
Evolving QWOP Gaits

Steven Ray
CSU Sacramento

stevenlray@gmail.com

V. Scott Gordon
CSU Sacramento

gordonvs@ecs.csus.edu

Laurent Vaucher
Google, Inc.

laurentvaucher@gmail.com

ABSTRACT

QWOP is a popular Flash game in which a human player controls

a sprinter in a simulated 100-meter dash. The game is notoriously

difficult owing to its ragdoll physics engine, and the simultaneous

movements that must be carefully coordinated to achieve forward

progress. While previous researchers have evolved gaits using

simulations similar to QWOP, we describe a software interface

that connects directly to QWOP itself, incorporating a genetic

algorithm to evolve actual QWOP gaits. Since QWOP has no

API, ours detects graphical screen elements and uses them to

build a fitness function. Two variable-length encoding schemes,

that codify sequences of QWOP control commands that loop to

form gaits, are tested. We then compare the performance of SGA,

Genitor, and a Cellular Genetic Algorithm on this task. Using only

the end score as the basis for fitness, the cellular algorithm is

consistently able to evolve a successful scooting strategy similar

to one most humans employ. The results confirm that steady-state

GAs are preferred when the task is sensitive to small input

variations. Although the limited feedback does not yet produce

performance competitive with QWOP champions, it is the first

autonomous software evolution of successful QWOP gaits.

Categories and Subject Descriptors

I.2.6 [Learning]: Artificial Intelligence – learning.

Keywords

Genetic algorithms; games

1. INTRODUCTION
QWOP is a simple online game in which a human player controls

a graphical representation of an Olympic sprinter. The player wins

by successfully guiding the sprinter to the finish line. The only

inputs are the keystrokes Q, W, O, and P, which control particular

muscles in the sprinter’s legs. For a game with only four inputs,

the game has proven to be a difficult, unintuitive task for humans.

We attempt to evolve successful gaits using a genetic algorithm.

We do this by building an API for QWOP, a genetic encoding for

keystroke sequences, looping such sequences in real-time, and

using the resulting score as the fitness function. We then test the

efficacy of various evolutionary models on this application.

2. BACKGROUND

2.1 QWOP
QWOP is a popular computer game developed in Adobe Flash by

Bennett Foddy, and is available for free on his site Foddy.net [3].

In QWOP, the player takes control of an Olympic sprinter running

a 100-meter race. Upon reaching the 100-meter mark, the player

wins the game. If the runner's head or one of his hands touches the

ground at any point along the way, QWOP considers him fallen,

and the game is over. The game quickly became notorious for its

difficulty, despite what seems like a simple task. Playing QWOP

well has been described as "a ballet of tiny corrections, any of

which is likely to throw off the player’s timing and may result in a

fatal error" [11]. QWOP's difficulty is largely a function of two

factors: the control scheme and the physics engine.

QWOP gets its name from the game's control scheme. To play a

game of QWOP, the user controls the runner using only the Q, W,

O, and P keys on the keyboard, each of which controls a specific

muscle group in the runner’s legs. Q and W move forward the

runner’s left and right thighs respectively. The O and P keys each

map to his left and right calves. Achieving a realistic bipedal gait

in QWOP is often soon abandoned by new players, who tend to

resort to finding a repeatable pattern of inputs sufficient enough to

scoot the sprinter to the finish line.

The QWOP website states: “QWOP is a game where … you need

to regain something many of us take for granted: the ability to

walk.” Thus the game forces us to work out mechanically a task

that most of us perform every day yet to which we do not devote

much active thought. Users are precluded from relying on their

own experience and knowledge of balancing and walking on two

legs, because QWOP reroutes the motor skill of synchronized leg

muscle manipulation to the user's fingers via the game controls.

Players are also limited with regard to the amount and type of

relevant sensory feedback available to tell how well they are doing

and make necessary adjustments to their runner's gait, as the only

available sensory feedback is the visual state of the runner.

