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Abstract

This article proposes a mobility architecture, called Green Swarm, to reduce greenhouse gas
emissions from road traffic in smart cities. The traffic flow optimization of four European cities:
Malaga, Stockholm, Berlin, and Paris, is addressed with new case studies importing each city’s
actual roads and traffic lights from OpenStreetMap into the SUMO traffic simulator, so as to
find the best ways to redirect the traffic flow, and advise drivers. Additionally, the proposal
is compared with three other strategies, which are also combined with Green Swarm in order
to improve metrics such as travel times, gas emissions, and fuel consumption. This results in
reductions in gas emissions as well as in travel times and fuel consumption in more than 500
city scenarios. The proposal has also been tested in scenarios where not all drivers are using it,
to observe the change in traffic conditions when it is only in partial use, successfully paving the
way for future sustainable cities.

Keywords: Evolutionary algorithm, road traffic, smart city, smart mobility, gas emissions,
Wi-Fi connections

1. Introduction

Currently, the number of inhabitants in urban areas is increasing and is expected to rise to
75% by 2050 [1]. As a result, a number of new services are required to help solve the new
types of problems related to the huge number of people living in reduced geographical areas.
According to [2], 50% of Europeans use a car every day, while 38% of them encounter problems
as they travel around cities. An important number of Europeans believe that the truly serious
problems within cities are caused by air pollution (81%), road congestion (76%), traveling costs
(74%), accidents (73%), and noise pollution (72%).

Human health, economic development, traffic jams, environmental pollution, and waste man-
agement are some of the problems that strongly affect different aspects of our society. These
problems represent a challenge for city governments if they wish to manage these growing is-
sues in smarter ways. Research on smart cities and Intelligent Transportation Systems (ITS) is
therefore a must and so is supported by major agencies worldwide.

Road traffic is a well-known source of air pollution in urban areas [3, 4]. Air quality is an
important issue for the economy, the environment, and of course, human health. Poor air quality
contributes to respiratory and cardiovascular diseases as well as to lung cancer [5]. It also has an
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economic impact, shortening lives, increasing medical costs, and reducing productivity through
loss of working days. Additionally, air pollution can damage buildings, ecosystems, crops, and
has an impact on the climate, since some air pollutants act as greenhouse gases [6].

In this article, the Green Swarm architecture is proposed. It is aimed at sustainability with
an explicit, special focus on mobility in cities from a different point of view: the reduction of
greenhouse gas emissions, specifically: i) Carbon Monoxide (CO), ii) Carbon Dioxide (CO2),
iii) Hydrocarbons (HC), iv) Particulate Matter (PM), and v) Nitrogen Oxides (NO).

Green Swarm is shown to be capable of reducing not only travel times, but also gas emissions
from vehicles, as well as fuel consumption, by suggesting alternative routes and preventing traffic
jams. Both actions contribute to a more environmentally friendly way of driving. This is a new
approach consisting of rerouting vehicles through personalized, precalculated route segments
at several points throughout the city which differs from previous related work not only in the
offline-online strategy used, but also in the intelligent Wi-Fi nodes.

The rest of this paper is organized as follows: Section 2 reviews several publications related
to our proposal. Section 3 describes the Green Swarm architecture and our proposed intelligent
algorithms. In Section 4 three competitor strategies are presented. Section 5 presents the case
study analysis. In Section 6 the experiments conducted and the results are discussed. Finally, in
Section 7, conclusions and future work are given.

2. Related Work

In this section several articles which are directly related to our proposal are reviewed. They
are considered to be similar because they consider the whole city and have similar motivations
and approaches, at least in part.

A green Vehicle Traffic Routing System (VTRS) that reduces fuel consumption and conse-
quently CO2 emissions via a bio-inspired algorithm, combined with a fuel consumption model,
is introduced in [7]. It consists of an Ant-based Vehicle Congestion Avoidance System (AVCAS)
that uses the Signalized Intersection Design and Research Aid (SIDRA) fuel consumption and
emission model in its vehicle routing procedure. This system is able to reduce fuel consumption
by finding the least congested shortest paths in a simulation of Kuala Lumpur imported from
OpenStreetMap [8] into the SUMO [9] traffic simulator. In contrast, the approach presented in
this paper centers on reducing gases, namely CO2, as a way of improving the rest of the metrics
by preventing jams, in five case studies.

An approach for dynamic calculation of optimal traffic routes is presented in [10]. They use a
new multi-objective algorithm called ISATOPSIS to avoid congestion by using the average travel
speed of traffic (obtained from sensors deployed around smart cities) and the length of roads to
find the optimal paths. The results of the proposed algorithm have been compared to the shortest
path Dijkstra algorithm and other strategies in two real cities imported into the SUMO traffic
simulator from OpenStreetMap. In our article an evolutionary algorithm is used to optimize the
case studies instead of SA, hopefully avoiding local optima more frequently.

In [11] the authors propose an architecture to control and manage the utilization of road
transport networks to prevent traffic congestion. Their architecture divides an urban area into
smaller regions while the capacity of each road segment within these regions is reserved by users
on demand. Additionally, a real-time scheduling algorithm to solve the route reservation problem
is analyzed using a realistic road transport scenario in a large area in Nicosia, Cyprus, extracted
from OpenStreetMap and imported into SUMO. Their results indicate that congestion can be
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avoided and travel times improved after the application of a route reservation algorithm over a
specific region. In our article Green Swarm has been better tested on data taken from many cities
with the intention of observing several metrics in detail, using our simulation approach.

A bi-level optimization framework to settle the optimal traffic signal setting problem is pre-
sented in [12]. By using a Hybrid Genetic Algorithm, the authors decouple the original bi-level
problem into two single-level problems employing SUMO and then solve them sequentially.
The upper-level problem sets the traffic signal to minimize the drivers average travel time, and
the lower-level problem achieves network equilibrium using the settings calculated in the up-
per level. The experiments were conducted in an urban area of Chicago obtained from Open-
StreetMap. In our proposal, the focus is on the rerouting of vehicles to prevent traffic jams, using
traffic lights as rerouting nodes, without changing traffic light cycles.

In [13] the authors address the optimization of vehicular traffic flows by using road-side units
(V2I) to gather information with which to redirect vehicles to less congested roads and reduce
CO2 emissions. The proposed algorithm, CAVE, implements a rerouting strategy for vehicles
using the OMNet++ simulator with the Veins framework connected to SUMO to reduce several
metrics by showing less congested routes to the drivers. Although our proposal also reduces
travel times and gas emissions, our aim is to implement a lightweight infrastructure and a high
reutilization of urban devices such as traffic lights and existing networks to reduce costs.

In summary, our contribution is an affordable system for reducing travel times, fuel consump-
tion, and gas emissions of vehicles by suggesting alternative routes which are tailored to every
single driver in the city, avoiding sending them through the same streets and preventing traffic
jams. An explicit use of sustainability indicators and actions is implemented in order to achieve
a system with the expected balance between the driver’s convenience and the city’s health.

3. The Green Swarm Architecture

The Green Swarm (GS) architecture, is an evolution of our preliminary work [14] redesigned
and adapted in this case to reduce not only travel times, but also greenhouse gas emissions, and
fuel consumption. This is a significantly different line of research where a large number of weak
points have been addressed, to finally design and implement a new system (Green Swarm) based
on the following, new contributions:

1. GS uses a new mathematical function to measure the quality of the solutions. This gener-
ates a new search landscape where new algorithms and unseen performances are analyzed.

