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a b s t r a c t 

This paper presents a novel grammar-based evolutionary approach which allows autonomous emergence of het- 

erogeneity in collective behaviours. The approach adopts a context-free grammar to describe the syntax of evolv- 

ing rules, which facilitates an evolutionary algorithm to evolve rule structures without manual intervention. We 

propose modifications to the genome structure to address the requirements of heterogeneity, and two coopera- 

tive learning architectures based on team learning and cooperative coevolution. Experimental evaluations with 

four behaviours illustrate that both architectures are successful in evolving heterogeneous collective behaviours. 

Both heterogeneous architectures surpass a homogeneous model in performance for deriving a flocking macro 

behaviour, however the homogeneous model is superior for evolving micro behaviours such as cohesion and 

alignment. The results infer that by placing the entire set of agent rules and their syntax under evolutionary 

control, effective solutions to complex problems can be evolved when human knowledge and intuition becomes 

insufficient. 
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. Introduction 

Multi-agent systems (MASs) are increasingly being adopted as a vi-

ble solution to model, study and understand the real life complexi-

ies and nonlinear interactions of dynamic systems in many application

elds. 

The multifaceted nature of most of the real world requirements of

ASs could be addressed by employing heterogeneity to flexibly adopt

o dynamic conditions and face and recover from failures with maxi-

um robustness. Nevertheless, designing heterogeneous MASs is still

 challenge that has only been partially addressed as a result of the

elated complications. It is particularly more challenging than homo-

eneous systems due to the need of designing each individual agent or

ub-groups of agents separately such that they cooperatively act towards

 common goal [1,2] . This requires exploring a substantially diverse

earch space of different rule components, parameters and values which

s a complex, time consuming endeavour. Manually exploring the search

pace and designing the behavioural rules is difficult and not feasible, as

ere intuition is insufficient to foresee which combination of individ-

al rules and/or their components will result in the desired behaviour at

he emergent level [3,4] . Autonomous design techniques that have often

een explored as alternatives to address these challenges are primarily

oncentrated only on automating the control of parameters necessary

or behavioural rules formulation. They rarely explore the capability
MAS, Multi-agent System; GE, Grammatical Evolution; CFG, Context-free Gramm
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or automating the design of the structure of the rules that are being

volved. The rule structures are mostly still either manually designed

5,6] or are represented by an artificial neural network (ANN) [7] that

inders understanding and reverse engineering of the rules for analysis

nd combination of individual components for complex heterogeneous

ehaviour generation [8] . 

Grammatical evolution (GE), first proposed in 1998 [9] , is a tech-

ique which is intrinsically focused on the structure of the rules be-

ng evolved. In contrast to other automated design techniques, it adopts

 context-free grammar (CFG) in defining the syntax of the evolving

ehaviours and has the ability to maintain search space and solution

pace independent of each other through a separate mapping process.

his makes GE an ideal candidate approach that can evolve entire rule

tructures to explore diverse solutions for complex problem domains of

ASs. As such, this paper investigates GE as a potential solution to sup-

ort autonomous emergence of heterogeneity among agents. The con-

ent of this paper further elaborates the challenges in using evolutionary

omputation for evolving heterogeneous behaviours such as the compu-

ational cost associated with the size of the population and premature

onvergence of solution spaces. We present two cooperative learning

rchitectures; one based on team learning (TL) and another based on

ooperative coevolution (CCE) [10] , using grammar-based evolution in

rder to address the said challenges. Experimental evaluations are con-

ucted to present a coherent view of the strengths and weaknesses of
ar; TL, Team Learning; CCE, Cooperative Coevolution. 
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a

ach mechanism and a selection criteria for using these methods for

eneration of collective multi-agent behaviours. 

In a recent study [11,12] we introduced a GE-based mechanism to

ynthesise multi-agent behaviours for a homogeneous system, which is

apable of reducing human intervention in the rule generation process.

n contrast to homogeneous agents, heterogeneous agent rules can com-

licate the process of learning as the search space for rules becomes

roportional to the number of agents in the system increasing the com-

lexity [10] . In this paper, we study how the previous mechanism could

e significantly enhanced to address such complications and model het-

rogeneous behaviours with the following contributions: 

1. A GE-based approach for synthesis of heterogeneous multi-agent be-

havioural rules is introduced. Unlike the existing mechanisms which

require the rule structure to be pre-defined, this approach can evolve

the entire rule structure from their atomic components based on a

grammar which outlines the syntax of rules. 

2. A novel encoding mechanism is proposed for GE which can encode

multiple behavioural rules (corresponding to different agents) in a

single genome. This facilitates the representation of rules required

for cooperative learning. 

3. Cooperative learning mechanisms based on two architectures: TL

and CCE, are proposed for implementation of the grammar-based

model. These mechanisms explore means to reduce computational

costs associated with expanding agent group sizes and to avoid the

evolution process getting stuck in sub-optimal solutions. 

4. The effectiveness of the proposed models is analysed based on evo-

lutionary results in a simulation environment with four behaviours

and the results are also compared against a homogeneous model. 

The rest of the paper is organised as follows. The relevant existing

iterature is reviewed in Section 2 . Section 3 introduces the problem

tatement in relation to heterogeneous MASs, and presents the general

ramework of the proposed grammar-based evolutionary approach with

he modified genome encoding mechanism. It also introduces the co-

perative learning mechanisms used in combination with the grammar-

ased model. The experimental setups and evaluations are presented in

ection 4 and Section 5 , respectively. Section 6 discusses the results and

ection 7 concludes the paper with possible future directions. 

. Related work 

.1. Evolution of heterogeneous multi-agent systems 

Evolutionary algorithms have often been discussed as an effective

pproach to design MASs [13,14] and have also been used in heteroge-

eous contexts leveraging behavioural or structural diversity to address

ore complicated problems. Heterogeneity has long been explored in

he context of evolutionary computing in fields such as robotics [15,16] ,

urveillance [17] , traffic management [18] , hazardous environments

19] , mapping and exploration [20] , and construction [21] . With the

ecent advancements in the areas of social networking and data shar-

ng, evolutionary techniques are also being used in MASs that interact

ith such systems for social networking predictions [22] . Motion de-

ection, social behaviour, and drift detection [23] are other areas that

ave found interest in evolutionary techniques coupled with MASs to

upport dynamic pattern mining. More recent MASs-based work has also

xplored evolutionary algorithms in areas such as game design [24] and

raphical simulations [25] . 

Two cooperative learning architectures: TL and concurrent learning

10] , are discussed in the literature to facilitate the evaluation of inter-

ctions among agents in determining their contributions at the emer-

ent level. Only a single learner is associated with TL which will search

nd improve all the behavioural rules of the agents in the system [26] .

ence, multiple agents should be encoded in a single genome which will

hen learn the behaviours of the entire agent system. It has centralised

ontrol over the multi-agent system and lacks the property of breaking
2 
 larger problem into manageable sub problems, thus leading a single

earner to explore a large solution space. Due to this fact, TL is generally

sed with evolution of homogeneous agent systems. 

Concurrent learning on the other hand, involves multiple learners

orking on different parts of the agent system. Generally, each agent

r agent group has a separate learner to modify their behaviour. CCE

s one of the common concurrent learning mechanisms, where separate

opulations are used to coevolve different agents resulting in a solution

pace with cooperating sub modules. The evolution is carried out by

valuating each individual for their performance with the individuals of

ther populations. This approach reduces the workload of the learner by

ecomposing the problem into more manageable sub-problems [27] and

s typically used with heterogeneous evolution. 

These learning architectures have been studied with other reward-

ased techniques such as reinforcement learning [28] and genetic al-

orithms [27] . More recently, Deng et.al [29] have explored an ant

olony optimisation algorithm with cooperative coevolution in a multi-

opulation strategy. In a similar vein, a multi-objective bacterial forag-

ng algorithm [30] and distributed combinatorial optimisation heuristic

pproaches [31] have been tested with cooperative learning architec-

ures to explore their capacity in collective behaviour evolution. Nev-

rtheless, these architectures have not been experimented with GE in

revious literature. The proposed models cater to this gap by investigat-

ng modifications to cooperative learning architectures in association

ith GE in order to support evolution of heterogeneous multi-agent be-

aviours. 

.2. Challenges in evolution of heterogeneous multi-agent systems 

We investigate grammar-based cooperative learning in addressing

he following limitations associated with the current evolutionary ap-

roaches for heterogeneous MASs: 

Human bias in synthesis process: The classic evolutionary ap-

roaches concentrate on automatically generating only the parameters

ssociated with formulating behavioural rules rather than exploiting

eans for automating the generation of the entire rule structure [5,6] .

n a heterogeneous context, it is not trivial to determine the aggregated

et of local behaviours to result in a desired global behaviour. The ap-

roaches that have explored heterogeneity have in fact used potential

unctions and parameters that require heavy manual intervention [32] .

e explore GE as a solution to reduce human bias by evolving the entire

ule structure based on a predefined syntax. 

Limitations on scalability: The cost of computation is generally

ssociated with the population size [33] . In a typical concurrent learn-

ng approach for heterogeneous systems, individual agents have to be

earned separately. The search space to be explored increases propor-

ionally as the number of agents increases, thus increasing the complex-

ty of the process causing scalability issues [27] . We explore modifica-

ions to the genome structure of GE to represent multiple agents in a

ingle genome, enabling TL with a single learner to be incorporated for

eterogeneous learning. 

Premature convergence of the solution space: Multi population

nvironments can suffer from premature convergence to equilibrium

tates. Relative over-generalisation is one of the main causes for co-

volutionary algorithms to converge towards sub-optimal equilibrium

tates without reaching for the optimal solutions [34] . The populations

ay deceive each other to settle at a sub-optimal solution in such in-

tances [35] . We investigate extensions to traditional CCE learning to

elp the evolutionary process escape from sub-optimal solutions. 

