θ are then

the inputs of the new unit tests. The assertion for each of

them will check that the response is of the specific exception

type and the tests will fail if the input triggers that exception.

The new unit tests are then added to the existing test suite,

automatically expanding the library of test cases.

The problem with this approach is that it does not check

whether new test cases are complementary or not, i.e. if the

two or more test cases are validating the same part of the code.

C. Genetic Improvement

The GI part of the nightly process relies on the new test

cases in conjunction with a previously available test suite.

The assumption is that given the test suites the program is

functioning correctly if it passes all test cases and so is

awarded highest fitness. Otherwise fitness is proportional to

the number of test cases the program passes of the whole

suite.

The process is inspired by Langdon’s et al. work [3] by

evolving edit lists that operate on the source code. The edit

lists define the operations replace, delete and copy for code

snippets, lines and statements.

The evolution is population based with 50 edit lists in

each generation. Each generation is evaluated in parallel to

minimise GI’s execution time and to utilise the full power of

the server. Edit lists are selected in proportion to their fitness.

Only half of the population gets selected and they undergo

mutation to start the next generation, crossover is not used in

the current implementation. The other half of the subsequent

generation are randomly generated new edit lists.

The GI only stops if it has found a program variant that

passes all tests or just before the users are expected to arrive

to work. It then produces an html report detailing the night’s

process for the developers. The report lists all exceptions

encountered, new test cases and possible fixes, recommending

the fittest. If more than a single fix is found, then the report

recommends the shortest in terms of number of edits. However

it is always the developers choice to implement the changes

as they are suggested, build on them or discard them.

V. SUMMARY

Development on JM started in March 2016 and quite

early on it was launched for general use in JR. Since late

September, early October 2016 the self-healing processes have

been running as a permanent service in JM. During that time

22 unique exceptions have been reported and always a single

error at a time. Table I lists exception types that have been

33303030

TABLE I
SUMMARY OF ENCOUNTERED EXCEPTION TYPES, THE NUMBER OF

OCCURRENCES AND HOW MANY TEST CASES THEY PRODUCED

Exception type Number
of

occurrences

Mean total
number of
input test

data produced

Mean number of
complementary

test cases

IndexError 4 15.25 1.25
TypeError 6 11.17 1.33
UnicodeDecodeError 3 44.33 1.67
ValueError 9 16.33 1.11

encountered, the number of times for each type, how many test

cases it produced and how many of them were complementary.

Every single one of the exceptions revealed a bug in the

program that was subsequently fixed by the GI process. In total

408 test cases have been produced, however a manual post-

process revealed only 6% of those were testing unique parts of

the code. The most obvious example is a UnicodeDecodeError
caused by incorrect handling of a special character in a

string input. The generative method for strings, described in

Section IV, made multiple versions of a string containing the

same special character as a sub-string and therefore all of them

were invoking the same error.

VI. FUTURE WORK

The system introduced in this paper is fully implemented

and live, however only 22 exceptions have been recorded

during the first few months.The total number of new test cases

is 408 of which 28 are unique in terms of code coverage,

which is not enough to make statistical inference. Our next

steps are to monitor the system while it is being developed

further and gather data on the bugs that are caught and fixed.

Ideally we want to be able to use the data to make predictions

for expected inputs to the system and thus make it possible to

generate test data that imitates unseen future inputs.

While a random search has been effective up until now, we

would like to improve the process to find more unique test

cases per exception encountered. That involves implementing

a fitness function that is not binary and a better sampling

method and adding constraints to the search to maximize code

coverage while minimizing the number of test cases.

ACKNOWLEDGMENT

The work presented in this paper is part of the DAASE

project which is funded by the EPSRC. The authors would like

to thank JR for the collaboration and providing the platform

for which made the development possible.

REFERENCES

[1] M. Harman and B. F. Jones, “Search-based software engineering,”
Information and Software Technology, vol. 43, no. 14, pp. 833–839,
dec 2001.

[2] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “{GenProg}: {A}
Generic Method for Automatic Software Repair,” IEEE Transactions
on Software Engineering, vol. 38, no. 1, pp. 54–72, 2012.

[3] W. B. Langdon and M. Harman, “Optimising Existing Software
with Genetic Programming,” IEEE Transactions on Evolutionary
Computation, vol. 19, no. 1, pp. 118–135, feb 2015.