2. The algorithms (now EfRA and GrA) have been revised and their performance improved
to get better results in shorter times.

3. There is a study of the relationships between metrics (travel time, CO2, fuel, etc.) which
is unique to the present paper.

4. Four different cities (Malaga, Stockholm, Berlin and Paris) have been optimized, plus one
extra scenario consisting of real traffic flows (Alameda) which amounts to more than 500
scenarios in five case studies. In previous work just one city or parts of it has been tested.
The conclusions drawn from working with four cities give this study a robust endorsement
as a comparison analysis for future work in this area.

5. We have pushed the boundaries of existing algorithms by significantly increasing the num-
ber of vehicles in each scenario (up to 5800 vs. 1200). This means considerably larger
computational times, and improved realism.
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6. There were no competitors whatsoever in past articles of the literature. Thus three com-
petitors have been introduced, not only to test our strategy, but also to complement it. In
this sense, our new proposal has been strongly tested compared to past, related systems.

7. As not everyone is keen on using new technologies until they are firmly established, in this
article a user acceptance study has been conducted so as to address not only the scientific
aspect of the proposal but also the social one.

GS can be installed in modern cities with a minimum investment as it is able to use already
existing infrastructure such as traffic lights controlled by a computer, Wi-Fi connectivity, mobile
phones, and tablets. GS comprises the following components: i) Nodes installed at traffic lights
which communicate with vehicles to know their destination and send them a new route around
the city; ii) The Eco-friendly Route Algorithm (EfRA) which calculates the configuration of the
system; iii) The Green Algorithm (GrA) which is executed in the nodes to suggest eco-friendly
routes to vehicles; and iv) Mobile devices such as smartphones and tablets for the user terminals,
or even On Board Units (OBU) installed in vehicles.

In Figure 1 the schema of the GS architecture is depicted. It is divided into two stages: an
offline stage called Setup Stage and an online stage called Green Stage. In the Setup Stage, the
configuration of the nodes is calculated by EfRA so that each node will be able to suggest an
eco-friendly route to a vehicle depending on its final destination, based on a probability value.
These probabilities are calculated before deploying the system (training phase) by optimizing
four different traffic distributions of the city, as this improves the robustness of GS [14].

Figure 1: Green Swarm Architecture. In the Setup Stage the configuration of the GS nodes is calculated using the EfRA
and then, in the Green Stage, vehicles are rerouted by the GrA to prevent traffic jams.
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In the Green Stage, vehicles connect to the GS nodes as they pass by, which triggers the
execution of the GrA. Then, GrA suggests a new route for the vehicles according to the config-
uration calculated by EfRA in the previous stage. These new routes are customized as they are
determined by the final destination of each vehicle.

Each node is implemented using a Wi-Fi spot connected to a processing unit capable of run-
ning the GrA. Additionally, they can be remotely updated (via the mobile network or the already
existing connectivity found in traffic lights) to change the GS configuration in the case of possibly
closed streets, events, etc. The software running in the mobile devices consists of a navigator-like
screen with a graphic user interface for entering the driver’s destination. Finally, the communi-
cation between a device and a node implies the former sending the desired destination and the
latter answering with the route to the next GS node or to the driver’s destination. According to
[15] we estimate an operational radius for each node of, on average, 77 meters.

The placement of the nodes has been manually set for this study as it represents a challenge
in itself which needs and justifies a future, separate, scientific article. The main goal is: given
a set of the more congested junctions controlled by a traffic light, identify those which better
improve the rerouting of vehicles, preventing traffic jams, and use them as GS nodes.

An example of the rerouting performed by GS during the Green Stage is shown in Figure 1.
When the vehicle connects to Node 1 via a Wi-Fi link, the GrA suggests a new route toward Node
2, potentially different from the original one. It is assumed here that the driver accepts the new
route, so that when he/she approaches Node 2 by Input Street IS 2, the vehicle will be routed to
Node 3. Finally, in Node 3, which is near the vehicle’s destination, the driver will be sent directly
(no intermediate node) to the end of his/her journey.

By using GS the vehicle has probably traveled a longer distance than when following the
shortest path (which is usually the default choice made by drivers), but it has avoided possible
traffic jams while driving in an eco-friendly way. As a result, the amount of gas emitted into the
atmosphere and travel times have both been reduced. Even if this seems not to be an intuitive
result, it is demonstrated that taking into consideration the global flow and driving events, leads to
a greener trip in the end. In order to evaluate each case study, the traffic simulator SUMO [9] has
been used. SUMO implements realistic car following models and it can be externally controlled
by TraCI [16] to perform the reroutings suggested by the GrA.

3.1. Eco-friendly Route Algorithm (EfRA)

What is being attempted in this article is finding a solution to a very difficult real problem
requiring high evaluation times and managing large vectors of numbers which encompass a huge
search space, very hard to explore by exhaustive methods. Furthermore, there is no analytic
equation, so traditional methods are not viable. In addition, low complexity operations as used
in metaheuristics are needed. All these reasons make this problem suitable for solving with a
bio-inspired algorithm [17]. Concretely, we have designed a new evolutionary algorithm, based
on a (10+2)-EA [18] and called Eco-friendly Route Algorithm (EfRA).

As stated in [19] “Evolutionary algorithms mimic the process of natural evolution, the driving
process for the emergence of complex and well-adapted organic structures”. EfRA demonstrates
these characteristics, working with a population of individuals which evolve through natural
selection for reproduction, being crossed with each other to produce offspring which suffer from
mutation. Finally, the next generation is formed by the fittest individuals which have survived.
The EfRA was used to obtain a configuration for the GS nodes during the Setup Stage, which
minimizes the gas emissions of vehicles in each case study.
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Algorithm 1 Eco-friendly Route Algorithm.
procedure EfRA . OE f RA = O(n2)

t ← 0
P(0)← createPopulation() . P = population
while not terminationCondition() do

Q(0)← ∅ . Q = auxiliary population
parents← selection(P(t))
o f f spring← S T PX(Pc, parents)
o f f spring← V MO(π1, π2, θ, o f f spring)
evaluateFitness(o f f spring)
insert(o f f spring,Q(t))
P(t + 1)← replace(Q(t), P(t))
t ← t + 1

end while
end procedure

Moreover, an elitist steady state EA has been chosen, with a population of ten individuals,
generating two new individuals at each step, mainly because the evaluation of each individual
requires a simulation which takes more than 30 seconds to complete. EfRA is a light-weight
algorithm (compared to other metaheuristics like common EAs, PSOs, etc.), it performs well
without the need for an analytic equation which is impossible in this domain.

First, in EfRA (Algorithm 1), the number of steps t is set to zero and the population P(0)
(10 individuals) is initialized with random values. Then, while the termination condition is not
fulfilled the main loop is executed. In our experiments EfRA ends when the maximum number of
steps (5000) or the convergence criterion (500 generations without improvements) are reached.

Inside the main loop, after initializing the auxiliary population Q(0), two parents are selected
from the population by using binary tournament [20]. Next, the offspring (two individuals) are
obtained after applying the recombination operator (STPX) [14] and after that, the offspring are
mutated by applying our Variable Mutation Operator (VMO) [14], both described later. Then,
the new individuals are evaluated and inserted in the auxiliary population Q(t).