. Grammar-based evolutionary approach 

This section discusses the proposed grammar-based evolutionary ap-

roach along with the modification introduced to the genome structure

nd the cooperative learning architectures. 
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.1. Problem statement 

Heterogeneous multi-agent systems are naturally distinguished by

he behavioural and/or morphological diversity of the constituent

gents. Morphological diversity refers to the structural dissimilarity

ithin agents such as different actuation and sensing capabilities. In

ontrast, behavioural diversity allows different behavioural specialisa-

ions within a group of agents [27] . 

In the context of this paper, we concentrate on achieving behavioural

eterogeneity through individual specialisation of the agent rules within

 group of morphologically homogeneous agents. We define a heteroge-

eous multi-agent system with the tuple H = { Ψ, 𝑅 , 𝑔 } where; 

• Ψ = { 𝜓 1 , 𝜓 2 ,..., 𝜓 𝜇 ; 1 <𝜇 } is a set of more than one agent 𝜓 , where

𝜇 is the number of agents. 

• 𝑅 = { 𝑟 ( 𝜓 1 ) , 𝑟 ( 𝜓 2 ) ,..., 𝑟 ( 𝜓 𝜇) } is a set of rules 𝑟 ( 𝜓) that define the agent

behaviours, each associated with a single agent in the system. 

• 𝑔 is the goal state the entire agent system is required to achieve

defined by the objective function 𝑂( 𝑔) . 

The objective 𝑂( 𝑔) can be achieved by optimising a global fitness

unction which defines the criteria for the entire set of agents to reach

he goal state as defined in Function 1 ; 

( 𝑔) ⇐ max 𝐹 (Ψ) (1)

However, since agents follow distinct rules, the contributions of the

gents towards the final goal can be different. Therefore, in a second

pproach, the individual contribution can also be taken into account

long with the global performance. Function 2 optimises both the global

erformance as well as the individual contribution; 

( 𝑔) ⇐ max 𝐹 (Ψ) && max 
𝜇∑
𝑖 =1 

𝐹 ( 𝜓 𝑖 ) (2)

Given a set Ψ of agents and a goal 𝑔, the aim is to optimise the fitness

ither using the Function 1 or Function 2 to achieve the rule set 𝑅 which

esembles the closest possible behaviour to the goal 𝑔. 

.2. General framework 

Computational methods that can tackle optimisation problems (such

s reinforcement learning, particle swarm optimisation, evolutionary

lgorithms including genetic algorithms, estimation of distribution al-

orithms and evolution strategy algorithms) can often also be used to

mprove emergent behaviour of MASs. Nevertheless, these methods can

nly be used in exploring the space of states and behaviour parameters

f agents [28,33,36] rather than the space of behaviour rule structures.

hey are limited in their capacity to incorporate the structure of a pro-

ramme in the evolution process. Genetic programming (GP) [37] has

he potential to evolve programme structures, however, has no control

ver their syntax. As such, GE can be identified as a more logical alter-

ative that has the unique ability to utilise a CFG to control and restrict

he solution structures to a desired syntax. 

This approach is increasingly being used in evolving behaviours

f single agent systems [38–40] as well as homogeneous agent sys-

ems [8,11] , due to its ability to generate syntactically correct solutions

hrough the evolutionary process with reduced manual intervention.

owever, evolution of heterogeneous groups of agents has not been ex-

lored in a comprehensive manner with grammar-based approaches. As

uch, this paper focuses on allowing autonomous emergence of hetero-

eneous rule structures in a cooperative environment where the individ-

al agents succeed or fail in collaboration. For this, two approaches for

ooperative learning; using a single learner for the entire team (TL) and

sing multiple concurrent sub learners (CCE) are explored along with

he GE model. 

In our previous work [11] , we proposed a mechanism to evolve emer-

ent homogeneous behaviours by employing the atomic components of

he rule structures; control structures, parameters, preliminary actions
3 
nd logical and/or relational connectives [11] . This structural defini-

ion remains true for aggregated sets of rules as well, since individual

ules are combined using logical connectives to form the aggregation.

igure 1 illustrates the syntax formulation mechanism. 

The aggregated rules can consist of multiple rule components and the

rocess is started by initialising the first component. It follows an if-else

ontrol structure, and the process then selects the condition composed of

ogical and/or relational connectives followed by their parameters. The

ext part leads to the actions or another if condition (resulting a nested

ule). It is then followed by the else component, which could again be

n action or another if condition nested within. The process may end

here or continue to generate more rule components. 

The evolutionary process is outlined in Algorithm 1 and Fig. 2 .

lgorithm 1 Grammar-based Evolutionary Process. 

equire: ℜ : Rule Space Ω: Maximum no. of generations 𝛽: Size of the

population 𝐶𝐿 : Cooperative learning mechanism (TL/CCE) 

nsure: 𝐼 𝑏 : Best individual genome 

1: procedure GrammarBasedEvolution ( ℜ , 𝛽, Ω) 

2: 𝜌 ← GenerateCFG ( ℜ ) 
3: 𝑝𝑜𝑝 ← InitialisePopulation ( 𝛽, 𝜌) 
4: 𝑝𝑜𝑝 ← EvolutionaryAlgorithm ( 𝑝𝑜𝑝, 𝛽, 𝜌, Ω, 𝐶𝐿 ) 
5: 𝐼 𝑏 ← GetMostFitIndiv ( 𝑝𝑜𝑝 ) 
6: return 𝐼 𝑏 

7: procedure EvolutionaryAlgorithm ( 𝑝𝑜𝑝, 𝛽, 𝜌, Ω, 𝐶𝐿 ) 

8: 𝜔 ← 0 
9: while 𝜔 ≠ Ω do 

10: EvaluateFitness( 𝑝𝑜𝑝 ) 

11: while 𝑣𝑎𝑙 𝑖𝑑𝑎𝑡𝑒𝐴𝑔𝑎𝑖𝑛𝑠𝑡𝐶𝐹 𝐺 ( 𝑝𝑜𝑝 ) == 𝑓𝑎𝑙𝑠𝑒 do 

12: ParentSelection( 𝑝𝑜𝑝 ) 

13: GeneticOperations( 𝑝𝑜𝑝 ) 

14: return 𝑝𝑜𝑝 

he rule space which consists of the four types of atomic components

control structure, logical and relational connectives, parameters, and

lementary actions) is used to design the CFG syntax illustrated in

ig. 1 ( Algorithm 1 : Line 2). The designed CFG is then used to generate

n initial random population of rules which adhere to the required syn-

ax, which is then fed to the evolutionary algorithm to evolve the desired

ehaviours ( Algorithm 1 : Line 3). As identified earlier in this section, we

ropose two cooperative learning algorithms; TL and CCE, which are

resented in detail under Section 3.4 . The algorithm presented here de-

cribes the structure of the evolutionary process common to both TL and

CE mechanisms ( Algorithm 1 : Lines 7–14). The fitness is calculated for

ach individual rule in the population and two parent rules are selected

ith the highest fitness values to generate offspring. The offspring gen-

rated by applying genetic operations are then validated against the CFG

o ensure they adhere to the required syntax. The unique mechanisms

dopted by TL and CCE with the process of fitness evaluation, parent se-

ection, and applying genetic operations are discussed in the respective

ections. 

.3. Genome structure 

In GE, the genome is represented as a binary string referred to as a set

f ‘codons’. The codons are consecutive groups of 8 bits each represent-

ng an integer value, and can be mapped to a phenotype with syntacti-

ally valid solutions based on the grammar. Since a genome represents

 single rule, representing each agent separately to retain heterogeneity

s computationally expensive, as the population size increases propor-

ional to the number of agents [41] . 

Therefore, a mechanism is required to represent multiple agents in

he same genome so that the cost of exploration during the evolution

rocess would be minimised. In doing so, we propose the encoding
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Fig. 1. Syntax followed by the grammar in design- 

ing the structure of the behaviour rules. The flow 

chart describes the steps that should be taken dur- 

ing the formation of a simple or an aggregated rule 

and allows for the combination of several such rules 

as required, for achieving complex behaviours. 

Fig. 2. Grammar-based evolutionary mechanism. 

Followed by the construction of a context-free gram- 

mar based on the rule space, an initial population 

adhering to the syntax requirements is automati- 

cally generated. Every individual in this population 

is then evaluated for their fitness and parent selec- 

tion is performed. Offspring are generated by ap- 

plying crossover and mutation on selected parents. 

They are validated against the CFG and if they do 

not comply with the syntax requirements the pro- 

cess is repeated with new parents. The evolutionary 

process is thus continued until the termination cri- 

teria is met. The enclosed section is updated based 

on the cooperative learning architecture used. 

Fig. 3. Proposed encoding mechanism for genomes. A genome consisting of m 

codons can represent a population of k rules ( k ≤ m ). Each rule is interpreted 

starting from the i th codon ( i ∈ [1, k ]). 

m  

s

 

c  

i  

a  

a  

o  

o  

s  

G  

t  

m

 

t  

p  

i  

a  

m  

g  

3

 

g  

q  

s  

a  

f

3

 

g  

d  

i  

a  

l  

1 A description of the syntax and production rules of the grammar used; a de- 

tailed illustration of the mapping process with an example rule; and a sensitivity 

analysis for genetic parameters, is available in supplementary files. 
echanism depicted in Fig. 3 with GE to store multiple agents in one

tructure. 

This proposed genome structure is unique because it can record all

haracteristics of multiple agents in a single structure while maintain-

ng their heterogeneity. Other evolutionary techniques such as genetic

lgorithms employ encoding mechanisms which represent multiple vari-

bles of a single agent in a single genome. However, they are not capable

f representing multiple variables of all agents in one structure with-

ut scaling proportionately to the number of agents. This is because the

earch space and solution space are not independent of each other unlike

E. In contrast, the proposed genome structure uses the same represen-

ation of codons, but since they are read in different combinations, they

ap to entirely different solutions resulting in different agent rules. 