The second factor that complicates QWOP is its ragdoll physics

engine. Ragdoll physics is a method for procedurally animating

characters based on a skeletal configuration of rigid bodies

connected by joints and muscles in a simulated physical

environment [6]. The physics system is an approximation but

reasonably realistic simulation of a real runner’s body with regard

to physical laws like gravity, friction, and inertia. The player must

constantly work not only to complete the race, but also to keep the

runner from falling over with each step. Every slight movement of

the runner's legs carries with it consequences of momentum and

velocity compounded by the game world's gravity and friction. As

a result, achieving QWOP's seemingly simple goal becomes

extremely difficult, as the game is unforgiving to imprecise and

even slightly poorly-timed movements.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

GECCO'14, July 12–16, 2014, Vancouver, BC, Canada.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2662-9/14/07...$15.00.

http://dx.doi.org/10.1145/2576768.2598248

2.2 Genetic Algorithm Models
Genetic algorithms (GA) are search algorithms based loosely on

the principles of natural genetic evolution. They have been useful

mainly for optimization, by applying simplified notions of

selection, crossover, mutation, and survival of the fittest to an

artificial population of encoded candidate solutions. Each member

of the population is evaluated by a fitness function, and the GA

iterates the genetic operations through generations until it reaches

some terminating condition, such as a sufficiently optimized

solution or a fixed number of generations.

The Simple Genetic Algorithm (SGA) is a generational model

described by Holland [5], in which the entire population is

replaced by a new population of individuals at each iteration.

A Steady-state GA does not follow a generational model, instead

creating only a few new individuals at a time, which replace

weaker individuals. In some versions, a few individuals are

selected at random, using the strongest of those as parents, and the

offspring replace the weakest only if they have higher fitness. The

steady-state model has been shown to have advantages over the

generational model in many problem spaces [12].

In a Cellular GA, each individual in a population selects a mate

from those in its local proximity. This mechanic simulates

isolation by distance within the population, and promotes niches

of subpopulations that can improve diversity and help to prevent

premature convergence [7]. Our version is based on a CGA

described in a previous study [4].

2.3 Evolving Gaits
GAs have been explored for learning and optimizing gaits in

hexapod [8], quadruped [2], and biped robots [13]. Biped robotic

gait learning offers a slightly different problem domain from

learning for robots with more than two legs, as walking with only

two legs necessarily involves periods of time during which the

robot is supported entirely by only one leg. Thus, bipedal gaits

require more careful balance than gaits in which multiple legs are

supporting the robot at any given moment. Most research on

evolving bipedal gaits uses either physical or simulated robots

with relatively high degrees of freedom compared to QWOP’s

runner, which has only four degrees of freedom.

Brodman and Volstad used reinforcement learning to achieve

bipedal gaits in a stick-figure simulation of QWOP. Their

program took a multi-dimensional feedback approach that moved

the runner and adjusted his various limbs based on their

horizontal, vertical and angular velocities, the body's calculated

center of mass, and whether or not at least one foot was touching

the ground. Their learning approach was able to achieve both a

stable "shuffle-like” gait and a less stable but faster more standard

gait, depending on the reinforcement learning model used [1].

3. Qwopper INTERFACE
In March of 2011, Vaucher implemented and described a Java-

based controller program that could play QWOP through a web

browser [10]. Unlike the work of Brodman and Volstad, which

uses a model of QWOP, Vaucher's program attempts to play

QWOP itself. Vaucher's QWOP controller program, named

“Qwopper”, uses the java.awt.Robot class to interact with the

screen and play QWOP. It captures screen images and compares

them with screenshots and known patterns and colors found in the

QWOP interface to locate the game window. Once the game

window is located, Qwopper gives it focus by sending a mouse

event to the game. Once the game window has focus, QWOP is

played entirely using keyboard commands sent by Qwopper.