Finally, the new population P(t + 1) is generated by replacing the current one (P(t)) with
the individuals of the auxiliary one (Q(t)) in an elitist way, that is, the worst individuals in P(t)
(highest fitness values) are replaced by the individuals in Q(t) if and only if the new ones have
better (lower) fitness values and they are not yet in the population (no duplicates allowed). Note
that the complexity of EfRA is O(n2) as there are two nested loops in its body.

3.1.1. Representation
The goal is to suggest routes to vehicles as they are approaching a junction controlled by a

GS node, so the different probabilities for each route need to be stored in a configuration vector.
These probabilities are computed by an intelligent automatic technique according to the layout
and dynamic features of the traffic in the city: our EfRA. Additionally, the suggested routes have
to be personalized for each driver depending on his/her destination. For this reason, the route
probabilities have to be separated into groups assigned to each destination.

The problem representation chosen is shown in the middle of Figure 1 where it can be seen
blocks of routes starting in the same street (Input Street 1, Input Street 2, etc.) which are inputs to
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a junction controlled by a GS node. These input streets are the points where the rerouting takes
place (providing that the driver takes into account the suggestion given). Then, the available
routes are replicated in several destination chunks in the same street block so as to personalize
the trip based on drivers’ destinations.

Finally, each route has a probability value associated with it, to define how likely it is to be
assigned. Note that the summation of probability values in the same chunk must be equal to 1.

3.1.2. Evaluation Function
From our experimentation, explained in Section 6.1, several relationships have been observed

between the metrics, which has led to only CO2 being included in the evaluation function to
calculate the fitness value of the individuals.

The fitness function for EfRA is presented in Equation 1 where two terms can be seen. The
first is meant to penalize the individuals representing configurations for the GS nodes which are
unable to route all vehicles to their destination within the analysis time. Therefore, N is the total
number of vehicles and n is the number of vehicles which have completed their itineraries, so we
penalize the resulting fitness value with the number of vehicles which are inside the area under
analysis when the analysis time ends.

The second term of Equation 1 represents the average CO2 emissions from vehicles. It is
normalized by the α coefficient calculated as shown in Equation 2. There, λ represents the
number of training scenarios (four in this article), and ni is the number of vehicles in the training
scenario i. By using α in Equation 1 the fitness function is normalized, so that the experts’
solution we are hoping to improve has a fitness value equal to 1. As the idea is to minimize,
values below 1 represent an improvement over the experts’ solution, i.e. the lower, the better.

F = (N − n) + α−1 1
n

n∑
i=1

CO2i (1)

α =
1
λ

λ∑
i=1

1
ni

ni∑
j=1

CO2i j (2)

3.1.3. Evolutionary Operators
Some of the operators tested in our previous experimentation [14] have again been used in this

new problem. Binary Tournament is used as the selection operator; Street Two Point Crossover
(STPX) as the recombination operator, where the cross points are blocks of input streets’ con-
figurations; Variable Mutation Operator (VMO) where two different mutation probability values
are combined using a threshold value to switch between them (the first value is meant to explore
the search space whilst the second is to refine the solution by exploitation); and Elitism in the
replacement operator.

The STPX selects two input street blocks as crossover points and swaps their probability
values. Figure 2 shows an example of STPX where the probability values in the blocks i to j
are swapped. The VMO randomly selects one Input Street and then changes the probabilities
in its destination chunks according to the mutation probabilities π1 and π2. Initially, π1 is used
until the fitness of the best individual is under the threshold θ. If this happens, then π2 is used
instead. Figure 3 presents an example of VMO where the Input Street i is selected and then the
destination chunks 1, 4, and 5 have their probabilities changed.

The recombination probability value used is 0.6, the threshold θ = 1.0, and the mutation
probabilities are π1 = 0.04 and π2 = 0.01. Table 1 shows a summary of the parameters of EfRA.

7



Figure 2: Street Two Point Crossover (STPX).

Figure 3: Variable Mutation Operator (VMO).

Table 1: Parameters of the EfRA.

Parameter Value

Maximum iterations 5000
Crossover probability (PC) 0.6
Mutation probabilities (π1, π2) 0.04, 0.01
Threshold (θ) 1.0

3.2. Green Algorithm (GrA)
Our GrA runs in each GS node. When a vehicle connects with a node via Wi-Fi, GrA reads

the configuration previously calculated by EfRA for this node and suggests an alternative route
based on the probability values and the vehicle’s destination (Green Stage). Even though the GrA
cannot guarantee that each vehicle will reach its destination (as each spot is only responsible for
a section of the whole route), the evolution of the configurations in EfRA toward an optimum
makes it highly likely that each vehicle will reach its final destination.

The pseudocode of GrA is presented in Algorithm 2. First, the current street and the vehicle’s

Algorithm 2 Green Algorithm.
procedure GrA(vehicle) . OGrA = O(n)

current street ← getS treet(vehicle)
destination← getDestinationZone(vehicle)
if current street ∈ destination then

route← getCurrentRoute(vehicle)
else

route← getRouteToDestination(current street, destination)
if route = ∅ then

nextInputS treet ← getS treetByProbability(current street, destination)
route← getRouteToInputS treet(nextInputS treet)

end if
end if
suggestNewRoute(route, vehicle)

end procedure
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destination zone are obtained from the approaching vehicle itself. Second, the destination zone is
checked to avoid rerouting a vehicle already in it. If the vehicle has not yet reached its destination
zone, all the routes from the current street to the vehicle’s destination zone are considered in
the GS configuration. If the destination zone is not directly reachable from the current street
(route = ∅), the algorithm obtains the next Input Street (belonging to another node) which is
directly reachable from the vehicle’s current street so that it is rerouted to another GS node. This
Input Street is selected based on the probabilities stored in the GS configuration. Finally, the
route from the current to the next Input Street is suggested to the vehicle in the last step.

Note that the complexity of GrA is O(n) as it just retrieves the routes previously calculated
by EfRA in the Setup Stage.

4. Competitor Techniques

Although comparing a contribution to existing competitors is a must in science, research
papers in this area frequently do not consider competitor systems. The reason is not only the
difficulty of finding closely similar work, but also that it is very difficult to find and manage
studies reporting so many technological tools, open data and algorithms. Notwithstanding, an
effort has been made on the part of the authors to include several competitors in this article to
compare this proposal with others.

Consequently, three different strategies presented in [3] in order to reduce local traffic emis-
sions have been chosen: i) reducing traffic demand by 20% (-20%), ii) introducing a speed limit
of 30 km/h (30km/h), and iii) replacing heavy duty vehicles with 1.5 light duty vehicles (HDV-
LDV). These strategies may seem at first glance to be trivial as they are not based on optimization.
However, they are widely applied by local councils, particularly when the pollution levels are so
high that people’s health is put at risk.