In the original GE approach, the genome is mapped to the phenome

hrough the mapping function illustrated in Fig. 4 . The function is ap-
4 
lied on the corresponding integer value of the codon based on a spec-

fied grammar. Multiple rules each starting from the consecutive codon

re generated through the same mapping function with the proposed

echanism. For example, in Fig. 4 , there are 4 codons [2 4 3 1] and the

enome represents two rules, starting from the 1st [2 4 3 1] and 2nd [4

 1 2] codon respectively. 1 

This mechanism ensures that each agent, although using the same

enome, represents different rules based on their respective codon se-

uence. The only necessary condition is that the number of codons

hould exceed or be equal to the number of agents that it represents. We

dopt the presented genome representation in both TL and CCE contexts

or evolution. 

.4. Proposed cooperative learning mechanisms 

Traditional coevolutionary algorithms for heterogeneous behaviour

eneration are limited by scalability and premature convergence issues

iscussed in Section 2 . No single solution could be identified with our

nvestigations that can address both limitations, and as such, both TL

nd CCE approaches are investigated as means to address each prob-

em. TL, combined with the proposed genome structure is recognised
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Fig. 4. Example mapping of genotype to pheno- 

type. The genome consists of 4 codons representing 

2 rules each interpreted starting from the 1st and 

2nd codon. They map to ( ∗ X Y) and (+ Y Y) re- 

spectively, which are two different rules constructed 

from the same original genome. 

Fig. 5. Proposed team learning mechanism. Each 

team of agents in the population is separately eval- 

uated for their global fitness and parent selection is 

performed. The next offspring are generated by ap- 

plying genetic operators on the selected parents. Each 

offspring generated is validated against the CFG and 

the process is repeated with new parents if they do 

not comply with syntax requirements. The evolution- 

ary process is continued until it meets the termination 

condition. 
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Algorithm 2 Team Learning. 

Require: 𝜌: Set of CFG production rules 𝛽: Size of the population Ω: Max- 

imum no. of generations 𝓁: Maximum no. of loops 

Ensure: 𝐼 𝑏 : Best individual genome 

1: procedure TeamLearning ( 𝜌, 𝛽, Ω) 

2: 𝑝𝑜𝑝 ← InitialisePopulation ( 𝛽, 𝜌) 
3: 𝜔 ← 0 
4: while 𝜔 ≠ Ω do 

5: for 𝑖 ∈ 𝑝𝑜𝑝 do 

6: EvaluateFitness( 𝑖 ) 

7: 𝑐 𝑀1 , 𝑐 𝑀2 ← 𝑛𝑢𝑙𝑙 

8: 𝑣𝑎𝑙 𝑖𝑑 ← 𝑓𝑎𝑙 𝑠𝑒 

9: 𝑙𝑜𝑜𝑝𝑠 + + 

10: while 𝑣𝑎𝑙 𝑖𝑑 == 𝑓𝑎𝑙 𝑠𝑒 do 

11: 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 ← ParentSelection ( 𝑝𝑜𝑝 ) 
12: for 𝑝 1 , 𝑝 2 ∈ 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 do 

13: 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← Crossover ( 𝑝 1 , 𝑝 2) 
14: for 𝑐 1 , 𝑐 2 ∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do 

15: 𝑐 𝑀1 ← Mutate ( 𝑐1 , 𝑝𝑟𝑜𝑏 𝑚𝑢𝑡 ) 
16: 𝑐 𝑀2 ← Mutate ( 𝑐2 , 𝑝𝑟𝑜𝑏 𝑚𝑢𝑡 ) 
17: if MapCFG ( 𝜌, 𝑐 𝑀1 ) == 𝑡𝑟𝑢𝑒 AND MapCFG ( 𝜌, 𝑐 𝑀2 ) == 𝑡𝑟𝑢𝑒 

then 

18: 𝑣𝑎𝑙𝑖𝑑 ← 𝑡𝑟𝑢𝑒 

19: else if 𝑙𝑜𝑜𝑝𝑠 == 𝓁 then 

20: 𝑣𝑎𝑙𝑖𝑑 ← 𝑡𝑟𝑢𝑒 

21: 𝐼 𝑊 

← GetTwoWorstFitIndivs ( 𝑝𝑜𝑝 ) 
22: for 𝐼 𝑊 1 , 𝐼 𝑊 2 ∈ 𝐼 𝑊 

do 

23: 𝐼 𝑊 1 ← ReplaceIndiv ( 𝐼 𝑊 1 , 𝑐 𝑀1 ) 
24: 𝐼 𝑊 2 ← ReplaceIndiv ( 𝐼 𝑊 2 , 𝑐 𝑀2 ) 
25: 𝐼 𝑏 ← GetMostFitIndiv ( 𝑝𝑜𝑝 ) 
26: 𝜔 + + 

27: return 𝐼 𝑏 
s a solution to scalability. Since the entire team can be represented in

 single genome, only the genome size is increased with the number

f agents, which is less computationally expensive than an increasing

opulation size. The modifications proposed through the extended CCE

lgorithm are capable of addressing premature convergence issues of

raditional CCE. The details of the mechanisms presented here will al-

ow a designer to make decisions on the respective algorithm to choose

ased on affordable computational resources and expected level of per-

ormance. 

Team Learning 

The aforementioned genome encoding mechanism is used to repre-

ent all agents of a team in a single genome for TL. In the proposed

pproach for heterogeneous systems, the population for evolutionary

rocess is composed of multiple such solutions for global behaviour rep-

esented in individual genomes. The evolutionary algorithm is as given

n Fig. 5 . 

Algorithm 2 describes the learning procedure. The population is ini-

ialised with multiple genomes, each representing a solution of a differ-

nt multi-agent group ( Algorithm 2 : Line 2). During each generation,

he genomes are evaluated separately for emergent group behaviour

ith a global fitness measure ( Algorithm 2 : Lines 5–6). We adopt steady

tate replacement (SSR) [42] , where the offspring of the selected par-

nts replace the least fit individuals of the last iteration. Hence, based

n the fitness values, parent selection is performed on the population

 Algorithm 2 : Line 11) and genetic operations are applied on the two

est solutions identified to generate offspring. The selected parents are

rst applied with one-point crossover ( Algorithm 2 : Line 13). As such, a

oint on both parents is picked randomly and the genome portions from

hat point are swapped between the two parents. Single point mutation

s then applied on the offspring to further facilitate global search of the

olution space ( Algorithm 2 : Lines 15–16). The final offspring solutions

enerated are then mapped against the CFG to validate that they adhere

o the expected syntax ( Algorithm 2 : Line 17). If the new offspring can-

ot map to a syntactically correct solution, parent selection and genetic

perations will be recurrently performed until they become valid. 
5 
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Fig. 6. Proposed cooperative coevolution mecha- 

nism. The initial population consists of a number 

of genomes equal to the number of agents in the 

system. A random PA is selected as the REP at the 

first generation. Each PA is evaluated for fitness by 

interaction with REPs from other sub-populations. 

The REPs are updated at the end of the evaluation 

phase with the best PA of each sub-population. For 

the generic CCE approach, the set of genomes are 

replaced with a mutated version of the REPs for the 

next generation. For the extended CCE approach, 

mutation is performed on the best PA/REP after all 

PAs are sorted based on their local and global fitness 

values. 
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A maximum number of loops is used to address the unlikely event

hen a valid offspring cannot be generated after sufficient number of

rials ( Algorithm 2 : Lines 18–20). When this number is reached, the

ast generated invalid offspring is placed in the population. During the

ubsequent fitness evaluation iteration, this offspring receives the worst

tness possible and therefore, it gets replaced immediately afterwards

n the next generation. However, this situation is quite rare in practice

was not observed during any of the experimental runs for this study) as

here exists a large number of possible codon modifications with parent

elections and genetic operators that are capable of generating a valid

ffspring within a few trials. 

Once the offspring is generated, the two least fit individuals from

he population are selected which will be replaced with offspring

 Algorithm 2 : Lines 21–24). Once the evolutionary process is repeated

or a desired number of generations and the termination criteria is met,

he algorithm returns the best individual solution of the population

 Algorithm 2 : Lines 25–27). 

Cooperative Coevolution Learning 

Figure 6 demonstrates the evolution procedure with the CCE ap-

roach. The population of solutions is represented by a set of genomes

ach representing a sub-population of candidate behaviours for a single

gent. The goal for the CCE process is to identify the set of best candi-

ate behaviours for the agents that can cooperatively act in the given

nvironment. Each candidate behaviour is evaluated in the presence of

ther agents during each generation for their capability to represent the

ctual agent behaviour. We introduce the term ‘phantom agent’ (PA)

o refer to these candidate behaviours in the sub-population of the ac-

ual agent. During each generation, the PA which results in the best

lobal fitness value based on interaction with the best candidates of all

ther sub-populations is termed as the ‘representative’ (REP) of that sub-

opulation. Hence, each sub-population consists of multiple PAs which

re candidate solutions for REPs, and the best PA takes the position of

EP. During the first generation prior to fitness evaluation is begun,

 random PA is assigned as the REP for every sub-population. By the

nd of first generation after iterating through every sub-population, all

EPs get replaced with their respective best PA and will continue to be

eplaced during each generation until the end of the process. 
6 
Algorithm 3 further describes the steps of the CCE approach. As dis-

ussed above, each sub-population is assigned with a random PA as their

EP for the first generation ( Algorithm 3 : Lines 3–4). During fitness eval-

ation, each PA in every sub-population is evaluated for their suitabil-

ty to be elected as the REP. To do so, each PA in a sub-population

nteracts with an elitist community composed of current REPs of all

ther sub-populations ( Algorithm 3 : Lines 7–9). The PA interacts in this

ommunity and updates its fitness value based on global performance

f the community. At the end of iterating through all PAs for all sub-

opulations, all existing REPs are updated with the respective best PA

f each sub-population unless the existing REP has a better fitness than

he new best PA ( Algorithm 3 : Lines 10–12). Then, offspring are gen-

rated. The REP of every sub-population is applied with single point

utation to generate the offspring ( Algorithm 3 : Line 13). The offspring

s then validated against the CFG to ensure they adhere to the syntax.

f the offspring is invalid, a different mutation point is chosen, and the

rocess is repeated ( Algorithm 3 : Lines 22–25). Similar to TL, a maxi-

um number of loops is set to address the rare event that a valid off-

pring cannot be generated. In that case, after the set number of loops

xceeds, a randomly chosen PA is applied with mutation to generate

he next offspring ( Algorithm 3 : Lines 17–19). However, an overrun of

he number of loops was not observed during any of the experimental

uns conducted. Once the REPs are updated, the evolutionary process

s repeated by evaluating their fitness values and applying the genetic

perations, until the termination criteria is met. 