Qwopper monitors the current game score, consisting of the

current distance traveled by the runner, by periodically capturing

a rectangular image of the location on the game screen where the

score is displayed. Qwopper then applies a thresholding function

that converts the image to black and white, tokenizes each

character in the image, and then compares against a set of

reference images of each character to parse the score for each

runner. If the runner falls over, Qwopper sends a spacebar

command to restart the game [10].

Figure 1. QWOPPER system interface

We use Vaucher's Qwopper software to evaluate the fitness of

each runner in a GA population, by decoding each individual in

the population into a sequence of runner keystrokes, and then

playing QWOP according to each runner's genetic sequence,

which is looped until the runner crashes, reaches the time limit, or

wins the game. Generations of runners evaluated by Qwopper are

evolved using a genetic algorithm and logged for analysis.

4. QWOP GAIT EVOLUTION

4.1 Genetic Encoding
Two different encodings were explored. The first encoding was

described by Vaucher [10]. A second encoding was developed for

this project to address disruptive effects of crossover and mutation

discovered to be particular to QWOP gaits. The two methods are

dubbed “encoding 1” and “encoding 2”, respectively.

Vaucher’s original encoding (Encoding 1) encodes a sequence of

QWOP inputs as a string of characters. Each character represents

either a key press, a key release, or a delay. An example individual

is shown in Figure 2:

QO+qPW+wpo+QPW+wO+qp+P+Q+++

qp+QPW+wo+qp+POQ+q+W+Qp+qwo

Figure 2. Example runner using Encoding 1

A capital letter represents pressing that key on the keyboard, a

lowercase letter represents a key release, and the ‘+’ represents a

delay in which the current state of inputs is maintained for a set

length of time. The individual in the above figure translates to

“Press Q and O, hold them for 150ms, release Q, press P and W,

hold for 150ms, release W, P and O, wait…” and so on. An

advantage of Encoding 1 is that it is easy to read and understand

the sequence of inputs represented by the solution candidate.

Encoding 1 proved problematic when crossover and mutation

were introduced, because the control state at any given point on

an individual using this encoding is highly dependent on its

context within the sequence. Crossover and mutation operations

on individuals defined with Encoding 1 resulted in producing

“non-coding DNA” or redundant commands such as consecutive

capitals or lower-case letters. Encoding 1 was designed such that

each letter indicates a change in the current input state. Each

crossover and mutation operation had a high probability of

rendering one or more characters in the chromosome redundant,

which often dramatically altered the input sequence.

The second genetic encoding explored (Encoding 2) encodes

input sequences using a 16-character alphabet, each letter of

which represents one of the possible input combinations in

QWOP. In order to describe Encoding 2, we must first describe

the alphabet it uses, shown in Figure 3.

QWOP uses only four buttons, so there are 16 possible input

combinations that comprise QWOP’s input space. Each letter in

Encoding 2 maps to one of these 16 input combinations. Unlike

Encoding 1, input sequences built with this alphabet assume a

small delay between each letter’s execution, since each letter

defines a distinct input state for all four control keys. Encoding 2

does not suffer from the context-dependence of letters in

Encoding 1, since each letter here represents a distinct input state

for all four keys. As seen in Figure 3, a key value of 0 indicates a

key release command, and the key value 1 indicates a command to

press the key. Redundant sequential press commands for a given

key will simply continue to hold the pressed key continuously,

while redundant release commands will just continue to refrain

from pressing that key.

An example individual defined using Encoding 2 is shown in

Figure 4. Each letter in the sequence is separated by an implied

wait period of 150ms, like Encoding 1, during which the current

input state is maintained, meaning that any keys pressed according

to the current letter are held until a letter is encountered that

releases that key. The individual in Figure 4 translates to “press Q

and O, hold for 150ms, press P and release O while continuing to

hold Q, wait for 150ms, release Q and O and press W, hold for

150ms, release W and press O, wait…” and so on.