The authors of the aforementioned article tested these strategies in a single intersection lo-
cated in Bentinckplein in the city of Rotterdam, the Netherlands. Although they achieved reduc-
tions in emissions of between 13% and 30% depending on the strategy and metrics used, they
analyzed only one intersection instead of large districts. This encouraged us to test those strate-
gies in our case studies as an additional contribution. The modifications applied to the traffic
demand implemented by each strategy are described as follows:

• Minus 20% (-20%): A reduction in the number of vehicles of 20% is implemented, while
keeping the original proportion of vehicle types (Table 2). The result was 3282 vehicles in
ALA, 3760 in MGA, 3680 in STO, 4640 in BER, and 4560 in PAR.

• Maximum 30km/h (30km/h): In this strategy the number and types of vehicles are the same
as in the expert’s solution. However, the maximum speed has been restricted to 30km/h
for all of them.

• HDV-LDV: This strategy consists in replacing trucks, which have the worst emission class
of all the vehicle types, with 1.5 light duty vehicles (sedan, van, and wagon). This rep-
resents an increase in demand of approximately 5% so that the number of vehicles in the
case studies is 4308 in ALA, 4930 in MGA, 4830 in STO, 6086 in BER, and 5985 in PAR.
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5. Case Studies

For this approach four large, important European cities: Malaga (Spain), Stockholm (Swe-
den), Berlin (Germany), and Paris (France) were chosen. This enabled the study of specific zones
which are prone to traffic jams, with the aim of improving traffic flow and reducing gas emis-
sions. Furthermore, a reduced area of Malaga (Alameda Principal) was also studied, where real
traffic conditions could be faithfully recreated and the accuracy of the study, improved.

First, the GS system was applied to a small case study (0.4Km2) comprising the Alameda
Principal area of Malaga (Spain). In this case study data published by the local council for peak
time traffic at 2 p.m. on working days [21] was used and its real traffic flows were generated
by using the method described in [22]. Second, four new and larger geographical areas were
used, representing zones not only in the city of Malaga, but also in three major European cities:
Stockholm, Berlin, and Paris which are all depicted in Figure 4.

In spite of the fact that the real number of vehicles in the larger areas was unavailable, they
were included to test our proposal against different cities, urban maps, and traffic distributions.
By doing so, a real case study to validate GS was addressed, and then a variety of new case studies
were analyzed using a distinct number of vehicles and flows (generalization and robustness).

To build each new case, the geographical areas in OpenStreetMap [8] were first selected and
then exported to individual map files (.osm files). The maps were then modified by using the
application JOSM (Java Open Street Map) thereby removing unhelpful, irrelevant data such as
parks, housing blocks, and pedestrian walkways. Based on these, the working maps for SUMO
were generated by NETCONVERT.

Finally, the traffic flows between the streets were defined using the DUAROUTE utility and
used as the inputs to the areas being analyzed (source streets) and the streets which are desti-
nations. Each flow contained several routes representing different, alternative paths between the
same source and destination pairs. These were obtained by using the different weight metrics
available in DUAROUTE such as travel times, emissions, and fuel consumption. By using these
flows the difficulty of the problem being addressed increased, as vehicles do not always take the
same routes toward their destination.

Other different case studies where vehicles are actually taking the fastest routes (calculated
by minimizing travel times) in the cities under consideration have also been included. This was
done so as to also address a more realistic problem (people usually drive along avenues).

Figure 4: Case studies: Alameda (ALA), Malaga (MGA), Stockholm (STO), Berlin (BER), and Paris (PAR), imported
from OpenStreetMap (upper row) into the SUMO traffic simulator (bottom row).
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The traffic light cycles were assigned by NETCONVERT while generating the map, using
the algorithms included in SUMO. However, some corrections, especially in the lights’ synchro-
nization, were made to avoid problems of misconfigured cycles. Note that both NETCONVERT
and DUAROUTE are tools included in the SUMO software package.

Wishing to provide a more realistic study, four different vehicle types were used (Table 2)
having different emission classes from the HBEFA [23] model, as it would not make sense to have
sedans and trucks emitting the same amount of gas nor consuming the same liters per kilometer.

Table 2: Characteristics of the four types of vehicles.

Type Arrival MaxSpd. Accel. Decel. Length Emission
probability (Km/h) (m/s2) (m/s2) (m) class

sedan 0.50 160 0.9 5.0 3.8 P 7 7
van 0.25 100 0.8 4.5 4.2 P 7 5
wagon 0.15 50 0.7 4.0 4.3 P 7 6
truck 0.10 40 0.6 3.5 4.5 HDV 3 1

In each working scenario, vehicles arrive at different times, through different streets and
taking different routes, which generates a variety of situations to train and test the proposal.
Since the assigned vehicles’ type and route depend on the random number generator included in
SUMO, by changing the simulation seed the different scenarios were defined for each case study.
These mobility solutions based on traffic distributions are called the experts’ solution as they were
generated by the SUMO tools. The characteristics of the case studies are presented in Table 3.
All of them were analyzed for one hour, while the rest of the characteristics were dependent on
the road distribution obtained from OpenStreetMap as well as the size of the geographical area.

Table 3: Characteristics of the case studies: Alameda (ALA), Malaga (MGA), Stockholm (STO), Berlin (BER), and Paris
(PAR). Note that the number of probability values in the solution vector denotes the complexity of each case study.

Case study ALA MGA S TO BER PAR
# Vehicles 4104 4700 4600 5800 5700
# Traffic lights 28 89 75 76 58
# GS nodes 3 7 6 6 4
# Vehicle flows 4 25 14 16 15
# Vehicle routes 15 430 196 229 210
Studied area (Km2) 0.4 10.0 2.9 7.0 5.6
# Probability values 168 840 1314 450 732

6. Experimentation

First, several experiments were conducted to determine which metrics were best for inclusion
in the evaluation function (Section 6.1). Second, the optimization of one case study (ALA) was
addressed, consisting of real traffic flows. Then, four other case studies were optimized, where
vehicles used various, different routes between their origin and destination (Section 6.2).

At this point, our proposal was compared with different, state of the art strategies where the
behavior of GS when it is used after applying the other strategies was evaluated. This allowed us
to know if they were compatible and if the metrics could be reduced even more (Section 6.3).

The best configuration obtained for GS in the previous experiments was tested in 500 unseen
scenarios where vehicles either followed a number of different routes (more difficult to optimize)
or just the fastest ones (a situation closer to reality). The other strategies were also included at
this point and a combination of them were tested with GS in 1500 scenarios (Section 6.4).

Finally, a study was done to analyze how GS behaves when only a certain percentage of
people are using it (Section 6.5), followed by a discussion on the GrA performance (Section 6.6).
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6.1. Metric Study

For the present article, an initial series of tests were conducted to evaluate which emission
metrics were more suitable for optimization. We exploited the case study called Alameda (ALA)
because its size makes the analysis more affordable (in time) than the rest of the bigger scenarios.

Four hundred and twenty runs were carried out, which lasted 31.2 hours on average. From
the results it could be observed that EfRA was able to reach the same optimal configuration in
each optimization process when using different metrics in the evaluation function (CO2, Fuel,
CO2 + Fuel, CO + CO2, CO + HC, PM + HC, and CO + CO2 + NO). Based on these results,
CO2 was chosen as the metric to be optimized, because not only is it a well-known gas causing
global warming, but also because it keeps the evaluation function simple.