[4] J. Petke, W. B. Langdon, and M. Harman, “Applying Genetic
Improvement to MiniSAT,” in 5th International Symposium, SSBSE
2013, ser. Lecture Notes in Computer Science, St. Petersburg, Russia:
Springer Berlin Heidelberg, aug 2013, pp. 257–262.

[5] J. Petke, M. Harman, W. B. Langdon, and W. Weimer, “Using Genetic
Improvement \& Code Transplants to Specialise a {C++} Program to a
Problem Class,” in 17th European Conference on Genetic Programming,
EuroGP 2014, ser. Lecture Notes in Computer Science, Granada,
Spain: Springer Berlin Heidelberg, 2014, pp. 137–149.

[6] P. McMinn, “Search-based software testing: Past, present and future,”
in 2011 IEEE Fourth International Conference on Software Testing,
Verification and Validation Workshops. IEEE, 2011, pp. 153–163.

[7] M. Harman, P. McMinn, J. T. de Souza, and S. Yoo, “Search Based
Software Engineering: Techniques, Taxonomy, Tutorial,” in Empirical
Software Engineering and Verification, ser. Lecture Notes in Computer
Science, Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, vol.
7007, pp. 1–59.

[8] B. H. C. Cheng et al., “Software Engineering for Self-Adaptive
Systems: A Research Roadmap,” in Software Engineering for
SelfAdaptive Systems, ser. Lecture Notes in Computer Science, Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, vol. 5525, no. January,
pp. 1–26.

[9] R. de Lemos et al., “Software Engineering for Self-Adaptive Systems: A
Second Research Roadmap,” in Software Engineering for Self-Adaptive
Systems II: International Seminar, Dagstuhl Castle, Germany, October
24-29, 2010 Revised Selected and Invited Papers, ser. Lecture Notes
in Computer Science, Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, vol. 7475, pp. 1–32.

[10] M. Beyene and J. H. Andrews, “Generating String Test Data for Code
Coverage,” in 2012 IEEE Fifth International Conference on Software
Testing, Verification and Validation. IEEE, 2012, pp. 270–279.

[11] P. Duchon and G. Louchard, “Boltzmann Samplers For The Random
Generation Of Combinatorial Structures,” Combinatorics Probability
and Computing, vol. 13, no. 4-5, pp. 577–625, 2004.

[12] R. Feldt and S. Poulding, “Finding Test Data with Specific Properties
via Metaheuristic Search,” in 2013 IEEE 24th International Symposium
on Software Reliability Engineering (ISSRE). IEEE, 2013, pp. 350–359.

[13] S. Poulding and R. Feldt, “Generating structured test data with specific
properties using Nested Monte-Carlo Search,” in Proceedings of the
2014 Annual Conference on Genetic and Evolutionary Computation.
Vancouver: ACM, 2014, pp. 1279—-1286.

[14] F. C. M. Souza, M. Papadakis, Y. Le Traon, and M. E. Delamaro,
“Strong mutation-based test data generation using hill climbing,”
in Proceedings of the 9th International Workshop on Search-Based
Software Testing - SBST ’16. Austin, Texas: ACM Press, 2016, pp.
45–54.

[15] K. Lakhotia, M. Harman, and P. Mcminn, “A Multi-objective Approach
to Search-based Test Data Generation,” in Proceedings of the 9th Annual
Conference on Genetic and Evolutionary Computation, ser. GECCO ’07.
London, England: ACM, jul 2007, pp. 1098–1105.

[16] R. Feldt and S. Poulding, “Broadening the Search in Search-Based
Software Testing: It Need Not Be Evolutionary,” Proceedings - 8th
International Workshop on Search-Based Software Testing, SBST 2015,
pp. 1–7, 2015.

[17] K. Salvesen, J. P. Galeotti, F. Gross, G. Fraser, and A. Zeller, “Using
Dynamic Symbolic Execution to Generate Inputs in Search-Based GUI
Testing,” Proceedings - 8th International Workshop on Search-Based
Software Testing, SBST 2015, pp. 32–35, 2015.

[18] A. Arcuri, “On the Automation of Fixing Software Bugs,” in ICSE
Companion ’08 Companion of the 30th international conference on
Software engineering. Leipzig, Germany: ACM, 2008, pp. 1003–1006.

[19] A. Arcuri, D. R. White, J. Clark, and X. Yao, “Multi-Objective Im-
provement of Software using Co-evolution and Smart Seeding,” in
Proceedings of the 7th International Conference on Simulated Evolution
and Learning (SEAL’08), 2008, pp. 1–10.

34313131