The genome encoding mechanism proposed above is also used here.

ithin the genome, the PAs are represented by a different combination

f codons, and each PA’s rule should be interpreted starting from the

rst codon in a circular fashion. In Fig. 4 , where the genome is [2 4 3

], the 1st PA is read from the 1st codon [2 4 3 1], and the 2nd PA is

ead from the 2nd codon [4 3 1 2]. 

Figure 7 shows the generation of an offspring for an existing genome

here the REP was the third PA. Single point mutation is applied on

he REP to generate new offspring and if it is valid (ensuring that it

an be mapped to the required number of PAs), it replaces the existing

enome. Mutation will be recurrently performed until a valid offspring

s generated. 
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Fig. 7. Example generation of offspring from a represen- 

tative starting from the 3rd codon. Single point mutation 

is performed on this representative and is used to replace 

the exising genome for the next generation. 

Algorithm 3 Cooperative Coevolution (CCE). 

Require: 𝜌: Set of CFG production rules 𝛽: Size of the population Ω: Max- 

imum no. of generations 

Ensure: 𝑅 𝑏 : Best REP set 

1: procedure CooperativeCoevolution ( 𝜌, 𝛽, Ω) 

2: 𝑝𝑜𝑝 ← InitialisePopulation ( 𝛽, 𝜌) 
3: for 𝑖 ∈ 𝑝𝑜𝑝 do 

4: 𝑅𝐸𝑃 𝑖 ← 𝑎 𝑃 𝐴 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑐ℎ𝑜𝑠𝑒𝑛 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑙𝑦 

5: 𝜔 ← 0 
6: while 𝜔 ≠ Ω do 

7: for 𝑖 ∈ 𝑝𝑜𝑝 do 

8: for 𝑃 𝐴 𝑘 ∈ 𝑖 do 

9: EvaluateFitness( 𝑃 𝐴 𝑘 , 𝑅𝐸𝑃 𝑠𝑒𝑡 − 𝑅𝐸𝑃 𝑖 ) 

10: for 𝑖 ∈ 𝑝𝑜𝑝 do 

11: if Fitness ( 𝑅𝐸𝑃 𝑖 ) > Fitness ( 𝑃 𝐴 𝑏𝑒𝑠𝑡 ) then 

12: 𝑅𝐸𝑃 𝑖 ← 𝑃 𝐴 𝑏𝑒𝑠𝑡 

13: for 𝑖 ∈ 𝑝𝑜𝑝 do 

14: 𝑙𝑜𝑜𝑝𝑠 ← 0 
15: 𝑣𝑎𝑙 𝑖𝑑 ← 𝑓𝑎𝑙 𝑠𝑒 

16: while 𝑣𝑎𝑙 𝑖𝑑 == 𝑓𝑎𝑙 𝑠𝑒 do 

17: if 𝑙𝑜𝑜𝑝𝑠 > 𝑚𝑎𝑥 𝑙𝑜𝑜𝑝𝑠 then 

18: 𝑅𝐸𝑃 𝑖 ← 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑐ℎ𝑜𝑠𝑒𝑛 𝑃 𝐴 

19: 𝑙𝑜𝑜𝑝𝑠 ← 0 
20: 𝑅𝐸𝑃 𝑀 

← Mutate ( 𝑅𝐸𝑃 𝑖 , 𝑝𝑟𝑜𝑏 𝑚𝑢𝑡 ) 
21: for 𝑃 𝐴 𝑘 ∈ 𝑖 do 

22: if MapCFG ( 𝜌, 𝑘 ) == 𝑓𝑎𝑙𝑠𝑒 then 

23: loops++ 

24: break 

25: 𝑣𝑎𝑙𝑖𝑑 ← 𝑡𝑟𝑢𝑒 

26: 𝑅 𝑏 ← GetRepresentativeSet ( 𝑝𝑜𝑝 ) 
27: 𝜔 + + 

28: return 𝑅 𝑏 ⊳ addresses a minimisation problem as fitness 

functions are minimising functions 
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It should also be noted that with the proposed modifications, single

oint mutation acts as a mechanism to balance both exploration and

xploitation of the search space at the same time. Applying only mu-

ation without crossover does not result in a local search which varies

nly a certain attribute while others remain constant. Rather, this mech-

nism still facilitates global search. Considering the example illustrated

n Fig. 4 , if the codon [4] in the genome [2 4 3 1] was changed to [9], it

ould impact both rules as they become, [2 9 3 1] and [9 3 1 2] result-

ng in ( ∗ Y Y) and (- Y Y) respectively which are both different from their

revious rules ( ∗ X Y) and (+ Y Y), but still retaining some characteris-

ics from parents. As such, mutation probability is fixed to 1 in order to

uarantee variations in the new offspring, and unlike other evolution-

ry algorithms it does not amount to a complete random exploration. If
7 
he probability is made less than 1, it would mean that during every it-

ration, some sub-populations may remain the same without any novel

ffspring as no other genetic operation is performed on them, which

lows the fitness progression of the overall system. 

Extended Cooperative Coevolution Learning 

In a heterogeneous context with a common goal, the agents should

mprove the global fitness cooperatively with the REPs from other sub-

opulations. The CCE approach looked into improving this fitness, only

o discover that the mechanism is still prone to premature convergence

s has been observed in the literature with other models that use CCE

27,35] . 

To illustrate this issue we explain two objectives that motivate an

gent in a cooperating heterogeneous environment; 

• global fitness: the fitness of the global performance achieved by an

entire group of agents for a cooperative common goal in the presence

of a particular agent. 

• local-fitness: the individual contribution of a particular agent to-

wards achieving the expected common goal. 

For example in an avoidance task; how best every agent avoids every

ther agent is the global fitness, whereas how best a particular agent is

voiding other agents is that agent’s local fitness. 

In the previous CCE approach, only the global fitness is used as the

valuation measure of the PAs. Therefore, the evolutionary algorithm

ay fail to recognise certain PAs which are in fact worth reproducing,

imply because individual contribution of PAs is not measured. If a ma-

ority of the team performs inadequately while a particular PA is be-

aving significantly better, it still results in a poor global fitness value,

iving the false impression that the presence of that particular PA can-

ot make an impact on improving performance. On the other hand, a

A performing marginally well in a good team may get a higher fitness

imply because of the contribution of other REPs and not its own per-

ormance. Continuous selection of such PAs as REPs lead the solutions

owards premature convergence to a local optimal. 

To overcome this limitation, the extended CCE version employs lo-

al fitness to determine the best PA that gets selected as the REP, and

oth local and global fitness values when generating offspring. We ex-

end the previous CCE algorithm by utilising a non-dominated sorting

echanism as presented in Algorithm 4 for the selection process to rank

he list of PAs and the REP of a particular sub-population. Both local

nd global fitness values are calculated for each PA during the eval-

ation process. The REP update is done as described in the previous

lgorithm 3 , but based on the local fitness measure. Parent selection

s improved with the given non-dominated sorting algorithm instead of

imply choosing the REP. Fig. 6 illustrates this modification under the

eproduction component. 

As described in Algorithm 4 , all PAs and the REP of a sub-population

re ranked based on local and global fitness. The algorithm performs a

areto ranking [43] such that the best rank will be assigned to the Pareto

ptimal solutions where none of the two objectives are dominated by
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Algorithm 4 Sorting of PAs and REP for a Sub Population. 

Require: 𝐿 : List of PAs + REP 

Ensure: 𝑆 ∪𝐷: Sorted list of PAs + REP 

1: procedure NonDominatedSort ( 𝐿 ) 

2: 𝑂 ← Sort ( 𝐿 ) 
3: 𝑆, 𝐷 ← 𝑛𝑢𝑙𝑙 

4: Add( 𝑆, 𝑓𝑖𝑟𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑂) 

5: Remove( 𝑂, 𝑓𝑖𝑟𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑂) 

6: return RecursiveSort( 𝑂) 

7: procedure RecursiveSort ( 𝑂) 

8: for 𝑖 ∈ 𝑂 do 

9: for 𝑗 ∈ 𝑆 do 

10: if 𝑖 ≺ 𝑗 then 

11: Remove( 𝑂, 𝑖 ) 

12: Add( 𝐷, 𝑖 ) 

13: if 𝑗 ≺ 𝑖 then 

14: Remove( 𝑆, 𝑗) 

15: if 𝑆 𝑖𝑠 𝑒𝑚𝑝𝑡𝑦 then 

16: Add( 𝑆, 𝑓𝑖𝑟𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝐷) 

17: if ! ( 𝑖 ≺ 𝑗) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ∈ 𝑆 then 

18: 𝑆 ← 𝑆 ∪ 𝑖 

19: if 𝑆 𝑖𝑠 𝑛𝑜𝑡 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 then 

20: return 𝑆 ∪𝐷 𝑖𝑛 𝑜𝑟𝑑𝑒𝑟 

21: else 

22: return RecursiveSort( 𝐷) 
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thers. The ranking priority decreases as the solutions get further away

rom the most efficient ones. The PA or the REP ranked first will be con-

idered for the new offspring. If the new offspring is invalid, mutation

ill be recurrently performed until a valid offspring is generated. Af-

er a certain number of trials, if a valid offspring cannot be generated,

he next PA/REP from the ranked list (instead of a random PA as of the

revious CCE approach) is selected to replace the genome. 