Figure 5 presents the graphs of the different metrics vs. CO2 from 16416 vehicles (4 scenarios
of Alameda) in order to visualize and confirm the similarities between them. The majority of
the graphs show different slopes which correspond to the different emission classes of vehicles.
Some of them are mostly coincident, especially in the case of the Fuel consumption, where its
linear relation with CO2 is evident. This fact supports even further the decision made in respect
to the variable (CO2) evaluated to calculate the fitness value of our scenarios, as the rest of the
metrics are reduced when reducing the CO2 emissions.

Figure 5: Similarities between CO2 and the rest of the metrics. Different slopes correspond to the different emission
classes of vehicles. Note that Fuel consumption presents a linear relation with CO2.

6.2. Optimization

In this section four training scenarios are optimized for each one of the five case studies. Each
scenario presents different traffic distributions to EfRA so that the optimization processes can
produce robuster solutions [14]. Thirty independent runs of EfRA were carried out to optimize
each case study (150 runs) and the results are presented in Table 4 (GS strategy).

GS achieves improvements in all the metrics and in all the cities. The results are especially
interesting in ALA, where there exists a real traffic challenge with a large number of vehicles in
a reduced area. There, GS has shortened travel times by 70%, reduced CO emissions by 57%,
CO2 by 37%, and fuel consumption by 36% on average. In MAL, GS achieves 19% shorter travel
times and a reduction in CO of 11% . Moreover, it can be seen that in STO there are important
reductions in travel times (42%) and emissions (32% in CO and 29% in HC) when using GS.
Vehicles driving through BER benefit from 19% shorter travel times when using GS and emit
13% less CO and 11% less HC in the atmosphere, on average. Finally, the best, improved
metrics in PAR are travel times (10%), CO (8%), and HC (7%).

12



Table 4: Improvements in the experts’ solution achieved by the strategies used to optimize our five case studies. Note
that these results correspond to the scenarios used during the optimization. The best performing strategies are in bold.

Metric Strategy ALA MGA S TO BER PAR

T.Time

GS 69.7% 18.7% 41.7% 19.0% 10.2%
-20% 15.8% 25.0% 33.0% 33.0% 37.8%
30Km/h -5.0% -12.5% -10.3% -12.8% -22.7%
HDV-LDV -4.8% 0.7% -4.1% -2.8% -5.1%

CO

GS 56.7% 10.6% 31.8% 12.8% 7.9%
-20% 11.3% 15.3% 25.0% 23.9% 23.6%
30Km/h 4.6% 17.6% 5.9% 10.2% 8.0%
HDV-LDV -14.3% -6.2% -15.8% -7.9% -13.7%

CO2

GS 36.6% 5.3% 15.1% 5.2% 3.6%
-20% 7.8% 7.8% 13.4% 12.4% 12.5%
30Km/h 6.0% 10.2% 6.4% 7.2% 9.3%
HDV-LDV 25.8% 35.7% 30.6% 31.7% 31.8%

HC

GS 54.3% 9.4% 29.3% 10.8% 7.3%
-20% 10.3% 13.5% 23.2% 21.2% 22.0%
30Km/h 0.5% 4.2% 0.1% 0.3% -3.6%
HDV-LDV 1.9% 1.1% -1.5% 2.6% -2.4%

PM

GS 47.6% 8.0% 24.6% 8.7% 5.7%
-20% 8.6% 10.5% 20.6% 18.0% 18.2%
30Km/h 2.1% 8.1% 4.2% 4.4% 3.6%
HDV-LDV 75.9% 68.2% 74.2% 70.0% 69.4%

NO

GS 35.0% 5.4% 15.4% 4.8% 3.8%
-20% 6.3% 7.3% 13.4% 11.8% 12.1%
30Km/h 5.4% 10.5% 7.1% 7.6% 9.1%
HDV-LDV 66.7% 63.5% 65.6% 63.2% 63.2%

Fuel

GS 36.3% 5.2% 14.8% 5.1% 3.6%
-20% 7.8% 7.7% 13.2% 12.2% 12.4%
30Km/h 6.1% 10.2% 6.5% 7.3% 9.5%
HDV-LDV 25.3% 35.6% 30.3% 31.5% 31.7%

As a consequence of the rerouting strategy, some drivers have individually experienced longer
travel times. Concretely, 25% of drivers have longer travel times in ALA, 38% in MAL, 39% in
STO, and 47% in BER and PAR. This is a low price to pay for achieving global reductions of
travel times and gas emissions in the city, especially if we take into account that it is not likely
that the same drivers are penalized every day.

Next, the three competitor strategies were implemented as described in Section 4. Then, they
were applied to our case studies (again the same four scenarios of each) to obtain improvements
in each metric, also presented in Table 4. As can be seen, the improvements vary notably among
the metrics and scenarios, which makes it difficult to conclude which strategy is the best one.
Nevertheless, looking at the different strategies it can be appreciated that a reduction in the num-
ber of vehicles (-20%) has a positive impact on travel times as there are fewer vehicles on the
streets of our case studies. Reducing the number of vehicles has worked well, especially in the
reduction of CO, HC, and PM emissions. This strategy seems to achieve similar results to GS:
the former reduces the number of vehicles directly while the latter reroutes them via alternative
streets without restricting the drivers.

Fixing the maximum speed at 30Km/h has turned out to be the least effective measure to
reduce emissions, demonstrating the worst travel times as well. All in all, the reduction of
emissions is quite low in most of the cases, except for the case study MAL. Paradoxically, this
is the method applied by the majority of city authorities when the pollution levels are high. Our
conclusions in this matter are in keeping with those discussed in [24] where the authors illustrate
the scientific uncertainties inherent in implementing speed management policies [25].

Replacing trucks with sedans, vans, and wagons (HDV-LDV) enables a huge reduction of
CO2, PM, and NO emissions, as they are the main gases emitted by trucks according to the
HBEFA class selected for this type of vehicle (HDV 3 1). Furthermore, this strategy also reduces
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fuel consumption which is directly related to CO2 emissions as we have stated in Section 6.1.
The HDV-LDV strategy is a serious competitor to our system (emissions), but it definitely has
a negative impact on the economy of the city, as it is difficult to implement, and will definitely
incur protests. Our system is smoother and simultaneously more efficient with shorter travel
times whereas the other strategies show longer ones (negative improvements).

Our conclusion after this study is that despite the fact that some competitor strategies perform
better in some case studies, GS has competitive results. We must keep in mind that we do not
restrict the number, type, or speed of vehicles which would not be desirable or even viable in
many cities. Therefore, the next step taken was to optimize the same four training scenarios after
applying the competitor strategies to know how GS behaves under these new conditions.

6.3. Green Swarm Combined with Other Strategies

In this section the combination of GS with other strategies is studied to discover not only if
they are viable but also if the strategies achieve better results when are applied together.

We took the traffic distributions obtained when the -20%, 30Km/h, and HDV-LDV strategies
were applied in our training scenarios and applied GS as the optimization algorithm in order
to analyze how they combine with each other and see if some metrics could be improved even
further. After performing a further 30 independent runs of the EfRA in four scenarios of our five
case studies (150 runs per strategy) GS demonstrated the relative improvements over the other
strategies shown in Table 5. At first glance, the best improvements are made when applying
GS after limiting the vehicles’ maximum speed (30Km/h+GS). However, the most important
conclusion here is that all the metrics have been improved by complementing the competitors
with GS which, in our opinion, validates our proposal as a promising solution for improving the
city’s streets reducing travel times, greenhouse gas emissions and fuel consumption. Focusing
on the numbers, the maximum improvements are nearly 50% in travel times, 45% in CO, 30%
in CO2, 41% in HC, 38% in PM, 30% in NO, and 30% in fuel consumption.