Alphabet Q W O P

 P 0 0 0 0

 D 0 0 0 1

 C 0 0 1 0

 J 0 0 1 1

 B 0 1 0 0

 I 0 1 0 1

 H 0 1 1 0

 N 0 1 1 1

 A 1 0 0 0

 G 1 0 0 1

 F 1 0 1 0

 M 1 0 1 1

 E 1 1 0 0

 L 1 1 0 1

 K 1 1 1 0

 O 1 1 1 1

Figure 3. Encoding 2 Alphabet with Input States

FGBCHFELMIEFNGJCLHLEMCLJKJLNEKGHDGJDAJLE

Figure 4. Example runner using Encoding 2

The mutation operator used throughout the project, for both

genetic encodings, was to randomly select and alter a single

character in every child runner.

We tested two different crossover strategies: single-point “cut-

and-splice” crossover, and standard two-point crossover. The

“cut-and-splice” strategy selects a different crossover point for

each parent, allowing for varying chromosomal lengths to be

produced in offspring. The motivation for this approach was that

the appropriate length of a good input loop in QWOP is not at all

obvious, and we anticipated that this strategy could increase the

search power of the algorithm with regard to the length of looped

input sequences. By contrast, the two-point crossover strategy

selects two crossover points for each parent at the same location

on both parent chromosomes, thus maintaining chromosomal

length in children and throughout all generations.

Figure 5. One-point “Cut-and-splice” crossover (above),

and standard two-point crossover (below).

4.2 Genetic Algorithm
We tested two different implementations of the evolutionary

model: a standard generational model (SGA, described earlier)

and a cellular model.

Our cellular GA implementation uses a local selection strategy

that restricts the pool of potential mates for a given runner to

those nearest to it in the population. Local selection was realized

using a two-dimensional borderless “wrap-around” grid structure

so that each individual has the same number of neighbors. Local

selection was introduced to prevent, or at least slow considerably,

premature convergence on a suboptimal solution due to loss of

genetic diversity in the population. Children are only allowed to

advance to the next generation (i.e., replace their parents) if they

perform better than their parents. This both guarantees that

average population fitness can only increase, and also introduces a

form of elitism, whereby good solutions that outperformed their

children would continue survive to the next generation.

In our cellular configuration, each runner is allowed to mate only

with its fittest neighbor. The cellular configuration is

synchronous, meaning that the algorithm proceeds from the top

left individual through each row until every individual has mated.

A temporary population is used to store the best runners produced

for each index. After the entire population has mated, the current

generation is replaced with the new temporary population.

The fitness function uses two parameters collected by Qwopper.

The first is the final state at the end of a run, that is, either stopped

or crashed. If the runner falls over, Qwopper considers the final

state crashed, and in that case we assign a fitness of 0.0

(regardless of the distance achieved before crashing). If the run

ends for any other reason, such as the time limit being reached or

the race having been completed, the final state is stopped, and in

that case we assign a fitness equal to the second parameter, which

is the final score, in particular the distance, achieved when the

game is stopped. Other combinations were explored through

experimentation, but are not reported here.

Figure 6. Genetic Algorithm real-time QWOP interface

The population was initialized in one of two ways. In the first

method, a collection of hundreds of random runners were

generated and fitness-tested. Each random runner played QWOP

for 60 seconds or until it fell down. Generation 0 was then seeded

with the best performing randomly generated runners. In the

second method, Generation 0 was populated completely with

untested randomly generated runners.

We used a population size of 16 individuals for the SGA

implementation, and a population size of 30 for the CGA

implementation.

5. RESULTS
The combination of the physics engine and restrictive control

scheme make falling over in QWOP very easy, both for humans

and, as it turned out, also for the GA implementations described.

It is critically important for the player to achieve a stable gait.