In contrast to multi-objective optimisation that uses similar Pareto

anking procedures, the two objectives here are partially complemen-

ary to each other as the local fitness contributes in calculating the global

tness. Furthermore, the goal here is not to find a representative set

f Pareto optimal solutions, rather to rank all solutions based on both

bjectives, such that their rank can be utilised in identifying the best

A/REP for offspring generation. 

. Experimental setup 

To study the evolutionary approaches presented, we employ an agent

ystem where the behaviours of bird like autonomous virtual agents

referred to as boids herein) are evolved to achieve a specified task.

he boids model was first introduced by Reynolds in [44] where he

imulated the aggregated flocking behaviour of a homogeneous group

f birds by handcrafting 3 steering behaviours: alignment, cohesion

nd avoidance. We define these behaviours under micro behaviours,

hich are behaviours that cannot be further decomposed into simpler

ehaviours. The aggregated motion, flocking, is defined as a macro be-

aviour, a behaviour that can only be achieved with an aggregation of

everal micro behaviours. Our evaluations particularly concentrate on

eplacing the handcrafting approach adopted by Reynolds with the pro-

osed automated approaches to evolve these 4 behaviours (alignment,

ohesion, avoidance, flocking) in a heterogeneous context with minimal

uman intervention in the rule design process. 

A hybrid architecture is utilised in modelling the boids giving them

oth deliberative (driven by a common goal) and reactive (interact with

eighbours and act based on dynamic changes) properties. The percep-

ion of boids is based solely on vision as they sense the neighbourhood

ased on their vision range, which is also evolved as a part of their be-

aviour rule. 
8 
.1. Problem definition 

Given that, 

𝜇 - number of boids 

𝜐 - number of phantom agents 

𝜁 - number of rules represented by a single genome 

𝜅 - population size 

The simulation model consists of a set 𝐵 of boids (b), 

 = { 𝑏 1 , 𝑏 2 , … , 𝑏 𝜇} (3)

For TL, the learning population 𝑃 𝑇𝐿 consists of 𝑘 individuals each

efining a separate heterogeneous boid set 𝐵 i each represented by a

ingle genome 𝐺 𝑇𝐿 i 
, 

 𝑇𝐿 = { 𝐺 𝑇𝐿 1 , 𝐺 𝑇𝐿 2 , … , 𝐺 𝑇𝐿𝜅} (4)

For CCE approaches, the population 𝑃 𝐶𝐸 consists of 𝜇 individuals

ach representing a sub population for a single boid in the boid set 𝐵

hich is defined by a single genome 𝐺 𝐶𝐸 i 
, 

 𝐶𝐸 = { 𝐺 𝐶𝐸1 , 𝐺 𝐶𝐸2 , … , 𝐺 𝐶𝐸𝜅 ∶ 𝜅 = 𝜇} (5)

A genome 𝐺 𝑇𝐿 i 
in TL approach represents rules for all agents (a) in

 single set of agents, 

 𝑇𝐿 i 
= { 𝑎 1 , 𝑎 2 , … , 𝑎 𝜁 ∶ 𝜁 = 𝜇, 𝑎 i =̂ 𝑏 i } (6)

A sub population of phantom agents ( 𝑝 𝑎 ) corresponding to an agent

s represented by a genome 𝐺 𝐶𝐸 i 
in CCE approaches, 

 𝐶𝐸 i 
= { 𝑝 𝑎 1 , 𝑝 𝑎 2 , … , 𝑝 𝑎 𝜁 ∶ 𝜁 = 𝜐, 𝐺 𝐶𝐸 i 

=̂ 𝑏 i } (7)

Experiments are conducted to evolve the 4 behaviours; alignment:

teering in the direction of average heading of neighbours; cohesion:

oving closer to neighbours and navigating as a group; avoidance:

voiding collisions among agents by maintaining a distance from neigh-

ours; and flocking: their unified motion as observed in a natural flock.

Quantitative measures are used to evaluate the global fitness of the

ehaviours as illustrated in Algorithm 5 . Alignment is quantified using

lgorithm 5 Fitness Functions for the Behavioural Tasks. 

equire: 𝐵:List of boids 𝜇:Number of boids 

nsure: 𝐹 𝐶𝑜 : Fitness value for cohesion 𝐹 𝐴𝑣 : Fitness value for

avoidance 𝐹 𝐴𝑙 : Fitness value for alignment 𝐹 𝐹 𝑙 : Fitness value for

flocking 

1: procedure FitnessCohesion ( 𝐵, 𝜇) 

2: 𝐹 𝐶𝑜 ← 0 
3: for 𝑏 ∈ 𝐵 do 

4: 𝐹 𝐶𝑜 ← 

1 
𝜂−1 

∑𝜂

𝑗=1 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ( 𝑑 𝑏 − 𝑑 𝑗 ) ∶ 𝑗 ≠ 𝑏 

5: 𝐹 𝐶𝑜 ← Average ( 𝐹 𝐶𝑜 , 𝜇) 
6: return 𝐹 𝐶𝑜 

7: procedure FitnessAvoidance ( 𝐵, 𝜇) 

8: 𝐹 𝐴𝑣 ← 0 
9: for 𝑏 ∈ 𝐵 do 

10: 𝑑 𝑏 ← 

1 
𝜂−1 

∑𝜂

𝑗=1 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ( 𝑑 𝑏 − 𝑑 𝑗 ) ∶ 𝑗 ≠ 𝑏 

11: if 𝑑 𝑏 ≤ 500 then 

12: 𝑑 𝑏 ← 𝜓 

13: 𝐹 𝐴𝑣 ← −1 + 

1 
1+ exp − 𝛿( 𝑑 𝑏 − 𝛾𝜓)∕ 𝜓 

14: 𝐹 𝐴𝑣 ← Average ( 𝐹 𝐴𝑣 , 𝜇) 
15: return 𝐹 𝐴𝑣 

16: procedure FitnessAlignment ( 𝐵, 𝜇) 

17: 𝐹 𝐴𝑙 ← −1 ‖∑𝜂

𝑖 =1 𝑣 𝑏 ‖
18: 𝐹 𝐴𝑙 ← Average ( 𝐹 𝐴𝑙 , 𝜇) 
19: return 𝐹 𝐴𝑙 

20: procedure FitnessFlocking ( 𝐹 𝐶𝑜 , 𝐹 𝐴𝑣 , 𝐹 𝐴𝑙 ) 

21: 𝐹 𝐹 𝑙 ← ( 𝐹 𝐶𝑜 + 𝐹 𝐴𝑣 + 𝐹 𝐴𝑙 )∕3 
22: return 𝐹 𝐹 𝑙 
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Table 1 

Evolutionary Attributes. 

Attribute TL CCE / Extended CCE 

Individual 

Individual Size 100 codons of 8 bits 100 codons of 8 bits 

Maximum Wrappings 50 50 

Evolutionary Algorithm 

Population Size 30 30( = boids) 

Evolutionary Strategy SSR Coevolution 

Parent Selection Tournament (size:5) Tournament (size:5) 

Mutation Probability 0.5 1.0 

Crossover Yes No 

Maximum Generations 1000 1000 

Evolutionary Runs 15 15 

No. of Phantom Agents N/A 5 

No. of Rules in a Genome 30( = boids) 5( = phantom agents) 

Simulation Environment 

No. of Boids 30 30 

World Size 850 x 850 units 850 x 850 units 

World Nature Wrap Around Wrap Around 

Agent Speed 3 units per tick 3 units per tick 
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he order measure which calculates the absolute average of the nor-

alised velocities of all boids [45] . The average distance value of the

eparation between boids is used to measure cohesion. The avoidance

easure from Quera et al. [46] applies the average separation distance

 𝑑 𝑏 ) among boids in the inverse logistic function with the standard pa-

ameters 𝛿 > 0, 0 < 𝛾 < 1, 𝜓 > 0. The function is modified with param-

ter values ( 𝛿 = 100, 𝛾 = 0.99, 𝜓 = 1000) determined experimentally to

uit our model. A penalise measure which sets 𝑑 𝑏 to 𝜓 , if it is less than

r equal to 500 units is used to encourage boids to avoid collisions.

or flocking behaviour, a combination of the above 3 measures with

qual weights for each component is utilised as the fitness measure. All

 fitness evaluators are modified as minimising functions ranging from

alues 0–1. 

For the local fitness measures of a boid associated with the extended

CE approach, functions are slightly modified to calculate the individ-

al contributions. The alignment measure calculates the difference in

elocity from a particular boid to the averaged normalised velocity of

roup (function in lines 17–18 of Algorithm 5 ); the cohesion measure

alculates the separation distance of the particular boid from the team

function in line 4); and the avoidance measure (function in lines 10–13)

alculates the avoidance value of the boid from the team. The flocking

easure uses a combination of the said 3 measures. 

Furthermore, we emphasise that designing of these fitness functions,

s well as selection of the atomic components from which the rule struc-

ures are evolved still involve human intervention. It is not within the

cope of this paper to completely eliminate human bias by addressing

ll these aspects, but to limit it as much as possible by concentrating our

ocus only on the rule structure designing process. Extensive research is

equired in future to address the other two aspects to completely elimi-

ate bias. 