The total number of runs performed in the optimization processes was 600 and the time spent
on each of them was, on average, between 19 and 92 hours. The diversity of values depends on
the case study, the number of vehicles and the heterogeneity of the hardware used.

Table 5: Relative improvements achieved by using GS after the other competitor strategies. These results correspond to
the training scenarios used in the initial optimization. The best improvement in each metric and case study is in bold.

Metric Strategy ALA MGA S TO BER PAR

T.Time
-20%+GS 43.1% 6.4% 31.9% 12.8% 7.4%
30Km/h+GS 49.1% 15.1% 37.7% 14.1% 7.0%
HDV-LDV+GS 49.8% 18.8% 42.3% 16.8% 10.3%

CO
-20%+GS 33.4% 2.0% 20.6% 6.0% 4.7%
30Km/h+GS 45.4% 11.9% 33.9% 11.5% 6.9%
HDV-LDV+GS 40.8% 10.6% 33.7% 9.6% 8.9%

CO2

-20%+GS 20.0% 1.9% 8.2% 2.1% 1.8%
30Km/h+GS 30.4% 5.9% 14.6% 3.5% 3.3%
HDV-LDV+GS 30.4% 5.9% 19.3% 4.1% 4.6%

HC
-20%+GS 32.4% 1.8% 18.2% 4.4% 4.3%
30Km/h+GS 40.9% 8.4% 27.7% 8.6% 5.9%
HDV-LDV+GS 36.6% 8.2% 27.3% 5.6% 7.2%

PM
-20%+GS 28.0% 2.9% 13.5% 4.8% 3.3%
30Km/h+GS 38.1% 9.0% 23.8% 7.3% 5.9%
HDV-LDV+GS 20.1% 3.3% 10.0% 1.1% 2.4%

NO
-20%+GS 19.5% 2.1% 7.8% 2.5% 2.0%
30Km/h+GS 29.6% 6.3% 14.2% 3.3% 3.8%
HDV-LDV+GS 18.3% 2.9% 9.8% 0.6% 2.5%

Fuel
-20%+GS 19.8% 1.9% 8.0% 2.1% 1.8%
30Km/h+GS 30.2% 5.8% 14.4% 3.4% 3.2%
HDV-LDV+GS 30.4% 5.9% 19.3% 4.1% 4.6%
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6.4. Study on Unseen Scenarios

After the aforementioned optimization processes we wanted to test GS in unseen scenarios.
With this in mind, 50 new unseen scenarios were generated for each city, where the vehicles
followed a variety of routes to their destination and another 50 in which they just flowed via the
fastest routes (subscript TT which stands for travel time). Then, the seven optimization strategies
on these scenarios (700 in total) were tested. The results are shown in Table 6 where the average
improvements achieved by each strategy in each case study and metric are displayed. The GS
configurations previously obtained were used here, so no extra optimization process was needed.

It can be seen in Table 6 that GS has improved the other strategies in this study as well, even
turning some of their results that were worse than the experts’ solution into actual improvements.

Table 6: Average improvement achieved by applying the seven strategies analyzed to 50 unseen scenarios of each case
study (500 scenarios in total) during the Green Stage. The best performing strategies in each case study are in bold.

Metric Strategy ALA MGA S TO BER PAR ALATT MGATT S TOTT BERTT PARTT Average

T.Time

GS 67.8% 14.5% 37.8% 15.0% 7.1% 63.5% 23.0% 59.6% 10.3% 15.3% 31.4%
-20% 21.3% 23.9% 38.1% 32.8% 37.0% 15.5% 21.0% 31.1% 37.4% 36.1% 29.4%
30Km/h -2.6% -13.3% -5.0% -13.1% -23.3% -3.8% -13.0% -8.7% -9.9% -16.1% -10.9%
HDV-LDV 0.0% -1.0% -3.9% -1.9% -4.0% -1.2% -0.2% -1.8% -4.0% -0.8% -1.9%
-20%+GS 54.1% 27.8% 53.2% 39.4% 39.4% 52.8% 32.4% 67.0% 39.7% 43.9% 45.0%
30Km/h+GS 48.4% 0.5% 31.2% -1.0% -16.9% 45.3% 10.4% 50.2% -3.9% 1.6% 16.6%
HDV-LDV+GS 49.8% 15.3% 38.2% 11.0% 0.0% -5.4% 32.8% 60.3% 7.8% 16.0% 22.6%

CO

GS 56.1% 7.4% 28.6% 10.3% 5.5% 51.9% 14.2% 48.2% 5.9% 11.3% 23.9%
-20% 18.6% 14.5% 30.0% 23.7% 23.3% 12.2% 13.6% 26.5% 25.0% 25.2% 21.3%
30Km/h 6.0% 17.1% 10.5% 9.1% 8.0% 5.6% 15.0% 6.2% 12.0% 12.1% 10.2%
HDV-LDV -10.7% -9.6% -13.8% -11.2% -12.4% -11.7% -9.6% -12.5% -13.4% -9.9% -11.5%
-20%+GS 43.4% 15.7% 40.0% 27.5% 25.3% 41.7% 20.0% 53.5% 25.8% 31.0% 32.4%
30Km/h+GS 49.9% 25.0% 37.9% 16.9% 12.4% 47.1% 30.6% 54.5% 14.8% 26.6% 31.6%
HDV-LDV+GS 34.1% 0.1% 22.4% -1.8% -8.6% -22.2% 21.8% 44.1% -5.2% 4.8% 8.9%

CO2

GS 36.2% 3.1% 13.3% 3.2% 2.1% 33.1% 6.5% 25.7% 1.2% 3.6% 12.8%
-20% 12.0% 7.5% 15.8% 12.2% 12.4% 8.1% 7.2% 15.8% 13.5% 14.0% 11.8%
30Km/h 6.9% 10.5% 8.8% 6.4% 8.9% 7.0% 9.6% 7.7% 8.2% 10.3% 8.4%
HDV-LDV 28.2% 35.4% 30.2% 32.6% 32.3% 27.9% 34.6% 28.9% 31.6% 32.0% 31.4%
-20%+GS 28.5% 7.8% 20.0% 12.5% 12.7% 27.2% 9.7% 29.9% 12.0% 15.4% 17.6%
30Km/h+GS 35.8% 13.1% 19.6% 7.8% 10.7% 33.8% 16.4% 30.6% 6.9% 16.2% 19.1%
HDV-LDV+GS 49.7% 38.3% 43.0% 34.0% 33.2% 25.0% 12.4% 51.8% 32.7% 36.6% 35.7%