While the fitness function also selects for speed, this can only

evolve after stability is achieved. Compounding the difficulty is

the fact that some amount of randomness exists when the

Qwopper program plays QWOP. Because of the ragdoll physics

system, when the game starts, the runner is first initialized to a

standing state, and then the physics rules are immediately applied,

causing his body to “settle in” due to gravity. To illustrate the

runner’s instability, one can simply start a game and not press any

buttons, then watch as the runner eventually begins to wobble and

fall forward as the physics calculations appear to create a feedback

loop that increases the wobble. This introduces some amount of

random variability in the performance of any given solution

sequence played by the Qwopper program. A single sequence of

inputs, run multiple times, will rarely result in the exact same

score. It was often observed in early generations that the same

runner could score well in one trial and crash in the next. This is

evident in the run logs, as many populations were initialized to the

same generation of runners, and in each trial these runners

achieved different scores. This inconsistency increases the

importance of a stable gait, as the best surviving gaits were

necessarily those that crashed the least despite this variability.

It is therefore no surprise that the primary trait that emerged was a

sort of “stability gene,” usually expressed as an opening sequence

that resulted in a stable stance. There were two button

combinations that almost always came to dominate the

population. Namely, to simultaneously press Q and O or to

simultaneously press W and P.

The ‘QO’ combination moves the left thigh backward and extends

the right calf forward, causing the runner to step forward and drop

to his left knee with the right leg extended in front. The ‘WP’

opening performs the inverse operation of bending the right leg

back and extending the left leg forward, which drops the runner to

his right knee. In both openings, the runner lowers his center of

gravity and spreads his legs wide, as if trying to do the splits.

Figure 7 illustrates both combinations.

Figure 7. Opening moves ‘QO’ (above) and ‘WP’ (below)

The ‘QO’ and ‘WP’ openings dominated populations, even when

using a local selection policy in a large population to slow

premature convergence.

Notably, the opening consistently used by the fastest human

QWOP scores documented is instead ‘WO’, which causes the

runner to push off with the back foot and raise the knee of the

other leg, as shown in Figure 8. The GA always evolves away

from this opening because following it with a stable gait is likely

impossible without the visual sensory feedback that the fastest

human players enjoy, and that is not yet a part of Qwopper. Our

GA implementation, which uses an essentially “blind” input loop,

is inherently unable to react to visual feedback to adjust its gait

during a run like a skilled and sighted human player can, so the

‘WO’ gene is quickly bred out of the population in favor of

solutions with more stable openings.

Figure 8. The ‘WO’ opening stride and resulting stance

Our best-evolved solutions transitioned from one of the two stable

openings shown in Figure 7, into a gait that scooted forward while

largely maintaining the runner’s stable stance. Later generations

gave way to the transition from scooting forward to more of a

hopping gait. In these gaits, the runner would typically hop on one

knee while kicking his free leg out in front of him to increase

forward momentum. Even in the hopping gait, the legs remained

spread apart, maintaining stability. Figure 9 shows the runner

engaged in this evolved hopping gait. The gait is able to complete

the QWOP race in about 2 minutes.

We posted a video of the evolved gaits, starting with some initial

unsuccessful gaits and ending with the evolved hopping gait, at

http://www.youtube.com/watch?v=eWxFI3NHtT8.

Figure 9. Gait involving hopping on one knee while kicking

forward with the free leg.

5.1 Algorithm Performance
Three configurations of the GA models and parameters described

earlier are tested. The first configuration uses a generational

model, encoding 1, 3:2 tournament selection (three individuals are

selected at random, the best two of which serve as parents),

single-point cut-and-splice crossover, and a population consisting

of the 16 best-performing runners from a pool of 390 randomly-

generated individuals. As seen in Figure 10, this configuration

fails to evolve solutions that played QWOP any better than the

best randomly generated ones. This lack of improvement was

attributed to a consistently observed high rate of failure in

children (>50%). Because this GA configuration used a naïve

succession policy wherein every child produced was guaranteed to

succeed to the next generation, this high failure rate precluded the

gene pool from improving with any significance.