.2. Evolutionary attributes 

Each genome consists of 100 codons of 8 bits. To minimise invalid

enomes and allow sufficient complexity for the rules, an experimentally

etermined maximum wrapping value of 50 is introduced. Therefore,

fter 50 wraps if it is not mapped to an expression of all terminals,

odon set is made invalid. The attributes of the evolutionary set up and

he simulation environment for all experiments are as given in Table 1 .

he attributes of the genetic operations were fixed after preliminary

xperiments 1 . 

.3. Comparison models 

To further investigate the performance of our model, we conduct two

omparison analyses. First we compare our GE model in homogeneous
9 
ersus heterogeneous agent contexts. Second we utilise a Particle Swarm

ptimisation (PSO) model and a behaviour tree-based Genetic Program-

ing (GP) model to compare it against state-of-the-art approaches. 

PSO [47] is a population based heuristic search technique adopted in

ptimisation problems. However, as discussed in Section 3.2 , it cannot

ncorporate rule structures, as its goal is to optimise an 𝑛 dimensional

ector based on an optimisation formulation. Hence, in the context of

ASs, PSO is commonly used for optimising parameters and coefficients

ssociated with agent rules. For the work of this paper, we used the

tandard boid rules [44] proposed by Reynolds described earlier in this

ection as the steering vectors (which are the most accepted and state-of-

he-art handcrafted boid rules used in the domain) and used a weighted

ombination of them to derive the movement vector as in Eq. (8) : 

 ⃗= 𝜛 1 ⃗𝑐𝑜 + 𝜛 2 ⃗𝑎𝑙 + 𝜛 3 ⃗𝑎𝑣 (8) 

The coefficients 𝜛 1 , 𝜛 2 and 𝜛 3 determine the influence of each steer-

ng behaviour rule and PSO is used to optimise them. We adopt the

mplementation in [48] for our analysis. We place 30 particles ( = pop-

lation size of GE model) in the search space to evaluate the fitness

unctions in Algorithm 5 . Each particle iteratively determines its move-

ent in space based on its local best position and the global best position

f all particles, eventually converging towards a position (a coefficient

alue in our case) with a better fitness value. The velocity 𝑣 𝑡 +1 and po-

ition 𝑠 𝑡 +1 of the particle at the next iteration are modelled as given in

qs. (9) and (10) : 

⃗ 𝑡 +1 = 𝜔 ⃗𝑣 𝑡 + 𝐶 1 𝑅 1 ( ⃗𝑝 𝑏𝑒𝑠𝑡 − 𝑠 𝑡 ) + 𝐶 2 𝑅 2 ( ⃗𝑔 𝑏𝑒𝑠𝑡 − 𝑠 𝑡 ) (9) 

⃗ 𝑡 +1 = ⃗𝑠 𝑡 + ⃗𝑣 𝑡 +1 (10) 

here 𝐶 1 = 2, 𝐶 2 = 2 are fixed learning factors. 𝑝 𝑏𝑒𝑠𝑡 and 𝑔 𝑏𝑒𝑠𝑡 are the

ersonal best position of a particle and the global best of any particle,

espectively. The inertia weight 𝜔 is calculated with Eq. (11) using the

alues 𝜔 𝑠𝑡𝑎𝑟𝑡 = 0.4, 𝜔 𝑒𝑛𝑑 = 0.9 and 𝑖𝑡𝑒𝑟 𝑡𝑜𝑡𝑎𝑙 = 100 adopted from the im-

lementation of Alaliyat et al. [48] : 

 = 𝜔 𝑠𝑡𝑎𝑟𝑡 − 

𝜔 𝑠𝑡𝑎𝑟𝑡 − 𝜔 𝑒𝑛𝑑 

𝑖𝑡𝑒𝑟 𝑡𝑜𝑡𝑎𝑙 
𝑖𝑡𝑒𝑟 𝑡 (11) 

In contrast to PSO, GP is capable of incorporating rule structures

ithin the evolutionary process. To facilitate a fair comparison, the same

omponents used for the rule space of the proposed GE model are used

or the function and terminal sets of the GP model. As GP is limited

y closure property [49] which requires every function to be defined

or any combination of arguments it may encounter, all functions were

odified to accept arguments consisting of any combination of functions

nd terminals from the set of primitives. The GP algorithm is as given in

lgorithm 6 , where the genetic operations are performed directly on the

elected parent rules based on the fitness values determined by fitness

unctions in Algorithm 5 . 

. Results 

.1. Evolutionary results 

We first analyse the evolutionary results of the proposed 3 algo-

ithms: TL, CCE and extended CCE. 

Figures 8 and 9 depict the evolutionary results through 1000 gen-

rations for each of the 4 behaviours. The shaded regions depict the

tandard deviation of the results across the number of runs. Statistical

valuations are conducted using non-parametric Mann-Whitney U test

or comparisons involving 2 methods and Kruskal-Wallis H test for com-

arisons involving 3 methods, as the sample sizes are small and not

ormally distributed. The statistical significance level is specified as p

 0.05 and the p values obtained for each comparison are presented

n Table 2 . The descriptive analysis with respect to the 3 algorithms is

resented in Table 3 which is evaluated in terms of the variability of
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Fig. 8. Average fitness progression of the population 

through 1000 generations for the 3 micro behaviours 

alignment, avoidance, cohesion and the macro be- 

haviour, flocking based on the 3 proposed methods. 

The experimental results are averaged across 15 runs 

and the shaded areas depict the standard deviation. 

Fig. 9. Fitness progression of the best solution through 

1000 generations for the 3 micro behaviours align- 

ment, avoidance, cohesion and the macro behaviour, 

flocking based on the 3 proposed methods. The exper- 

imental results are averaged across 15 runs and the 

shaded areas depict the standard deviation. 
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he best solutions achieved after 1000 generations for each of the four

eahaviours across 15 runs each. 

From the results it is evident that all 3 methods are able to consis-

ently minimise fitness across all 4 behaviours. While the extended CCE

pproach achieves best performance with avoidance and cohesion, both

L and extended CCE approaches indicate statistically similar perfor-

ance for alignment and flocking. The statistical results also demon-

trate that the extended CCE approach performs better than traditional
10 
CE ( p < 0.001) in all cases, implying that the modifications applied have

ignificantly improved the performance. In examining the standard de-

iation of the best solutions for evolution of each behaviour, it is evident

hat all three approaches are capable of generating consistent solutions

s they maintain a low standard deviation ( < 0.05) across all four prob-

ems tested. The extended CCE approach maintains the lowest standard

eviation of the 3 algorithms. CCE approach comes next, however the

ther statistics proved that the solutions are not near-optimal. Hence,
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Algorithm 6 Genetic Programming. 

Require: 𝐹 : Set of primitive functions 

𝑇 : Set of terminals 

Ω: Maximum generations 

Ensure: 𝐼 𝑏 : Best individual program 

1: procedure GeneticProgramming ( 𝐹 , 𝑇 , Ω) 

2: 𝑝𝑜𝑝 ← InitialisePopulation ( 𝐹 , 𝑇 ) 
3: 𝜔 ← 0 
4: while 𝜔 ≠ Ω do 

5: for 𝑝𝑜𝑝 𝑖 ∈ 𝑝𝑜𝑝 do 

6: EvaluateFitness( 𝑝𝑜𝑝 𝑖 ) 

7: 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 ← ParentSelection ( 𝑝𝑜𝑝 ) 
8: 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← Crossover ( 𝑝𝑜𝑝 ) 
9: 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← Mutate ( 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ) 

10: 𝑝𝑜𝑝 ← UpdateWith ( 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ) 
11: 𝐼 𝑏 ← GetMostFitIndiv ( 𝑝𝑜𝑝 ) 
12: 𝜔 + + 

13: return 𝐼 𝑏 

Table 2 

Statistical Results Summary for Fitness Measures . 

Behaviour Kruskal-Wallis Mann-Whitney 

H-test ( p -value) U -test ( p -value) 

Alignment 6.3150e-07 

TL - CCE 7.4772e-06 

TL - Extended CCE 0.5338 

CCE - Extended CCE 3.3918e-06 

Avoidance 4.6659e-07 

TL - CCE 0.3013 

TL - Extended CCE 2.9582e-06 

CCE - Extended CCE 7.2818e-06 

Cohesion 3.4798e-08 

TL - CCE 5.7598e-04 

TL - Extended CCE 5.0527e-06 

CCE - Extended CCE 3.3918e-06 

Flocking 3.7741e-06 

TL - CCE 2.7983e-05 

TL - Extended CCE 0.3401 

CCE - Extended CCE 1.6053e-05 
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t can only be concluded that CCE generates consistent solutions which

re not satisfactory. TL has the lowest robustness in comparison to the

ther two, but still with a low standard deviation of < 0.036 for all prob-

ems giving both satisfactory and consistent results. In conclusion, both

he TL and the extended CCE approaches exhibit a robust performance

ithin and across problems with minimal variability among solutions

nd satisfactory fitness values. 

To further compare the 3 approaches, we analyse the percentage

mprovement of the best solution across 1000 generations for all 4 be-

aviours, and the results are depicted in Fig. 10 . The extended CCE ap-
Table 3 

Descriptive Analsyis of the Algorithms. 

Algorithm Behaviour Minimum 

TL Alignment 0.0004 

Avoidance 0.0244 

Cohesion 0.0890 

Flocking 0.1697 

CCE Alignment 0.0234 

Avoidance 6.6613E-16 

Cohesion 0.1591 

Flocking 0.2518 

Extended CCE Alignment 0.0026 

Avoidance 0.0000 

Cohesion 0.0665 

Flocking 0.1934 

11 
roach improves the solution space faster than the other 2 methods in

ll 4 behaviours and finds the best solution earlier than them during

he evolution process. The traditional CCE approach has the poorest

erformance in this aspect as well, with a slow progression of the best

olution. 