HC

GS 53.7% 6.5% 25.7% 8.4% 5.0% 49.4% 12.3% 44.3% 4.6% 10.2% 22.0%
-20% 17.8% 12.7% 27.3% 21.2% 21.6% 11.9% 12.1% 25.1% 23.0% 23.8% 19.6%
30Km/h 2.2% 3.5% 3.4% -0.9% -3.7% 1.7% 2.5% -0.2% 1.3% 0.3% 1.0%
HDV-LDV 4.6% -2.0% -0.5% -0.2% -1.4% 3.7% -0.8% 2.0% -1.5% 1.9% 0.6%
-20%+GS 41.9% 13.7% 36.3% 23.8% 23.5% 40.0% 17.4% 49.5% 22.6% 29.1% 29.8%
30Km/h+GS 43.4% 9.7% 27.0% 5.2% 0.5% 40.2% 15.5% 43.2% 2.8% 13.6% 20.1%
HDV-LDV+GS 39.4% 4.9% 25.0% 4.7% 1.1% -3.3% 19.4% 43.2% 2.6% 12.1% 14.9%

PM

GS 46.6% 5.2% 20.5% 5.7% 3.9% 42.4% 9.9% 36.7% 3.0% 7.7% 18.2%
-20% 15.5% 10.1% 22.1% 17.6% 17.8% 10.6% 9.9% 21.6% 19.4% 20.3% 16.5%
30Km/h 3.8% 8.4% 5.5% 3.1% 2.8% 3.8% 7.3% 3.8% 5.9% 5.5% 5.0%
HDV-LDV 76.9% 68.5% 73.0% 71.3% 69.5% 76.4% 69.4% 74.5% 71.1% 70.6% 72.1%
-20%+GS 36.8% 10.9% 29.1% 19.3% 19.0% 35.1% 13.9% 41.5% 18.8% 24.1% 24.9%
30Km/h+GS 40.9% 12.9% 24.3% 7.3% 6.5% 37.8% 17.4% 38.6% 6.1% 16.0% 20.8%
HDV-LDV+GS 81.4% 69.1% 75.5% 71.1% 69.6% 76.5% 16.3% 79.3% 70.9% 71.4% 68.1%

NO

GS 34.3% 3.0% 12.4% 2.7% 2.2% 31.1% 6.0% 24.0% 0.8% 3.5% 12.0%
-20% 11.6% 7.1% 14.8% 11.6% 11.8% 7.9% 6.8% 15.5% 13.1% 14.0% 11.4%
30Km/h 6.6% 10.8% 8.2% 6.4% 8.4% 6.9% 9.9% 7.5% 8.5% 9.6% 8.3%
HDV-LDV 67.7% 63.2% 64.9% 64.0% 63.3% 67.4% 63.5% 65.4% 63.9% 63.8% 64.7%
-20%+GS 27.2% 7.3% 18.6% 11.8% 12.1% 25.8% 9.0% 28.0% 11.4% 15.3% 16.7%
30Km/h+GS 34.4% 13.1% 18.3% 7.4% 10.4% 32.2% 16.1% 28.6% 6.8% 15.4% 18.3%
HDV-LDV+GS 73.5% 63.9% 68.0% 63.6% 63.4% 66.9% 11.8% 71.6% 63.4% 64.8% 61.1%

Fuel

GS 35.9% 3.1% 13.1% 3.2% 2.1% 32.8% 6.5% 25.3% 1.2% 3.5% 12.7%
-20% 11.9% 7.5% 15.6% 12.0% 12.2% 8.0% 7.1% 15.7% 13.4% 13.8% 11.7%
30Km/h 7.0% 10.5% 8.9% 6.4% 9.0% 7.1% 9.7% 7.8% 8.2% 10.4% 8.5%
HDV-LDV 27.7% 35.4% 29.9% 32.4% 32.1% 27.4% 34.5% 28.5% 31.4% 31.8% 31.1%
-20%+GS 28.3% 7.7% 19.8% 12.3% 12.6% 27.0% 9.6% 29.5% 11.9% 15.2% 17.4%
30Km/h+GS 35.6% 13.1% 19.5% 7.8% 10.8% 33.6% 16.3% 30.3% 6.9% 16.1% 19.0%
HDV-LDV+GS 49.4% 38.2% 42.7% 33.8% 33.0% 24.5% 12.3% 51.5% 32.5% 36.3% 35.4%
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(a) Travel T ime (b) CO (c) CO2

(d) HC (e) PM (f) NO

Figure 6: Average improvement of the strategies applied to 500 unseen scenarios (50 per case study). Note that the case
studies of the same city are stacked in the same bar, e.g. ALA and ALATT , MGA and MGATT , etc.

Most of the best performing strategies in each metric involve GS, either alone or applied after
another strategy. The HDV-LDV strategy shows the best reductions of PM and NO on average,
-20%+GS reduces the most CO, HC, and travel times on average, and HDV-LDV+GS achieves
the biggest reductions in CO2 and fuel consumption on average.

In Figure 6 a graphical comparison is given between strategies in each case study over six
graphs for each metric. There, GS clearly performs especially well in our realistic congested case
study (ALA) and it always presents a consistent improvement in all metrics. However, HDV-LDV
and 30km/h encounter problems when improving travel times and reducing HC. HDV-LDV
alone or combined with GS demonstrates the biggest reductions of CO2, NO, and PM in most of
the case studies according to our experiments. Finally, we have calculated the Wilcoxon p-value
to be sure that the improvements reported on each metric are statistically significant. In all cases
the p-value obtained was less than 0.01, that is, a confidence level greater than 99%.

6.5. Study of User Acceptance Rates

Since GS could be delivered as an app for smartphones, it is quite realistic to think that
initially only a small number of drivers will have access to the system. Therefore, we have
analyzed how the traffic behaves when just a subset of the vehicles use GS in our case studies.

In Figure 7 the graphs for the five case studies analyzed when the rates go from 10% to 100%
in the best performing scenario are displayed. In the upper row, where the average improvement
with respect to the experts’ solution is plotted, it is clear that GS always reduces the average
levels of gas emitted in each case study, even at low acceptance rates.

In the bottom row of Figure 7, the percentage of scenarios improved vs. GS acceptance rate
is shown. The number of scenarios which are more eco-friendly when not all vehicles are using
GS decreases, so that less use equals lower improvement, as one would expect. It is however
noticeable that there is an average reduction in emissions in at least 48% of scenarios (the worst
case: CO2, Malaga), even when only 10% of drivers are using GS.
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(a) Alameda (ALA) (b) Malaga (MGA) (c) S tockholm (S TO) (d) Berlin (BER) (e) Paris (PAR)

(f) Alameda (ALA) (g) Malaga (MGA) (h) S tockholm (S TO) (i) Berlin (BER) (j) Paris (PAR)

Figure 7: Graphs showing the average improvement achieved by GS for different user acceptance rates (upper row) and
the percentage of the 50 scenarios improved (lower row) for the five case studies analyzed.

In addition, we observe that the behavior of GS in Paris has turned out to be a little different
from the rest of the case studies. In figures 7(e) and 7(j) we can see that the metrics’ variation
for different usages is not as neat as in the rest of the case studies. This shows the different
characteristics of Paris, especially its wide avenues and large roundabouts which leave little
room for improvement. That being said, it is clear that there is also an improvement in each
metric when GS is used, even for acceptance rates as small as 10% of all drivers in the city.

6.6. A Better Context for Understanding the Contributions of Green Swarm

In this section a study of the internal performance of Green Swarm is addressed. Concretely,
a comparison of the EfRA with a state of the art Genetic Algorithm (GA) [26, 27] and Simulated
Annealing (SA) [28, 29] is presented, followed by a convergence analysis.