Figure 10. Fitness improvement in Generational GA model

The second configuration tested is identical to the first (including

the same initial population), except that it uses a succession policy

similar to that of the steady-state model. In this configuration,

children only survive to the next generation if they outperform the

worst of the three potential parents selected. This single

modification results in a GA that produces positive results, as

shown in Figure 11.

Note that average generational fitness does not always improve,

because offspring are not required to be better than their parents.

The third configuration, and the one that yields the most stable

and consistently efficient gaits, uses the CGA model, encoding 2,

two-point crossover and a population size of 30 individuals. This

population is initialized with the best individuals from a pool of

500 randomly-generated runners. Figure 12 shows the relative

performance of configurations 2 and 3.

We took a closer look at the two encoding methods (Vaucher’s

original keystroke encoding, and the newer alphabet of keystroke

combinations) to determine to what extent the quality of the

initially-generated populations might be influencing the results.

To this end, two pools of random runners were generated, one for

each encoding method, and compared. Although the vast majority

of randomly-generated runners for both methods crashed at or

near the starting line, the top 30 runners from a pool of 500 using

encoding 2 traveled, on average, over twice as far as the best 16

runners from a pool of 390 using encoding 1. The average fitness

of the 30 fastest random runners from encoding 2 was 5.767

meters per minute, while encoding 1 averaged 2.033 meters per

minute in its 16 fastest random runners.

Figure 11. Fitness improvement in Steady-State model

Figure 12. Fitness improvement in Config. 2 vs. Config 3

To control for this performance gap between the best random

runners generated by the two different encodings, Configuration 3

was further tested using a different initial population of random

runners, all of which had crashed outright when first tested by

Qwopper. Despite a low average fitness of this initial population

at 1.3 meters per minute, the average generational fitness

accelerated just as quickly in early generations as did the

population seeded with high quality random candidates.

Regardless of the fitness of the initial population, Configuration 3

consistently performed better than Configuration 2, suggesting

that the other GA parameters were largely responsible for the

algorithm’s accelerated evolution toward faster runners compared

to the previous configurations.

The performance of configuration 3, initialized with fit versus

unfit randomly-generated individuals, is shown in Figure 13.

Figure 13. performance, fit vs. random initial populations

6. CONCLUSIONS
This project experimented with and compared many different

flavors of the genetic algorithm and its components on the task of

evolving QWOP gaits. Some of configurations were demonstrably

better suited to solving this particular problem than others. This

experiment found the greatest success with a Cellular GA.

The results confirm that steady-state evolutionary models

outperform generational models when the fitness of potential

solutions is highly sensitive to small changes in their encoding.

This is intuitive considering the high failure rate of children

observed throughout this experiment. Maintaining successful

individuals and only replacing the weak ones with children of

higher quality was critical to evolving successful gaits.

Through repeated trials we observed that certain traits,

particularly traits that conferred a greater degree of gait stability,

consistently emerged and eventually came to dominate the

population. This observation held true even in a Cellular GA

implementation which used a local selection policy in conjunction

with a larger population size. If an argument can be made that the

GA prematurely converged toward only solutions with the most

stable opening moves, it is likely a consequence of requiring the

system to learn to play QWOP without the ability to react to

dynamic sensory feedback.

The results suggest methods that might evolve even better

solutions to QWOP. Clearly the GA would benefit from a fitness

function that provided more sensory information, such as the

physical configuration of the legs or body of the runner at a given

time. Another possible improvement would involve separating the

opening stage from the looped stage, since it is possible that an

optimal input loop may not contain the same sequence that starts

the runner from his initial standing position, which is only needed

once at the beginning of the race. There is also room for further

exploration with regard to solving QWOP using other variations

of the genetic algorithm that were not explored here.

One factor that limited the amount of experimentation we were

able to do is the time that it takes to evaluate the fitness of an

individual. Qwopper is a bot that must run each individual in a

browser window in real time; a typical population of size 30,

evolving for only 30 generations, often required over 20 hours of

uninterrupted execution. Fortunately, the steady-state GA models

that we used (including the CGA) have already been shown to be

highly parallelizable [4], representing another potential avenue for

improving the results.