Overall, the results suggest that the traditional CCE method is prone

o premature convergence while the modifications introduced with the

xtended CCE method successfully overcome this limitation. TL and ex-

ended CCE methods perform better than the traditional CCE approach,

owever comparison between the 2 methods suggest that extended CCE

nds better solutions faster than TL. Hence, the extended CCE approach

s evidently more successful considering both performance and degree

f improvement. 

.2. Comparison against other models 

Figure 11 compares the fitness distribution of the best solutions ob-

ained with the heterogeneous models against those of the homogeneous

odel. 

The homogeneous model surpasses the heterogeneous methods gen-

rating better near-optimal solutions for all 3 micro behaviours align-

ent, avoidance and cohesion. The traditional CCE model has the worst

erformance since it is prone to converge at sub-optimal solutions. Ex-

ended CCE with heterogeneous agents follows the homogeneous model

losely in overall with the second best performance. This result is ex-

ected, as evolving multiple rules separately for individual agents such

hat all agents collaborate in achieving one task is presumably harder

han evolving a single rule applicable for every agent in a homogeneous

ystem. Nevertheless, with the macro behaviour flocking, the perfor-

ance of heterogeneous methods using TL ( p = 0.0037 < 0.05) as well

s extended CCE ( p = 0.0128 < 0.05) significantly exceed that of the ho-

ogeneous model. This observation is significant since it provides ev-

dence to support future exploration of grammar-based heterogeneous

gent systems as a potential alternative in designing solutions for more

omplex tasks for which human intuition could be deficient. 

To further investigate the performance of the proposed GE-based

odel in comparison to state-of-the art model that is frequently used

n evolving rule structures, Fig. 12 illustrates the comparison results of

E against PSO and GP in a homogeneous context. We compared the re-

ults of the 3 methods in a homogeneous context after 100 generations

or all 4 behaviours. 

The proposed GE model has a statistically significant improvement

n fitness ( p < 0.05) across all 4 behaviours compared to the GP model.

urther, the performance of the GE model exceeds that of the PSO model

ith alignment, avoidance and flocking ( p < 0.05) and is comparable to

hat of the PSO model with cohesion ( p = 0.4716 > 0.05). This shows

hat in comparison, our proposed model is capable of surpassing both

P and PSO approaches with the tested behaviours. As PSO can only

e used to optimise the parameters rather than the rule structures, the

ifficulty of manually designing appropriate behaviour rule structures
Maximum Mean Std Dev 

0.0338 0.0093 0.0095 

0.1218 0.0601 0.0354 

0.1793 0.1390 0.0224 

0.2648 0.2168 0.0302 

0.0763 0.0461 0.0139 

0.0731 0.0422 0.0208 

0.2054 0.1722 0.0120 

0.2902 0.2702 0.0115 

0.0108 0.0054 0.0021 

4.774E-15 7.1794E-16 1.2677E-15 

0.0970 0.0829 0.0067 

0.2611 0.2291 0.0185 
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Fig. 10. Improvement of fitness as a percentage over 

1000 generations using the 3 mechanisms for the 4 be- 

haviours alignment, avoidance, cohesion and flocking. 

Experiments were repeated for 15 runs for each be- 

haviour. 

Fig. 11. Comparison of performance of the best solu- 

tions averaged across 15 runs of each method against 

the best solutions of the homogeneous model pre- 

sented in [11] . The bottom edge, central line and top 

edge indicate the 25th percentile, median result, and 

the 75th percentile, respectively. The extensions of 

whiskers run up to the extreme results which are not 

deemed outliers. The same evolutionary attributes in- 

cluding crossover and mutation rates, the number of 

generations, and number of wraps used in the hetero- 

geneous TL model were used for the homogeneous 

model used for comparison. 
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o address a problem increases with the complexity of the problem. It

imits the potential of the agents to the depth and breadth of intuition

f the designer. On the other hand, although GP can evolve rule struc-

ures, it cannot validate the syntax of the evolved rule structures leading

o more invalid rules. Our model, with the use of a grammatical syntax

nd a CFG, is evidently more successful than these methods reducing

uman intervention in rule design process and giving more flexibility

o the algorithm to evolve syntactically valid high performing agent

ules. 

.3. Computational complexity 

Here we conduct an empirical analysis on the computational com-

lexity across space and time, of the 3 algorithms for increasing agent

roup sizes. Figure 13 illustrates the execution time and memory usage

or the 3 algorithms for groups of 10, 20, 30 and 50 agents evolved for

ocking behaviour. 
12 
The results show that the TL method consumes less time compared to

he other 2 methods and the complexity does not scale as the size of the

gent group increases. Both CCE methods have significantly longer ex-

cution times and scale exponentially as the number of agents increase.

n the other hand, the memory consumption of TL method is relatively

igher than the two CCE approaches. However, the exponential increase

n execution times of the CCE approaches outweigh the relatively less

ignificant requirement of memory by TL as its execution time remains

he same for all group sizes. As such, it can be concluded that the TL

pproach is the better alternative in terms of computational complexity

ut of the 3 approaches. 

.4. Performance scalability with number of agents 

To analyse the scalability of the 3 methods with different agent group

izes, we compare the performance for flocking behaviour across groups

f 10, 20, 30 and 50 agents. Fig. 14 illustrates the fitness distribution of

he best individuals across these agent groups. The results suggest that
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Fig. 12. Comparison of performance of the best so- 

lutions averaged across 15 runs of GE, GP and PSO 

in a homogeneous context. The bottom edge, central 

line and top edge indicate the 25th percentile, me- 

dian result, and the 75th percentile, respectively. The 

extensions of whiskers run up to the extreme results 

which are not deemed outliers. Crossover and muta- 

tion rates used in the GP model are the same as those 

used with GE and the population size and number of 

generations are the same across GE, GP and PSO. 

Fig. 13. Comparison of execution times and memory 

usage of the 3 methods across 5 runs for groups of 10, 

20, 30 and 50 agents for flocking over 1000 genera- 

tions. The bottom edge, central line and top edge in- 

dicate the 25th percentile, median result, and the 75th 

percentile, respectively. The extensions of whiskers run 

up to the extreme results which are not deemed outliers. 

Fig. 14. Comparison of performance of the best indi- 

viduals across 5 runs for flocking behaviour of each 

method for groups of 10, 20, 30 and 50 agents. The bot- 

tom edge, central line and top edge indicate the 25th 

percentile, median result, and the 75th percentile, re- 

spectively. The extensions of whiskers run up to the ex- 

treme results which are not deemed outliers. 

13 
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Fig. 15. Scalability with the number of PAs illustrated 

using flocking behaviour. Left: Comparison of fitness of 

the best solutions averaged across 15 experiments for 

varying number of PAs. The bottom edge, central line 

and top edge indicate the 25th percentile, median result, 

and the 75th percentile, respectively. The extensions of 

whiskers run up to the extreme results which are not 

deemed outliers. Right: Improvement of fitness as a per- 

centage over 1000 generations averaged across 15 runs 

for varying number of PAs. The embedded plot com- 

pares the fitness improvement for flocking behaviour of 

TL approach against that of extended CCE approach with 

10 PAs. 
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he 3 methods are consistent in their performance across agent groups

f increasing size. All 3 methods perform equally well with a group of

0 agents, but as the group size increases the TL and extended CCE

pproach surpass the performance of the traditional CCE approach. The

L and extended CCE methods show a statistically similar performance

 p > 0.05). 

.5. Performance scalability with PAs: Extended CCE 

To further explore the extended CCE approach, we assess the scala-

ility of the approach based on the number of PAs. The evaluations are

onducted considering the flocking behaviour. While keeping the rest

f the parameters and attributes the same, we vary the number of PAs

sed for each sub-population of the evolutionary process. 

Figure 15 illustrates a comparison of the fitness distribution of the

est solutions for every run using different numbers of PAs. The statis-

ical results (Pearson’s r = -0.7100, p = 0.2900 for the number of PAs

ersus average of the best fitness values) suggest diminishing returns,

s the fitness improvement with respect to the number of PAs becomes

ncreasingly less significant. The comparison of the percentage fitness

mprovement across 1000 generations suggests that a higher number

f PAs can learn the solution faster than with a lesser number. The re-

ults illustrate that the improvement difference is not significant among

,3 and 5 phantom agents, but with 10, the evolutionary process con-

istently improves faster at every stage of the 1000 generations. Fur-

hermore, all 4 versions of PAs outperform the TL approach in terms of

ercentage fitness improvement significantly ( p < 0.001). 

In conclusion, it can be said that performance is proportional to the

umber of PAs, however it is less evident as the number increases. Still,

etter results can be expected within a fewer number of generations as

he number of PAs increase. Increasing the number of PAs means an in-

rease in the computational cost due to the addition of more branches in

he solution space to explore. Therefore, identifying a balance between

xpected performance and expendable resources is required. 

.6. Rule complexity 

Figure 16 demonstrates the complexity measured in terms of cy-

lomatic complexity [50] which is a common quantitative metric used

o determine the number of independent paths through a rule or pro-

ramme, and the number of individual rules in each aggregated rule for

ll 4 behaviours. 

The rules evolved in the heterogeneous context with all 3 methods

re more complex than those evolved in the homogeneous context, de-

pite solving the same tasks and being treated with identical evolution-
14 
ry attributes. Rules evolved in the homogeneous environment maintain

n average cyclomatic complexity less than 100, and the number of rules

n each aggregation average to less than 2. All 3 methods in the hetero-

eneous environment have higher cyclomatic complexities around 100–

00 and number of rules within 2–6 in general. Interestingly, although

xtended CCE overcomes premature convergence issues associated with

raditional CCE with better solutions, it does not reflect a proportional

ncrease in complexity of the evolved rules. 