The competitor GA implemented is a steady state (µ = 10, λ = 2), using Binary Tournament
as selection operator, Uniform Crossover as recombination operator (PC = 0.6 as in EfRA),
VMO with probability 1/L as the mutation operator, and an elitist replacement. The SA selected
is a well-known metaheuristic applicable to a wide range of problems. In this comparison we
have used α = 0.9 and generated 50 random neighbors before each temperature decrement.
Thirty independent runs of each algorithm were made, stopping after 2000 evaluations to make
a fair comparison, which amounts to 284 equivalent days.

The objective of this study is to know how EfRA performs against its competitors and provide
and internal statistical study [30] so as not to focus solely on the best fitness value. After testing
the normality of the distributions using the Kolmogorov-Smirnoff test, we obtained p-values of
0.832 for the 30 runs of EfRA, 0.990 for GA, and 0.996 for SA. Consequently, non-parametric
statistics (Friedman Rank and Wilcoxon) were used in the analysis. Table 7 shows the results
of the comparison. EfRA achieved the best median value and was the best ranked algorithm.
Additionally, the Wilcoxon test indicates that the differences between the results of the algorithms
are statistically significant. We can therefore claim that our proposal overcomes existing results
of the state of the art in the literature.

Moreover, a study on the EfRA fitness convergence over five independent runs (3000 genera-
tions, about 14 equivalent days) evaluating one instance of Malaga (MAL) was done. Figure 8(a)

17



Table 7: EfRA compared with GA and SA.

Algorithm
Fitness Friedman Wilcoxon

Median Best Rank p-value
EfRA 0.9625 0.9367 1.40 —
GA 1.0145 0.9783 2.93 0.000
SA 0.9779 0.9441 1.67 0.032

shows that after the 180th generation, the experts’ solution has been improved by our proposal.
After that point the entropy, which had been falling until this moment, begins to fluctuate below
0.1 (meaning a very welcome exploration management of our algorithm) when the VMO changes
the mutation probability from π1 to π2 to better exploit the solutions found (Figure 8(b)).

(a) Phenotype convergence of EfRA (b) Genotype convergence of EfRA

Figure 8: Convergence of the EfRA over 3000 generations.

7. Conclusions and Future Work

In this article we have presented a system to reduce greenhouse gas emissions and used it to
optimize road traffic in five cities in terms of not only emissions but also fuel consumption and
travel times. Our conclusions can be summarized point-by-point as follows:

• Our proposal for a smarter mobility has performed notably well in almost all of the exper-
iments conducted.

• GS has reduced average travel times (31% on average, 68% maximum), CO emissions
(24% on average, 56% maximum), CO2 (13% on average, 36% maximum), HC (22% on
average, 54% maximum), PM (18% on average, 47% maximum), NO (12% on average,
34% maximum), and fuel consumption (13% on average, 36% maximum).

• There is a negligible increase in route lengths (2% on average) which is a consequence of
the eco-friendly rerouting of vehicles via alternative streets which are not included in the
shortest path (the needed trade-off between the individual and the community).

• GS has not only achieved competitive results when compared to the popular -20%, 30Km/h
and HDV-LDV strategies, but has also worked perfectly as a complement to all of them,
improving the metrics even further.

• In spite of the variations observed in the results, which was to be expected as we were
considering different cities (cultures, locations, habits), we have consistently improved all
the metrics, even when just 10% of vehicles were using GS.

As a matter for future work, we are working on different strategies to implement the rerouting
of vehicles by using city districts as well as address the optimization of harder scenarios (com-
putation time and hardware requirements) involving hundreds of thousands of vehicles. We are
currently working on different strategies to address unforeseen events such as accidents, fires,
public demonstrations, which could suddenly close streets, turning open routes into invalid ones.

18



8. Acknowledgments
This research is partially funded by the Spanish MINECO and FEDER projects TIN2014-57341-R, TIN2016-81766-REDT, and

TIN2017-88213-R. Daniel H. Stolfi is supported by a grant (FPU13/00954) from the Spanish Ministry of Education, Culture and Sports.

References

[1] T. Bakici, E. Almirall, J. Wareham, A Smart City Initiative: the Case of Barcelona, Journal of the Knowledge
Economy 4 (2) (2013) 135–148.

[2] TNS Opinion & Social, Attitudes of Europeans towards urban mobility, Tech. Rep. June (2013).
[3] M. Mahmod, B. van Arem, R. Pueboobpaphan, R. de Lange, Reducing local traffic emissions at urban intersection

using ITS countermeasures, Intelligent Transport Systems, IET 7 (1) (2013) 78–86.
[4] H. Wahid, Q. P. Ha, H. Duc, M. Azzi, Neural network-based meta-modelling approach for estimating spatial

distribution of air pollutant levels, Applied Soft Computing 13 (10) (2013) 4087–4096.
[5] D. Loomis, Y. Grosse, B. Lauby-Secretan, F. El Ghissassi, V. Bouvard, L. Benbrahim-Tallaa, N. Guha, R. Baan,

H. Mattock, K. Straif, The carcinogenicity of outdoor air pollution, Lancet Oncol. 14 (13) (2013) 1262–1263.
[6] C. Guerreiro, F. de Leeuw, V. Foltescu, Air quality in Europe, Tech. rep., European Environment Agency (2013).
[7] M. R. Jabbarpour, R. M. Noor, R. H. Khokhar, Green vehicle traffic routing system using ant-based algorithm,

Journal of Network and Computer Applications 58 (2015) 294–308.
[8] Open-Street-Map-Fundation, OpenStreetMap (jan 2017). URL http://www.openstreetmap.org

[9] D. Krajzewicz, J. Erdmann, M. Behrisch, L. Bieker, Recent Development and Applications of SUMO - Simulation
of Urban MObility, International Journal On Advances in Systems and Measurements 5 (3) (2012) 128–138.

[10] H. Amer, N. Salman, M. Hawes, M. Chaqfeh, L. Mihaylova, M. Mayfield, An Improved Simulated Annealing
Technique for Enhanced Mobility in Smart Cities, Sensors 16 (7) (2016) 1013.

[11] C. Menelaou, P. Kolios, S. Timotheou, C. Panayiotou, A congestion-free vehicle route reservation architecture, in:
2016 18th Mediterranean Electrotechnical Conference (MELECON), no. April, IEEE, 2016, pp. 1–6.

[12] M. Shahidehpour, Z. Li, S. Bahramirad, A. Khodaei, Optimizing Traffic Signal Settings in Smart Cities, IEEE
Transactions on Smart Grid 3053 (4) (2016) 1–1.

[13] M. Tropea, A. F. Santamaria, Vehicular traffic optimization in VANETs: A proposal for nodes re-routing and
congestion reduction, Advances in Electrical and Electronic Engineering 13 (4) (2015) 376–385.

[14] D. H. Stolfi, E. Alba, Red Swarm: Reducing travel times in smart cities by using bio-inspired algorithms, Applied
Soft Computing Journal 24 (0) (2014) 181–195.

[15] J. Toutouh, E. Alba, Performance analysis of optimized VANET protocols in real world tests, in: Wireless Com-
munications and Mobile Computing Conference (IWCMC), 2011 7th International, IEEE, 2011, pp. 1244–1249.
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