Interestingly, the best solutions ultimately found by the CGA bear

a striking resemblance to the way many people actually play the

game. Most people who play QWOP do not post speed-run videos

on YouTube and compete for the world record, which is currently

held by Roshan Ramachandra at 51 seconds [9]. Finding a

repeatable pattern and scooting to the finish line is a commonly-

recommended strategy in online discussions about how to beat

QWOP, which is the same type of solution that the GA

consistently achieves.

Considering QWOP’s volatile ragdoll physics system, its limited

control scheme, and the fact that the GA has no mechanism for

direct sensory feedback with which to respond and make

adjustments, the gaits achieved by the GA implementations

described in this paper serve as a proof of concept for robotic gait

learning in a complex space with minimal inputs and feedbacks.

7. ACKNOWLEDGMENTS
We wish to thank Bennett Foddy for granting us permission to use

the images of QWOP that appear in this paper.

8. REFERENCES
[1] Brodman, G. and Voldstad, R. (2012). QWOP Learning.

Department of Computer Science CS 229 class project,

Stanford University, 2012. Retrieved 4/13/2014 from

http://cs229.stanford.edu/projects2012.html

[2] Clune, J., Beckmann, B., Ofria, C., and Pennock, R. (2009).

Evolving Coordinated Quadruped Gaits with the

HyperNEAT Generative Encoding. Proceedings of the 2009

IEEE Congress on Evolutionary Computation (CEC ‘09).

[3] Foddy, B. QWOP [Flash Game] (2008). Retrieved 11-6-13

from http://www.foddy.net/Athletics.html

[4] Gordon, V. and Whitley, D. (1993). Serial and Parallel

Genetic Algorithms as Function Optimizers. Proceedings of

the 5th Int. Conf. on Genetic Algorithms (ICGA-93).

[5] Holland, J. (1975). Adaptation in Natural and Artificial

Systems, University of Michigan Press, ©1975.

[6] Jakobsen, T. (2001). Advanced Character Physics.

Proceedings of the Game Developers Conference (GDC-01).

[7] Mahnig, T. and Muhlenbein, H. (2002). A Comparison of

Stochastic Local Search and Population Based Search.

Proceedings of the 2002 Congress on Evolutionary

Computation (CEC ‘02).

[8] Parker, G., Braun, D., and Cyliax, I. (1997). Evolving

Hexapod Gaits Using a Cyclic Genetic Algorithm.

Proceedings of the IASTED International Conference on

Artificial Intelligence and Soft Computing (ASC ’97).

[9] Ramachandra, R. (2013). Fastest 100m run, QWOP (flash

game). Guinness World Records. Retrieved 11-6-13 from

 http://challengers.guinnessworldrecords.com/challenges/160-

fastest-100m-run-qwop-flash-game

[10] Vaucher, L. (2011). Genetically Engineered QWOP (Part 1).

Slow Frog Blog [blog]. Retrieved 11-6-13 from

 http://slowfrog.blogspot.com/2011/03/genetically-

engineered-qwop-part-1.html

[11] Wheeler, C. (2012). QWOP and Simulation Design, Pt. 2.

The Rules on the Field [blog]. Retrieved 11-6-13 from

 http://therulesonthefield.com/2012/07/10/qwop-and-

simulation-design-pt-2/

[12] Whitley, D. (1989). The GENITOR Algorithm and Selection

Pressure: Why Rank-Based Allocation of Reproductive

Trials is Best. Proceedings of the Third International

Conference on Genetic Algorithms (ICGA-89).

[13] Wolff, K. and Nordin, P. (2002). Evolution of Efficient Gait

with an Autonomous Biped Robot Using Visual Feedback.

Proceedings of the 8th Mechatronics Forum International

Conference (Mechatronics-2002).