Figure 17 compares the variation of cyclomatic complexity in rela-

ion to the fitness for all evolutionary runs over 1000 generations. Each

raph should be interpreted from right to left starting from the first gen-

rations with higher fitness values (as we experiment on a minimising

unction) represented in blue, moving left along the x axis to lower fit-

ess values in the later generations shifting the colour to yellow in the

enerations close to 1000. All 15 runs are plotted in each graph. The

omparison results for number of rules in relation to fitness also show a

imilar pattern as shown in Fig. 18 . 

There is not enough evidence to identify a correlation between com-

lexity and fitness of rules. However, a few interesting observations pro-

ide insights on the strategies used by the methods to explore the search

pace. The horizontal line formations observed during the last gener-

tions of the homogeneous model ( Fig. 17 d) reveal that it explores a

roader range of rules with diverse complexity levels at the beginning

f the evolution process, and as it converges to a solution, the popula-

ion starts exploring only slight variations from the best solutions. TL

 Fig. 17 a) is quite constraint in its strategy and limits its explorations

o a closer neighbourhood of complexity. The horizontal paths observed

rom the beginning to end of each run provide evidence for this. The

CE methods ( Fig. 17 b, c), are more relaxed in their strategy and ex-

lore a wide range of solutions. The vertical line formations during the

ast generations show that although the REPs converge to a solution and

aintain a steady fitness (hence the x values remain the same forming

ertical lines), the PAs still keep searching over a broader spectrum (y

alues move across a wider range) of solution with diverse complexities.

Similarly, a correlation cannot be observed between the number of

ules and the fitness as shown in Fig. 18 . However, the homogeneous

odel explores a broader range of rules at the beginning of the evolution

rocess, and as it converges to a solution, settles for aggregated rules

ith around 2 individual rules in general, but go up to 8 rules in some

ases. TL, similar to cyclomatic complexity variations, remain restricted

n its strategy and from the beginning of the evolutionary process, limits

ts explorations to a closer neighbourhood. In both the CCE methods, the

hantom agents explore varying number of rules from 2 - 10 throughout

he evolutionary process even after the representatives have converged

o a solution maintaining a steady fitness. 
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Fig. 16. Complexity analysis of the evolved rules with 

the 3 heterogeneous models and the homogeneous model 

across 15 runs for the 4 behaviours alignment (AL), 

avoidance (AV), cohesion (CO) and flocking (FL). Right: 

The average cyclomatic complexity of the rules averaged 

across all agent behaviours for 30 agents. Left: The aver- 

age number of individual rules in each aggregated set of 

rules averaged across all agent behaviours for 30 agents. 

The bottom edge, central line and top edge indicate the 

25th percentile, median result, and the 75th percentile, 

respectively. The extensions of whiskers run up to the 

extreme results which are not deemed outliers. 

Fig. 17. Variation of cyclomatic complexity of rule 

structures in relation to fitness for 15 evolution- 

ary runs with the TL, CCE, extended CCE methods 

against the homogeneous model over 1000 genera- 

tions. The values are averaged across all agents of 

a group of 30 for each generation. The individual 

values are colour coded based on the generation. 

Fig. 18. Variation of number of rules in relation to 

the fitness of the rule structures for 15 evolutionary 

runs with the TL, CCE, extended CCE methods against 

the homogeneous model over 1000 generations. The 

values are averaged across all agents of a group of 30 

for each generation. The individual values are colour 

coded based on the generation. 

15 
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. Discussion 

This paper described a novel grammar-based cooperative learning

pproach to evolve heterogeneous multi-agent behaviours. The method

nables autonomous emergence of heterogeneity within the agent sys-

em with minimised human intervention. A CFG ensures the generation

f valid rules based on a syntax while enabling heterogeneity. 

GE has not been a popular choice in conjunction with coevolution

n heterogeneous contexts due to the limitations associated with rep-

esentation of individuals. The encoding mechanism proposed here for

he genomes overcomes this issue as it provides a way to represent mul-

iple individuals in a single genome. It can be conveniently translated

nto sub-populations of individuals being separately evolved in a CCE

pproach as well. The proposed extended CCE approach demonstrated

o be the most successful, considering the performance and fitness im-

rovement, in evolving heterogeneous multi-agent behaviours. Further,

e presented a TL approach to represent individuals and evolve hetero-

eneous behaviours with successful results in contrast to the existing

pproaches where TL has mostly been studied in homogeneous contexts

51,52] . 

Based on the experimental evaluations, the following deductions can

e made with regard to the presented approaches; 

1. Grammar-based evolution with both homogeneous and heteroge-

neous agent systems work successfully in autonomous generation of

complex behavioural rules without the need of manual hand crafting

of rules. 

2. Our TL mechanism is successful in evolving complex heterogeneous

behaviours. However, it performs relatively poorly with micro be-

haviours compared to a homogeneous model. Nevertheless, TL is

a computationally less expensive mechanism as the execution time

does not grow with the number of agents in the system. 

3. Our extended CCE mechanism can overcome the limitations of the

traditional CCE method and demonstrates the best performance out

of the 3 mechanisms for heterogeneous MASs and performs nearly

optimally as a homogeneous model for micro behaviours. However,

it is computationally expensive in comparison to TL. The cost in-

creases proportional to the number of agents. 

4. The comparison of homogeneous and heterogeneous agent systems

results in further evidence to support the claims in literature de-

scribing the limitations of homogeneous agent systems with regard

to generation of complex behaviours [53,54] , from a GE view point.

Our results demonstrate that, while the homogeneous agent system

is more successful in micro-behaviours which cannot be further de-

composed into simpler rules, the heterogeneous approach is more

advantageous with macro-behaviours as the complexity of the re-

quirements increase. Both the TL and extended CCE approaches sig-

nificantly outperform homogeneous results with macro behaviours. 

5. Proposed GE model shows potential in overcoming the limitations of

PSO and GP mechanics which are widely adopted in MAS designing

by surpassing them in performance as tested within a homogenous

context. 

6. The rule complexity analysis show that the rule structures evolved

within a heterogeneous context are more complex than those within

a homogeneous context addressing the same tasks. Furthermore, it

shows that the TL method is more restrictive in its strategy of search

space exploration while the CCE methods explore a wider spectrum

of solutions during the evolutionary process. 

The presented evaluations explored the widely tested domain of

oids and their commonly tested collective behaviours: alignment,

voidance, cohesion, and flocking. The promising results further sup-

ort the applicability of the proposed GE-based cooperative evolution-

ry architectures in real world domains. There exists a diverse array of

eal-world requirements for MASs where heterogeneity can be useful in

dopting to dynamic conditions. For example, these results can be easily
16 
ranslated into the behaviour rules of robot/drone systems working on

urveillance and exploration. It is to be expected that an agent system

erforming a surveillance task may face issues such as certain agents

osing sensing abilities due to hardware failures, unforeseen damages

o agents causing to lose team members, and dynamic environmental

hanges that require certain agents to act flexibly and adopt to the en-

ironments. The heterogeneous context within which the agents were

ested in our simulations ensure such difficulties can be overcome by

he agent team due to their ability to adjust the behaviours dynamically

o suit the conditions of the entire team. Robot teams that are required

o navigate in terrains with obstacles, for example, worker robots that

ave to cooperatively stock shelves in large warehouses by navigating

hrough the space avoiding collisions with each other and shelves, is

nother example where these architectures could be used. The naviga-

ion paths of the agents could be evolved such that each agent is op-

imised to identify the best path to reach the shelves in a short time

hile avoiding collisions as the environment gets updated based on the

ositions of other agents. Given the recent advancements in the graph-

cs and visualisations related to games and other animations which de-

and high fidelity visualisations and simulations, these architectures

an also be used in designing simulations that closely represent the be-

aviour of real-world agent groups. As the agents can be evolved to

ooperatively act in the environment with appropriate heterogeneous

ehaviour rules, the fidelity of the simulations can be increased. Further,

s the grammar and the syntax can be modified to suit any real-world

omain and include the respective actions, the proposed architectures

an be directly extended towards any real-world application domain

hat can benefit from heterogeneous multi-agent interactions given that

 fitness criterion can be defined to evaluate the behaviour rules being

volved. 

. Conclusion and future work 

Our GE mechanism is a promising new approach for MASs adopted

n real world domains with complex task requirements where human in-

uition becomes insufficient in determining the separate individual be-

aviours that can result in a desired emergent behaviour. The proposed

pproach models the behavioural system of all agents by generating in-

ividual rules from scratch while using heterogeneity to ensure every

gent is optimised to achieve a collective task. The significance of the

pproach lies in its ability to autonomously emerge heterogeneity within

he system targeting a common goal. 

We identify 4 major directions that can be pursued in future work.

s TL can overcome limitations associated with cost in heterogeneous

ASs, further analysis is required to understand how the performance

ould be improved, enabling generation of high fidelity behaviours.

ext, the extended CCE approach can be explored to minimise the asso-

iated computational cost. As the complexity is associated with the num-

er of agents and PAs in the system, these parameters should be further

tudied to identify a balance between cost and performance. Third, the

roposed model can be applied in multifaceted domains where the be-

aviours require completing several sub-tasks to achieve the final goal.

or example, consider an agent system performing a surveillance task

here the agents have to engage in multiple actions such as avoiding

hreats, coordinating navigation and locating a target. The current re-

ults with the grammar-based evolutionary model demonstrates clear

otential for achieving behaviours corresponding to such complex re-

uirements which need further evaluations. Finally, although the pro-

osed model is markedly less biased compared to the approaches that

o not support rule structure evolution, there does currently exist bias

n selecting the atomic components of the rule space and construction

f fitness functions. Further investigations are required to completely

liminate bias. For example, adding another evolutionary layer to the

E model to automatically generate the fitness functions from another
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et of atomic components is an alternative to manual design of fitness

unctions. 
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