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ABSTRACT 

QWOP is a popular Flash game in which a human player controls 

a sprinter in a simulated 100-meter dash. The game is notoriously 

difficult owing to its ragdoll physics engine, and the simultaneous 

movements that must be carefully coordinated to achieve forward 

progress. While previous researchers have evolved gaits using 

simulations similar to QWOP, we describe a software interface 

that connects directly to QWOP itself, incorporating a genetic 

algorithm to evolve actual QWOP gaits. Since QWOP has no 

API, ours detects graphical screen elements and uses them to 

build a fitness function. Two variable-length encoding schemes, 

that codify sequences of QWOP control commands that loop to 

form gaits, are tested. We then compare the performance of SGA, 

Genitor, and a Cellular Genetic Algorithm on this task. Using only 

the end score as the basis for fitness, the cellular algorithm is 

consistently able to evolve a successful scooting strategy similar 

to one most humans employ. The results confirm that steady-state 

GAs are preferred when the task is sensitive to small input 

variations. Although the limited feedback does not yet produce 

performance competitive with QWOP champions, it is the first 

autonomous software evolution of successful QWOP gaits. 

Categories and Subject Descriptors 

I.2.6 [Learning]: Artificial Intelligence – learning. 

Keywords 

Genetic algorithms; games 

1. INTRODUCTION 
QWOP is a simple online game in which a human player controls 

a graphical representation of an Olympic sprinter. The player wins 

by successfully guiding the sprinter to the finish line. The only 

inputs are the keystrokes Q, W, O, and P, which control particular 

muscles in the sprinter’s legs. For a game with only four inputs, 

the game has proven to be a difficult, unintuitive task for humans. 

We attempt to evolve successful gaits using a genetic algorithm. 

We do this by building an API for QWOP, a genetic encoding for 

keystroke sequences, looping such sequences in real-time, and 

using the resulting score as the fitness function. We then test the 

efficacy of various evolutionary models on this application. 

2. BACKGROUND 

2.1 QWOP 
QWOP is a popular computer game developed in Adobe Flash by 

Bennett Foddy, and is available for free on his site Foddy.net [3]. 

In QWOP, the player takes control of an Olympic sprinter running 

a 100-meter race. Upon reaching the 100-meter mark, the player 

wins the game. If the runner's head or one of his hands touches the 

ground at any point along the way, QWOP considers him fallen, 

and the game is over. The game quickly became notorious for its 

difficulty, despite what seems like a simple task. Playing QWOP 

well has been described as "a ballet of tiny corrections, any of 

which is likely to throw off the player’s timing and may result in a 

fatal error" [11]. QWOP's difficulty is largely a function of two 

factors: the control scheme and the physics engine. 

QWOP gets its name from the game's control scheme. To play a 

game of QWOP, the user controls the runner using only the Q, W, 

O, and P keys on the keyboard, each of which controls a specific 

muscle group in the runner’s legs. Q and W move forward the 

runner’s left and right thighs respectively. The O and P keys each 

map to his left and right calves. Achieving a realistic bipedal gait 

in QWOP is often soon abandoned by new players, who tend to 

resort to finding a repeatable pattern of inputs sufficient enough to 

scoot the sprinter to the finish line. 

The QWOP website states: “QWOP is a game where … you need 

to regain something many of us take for granted: the ability to 

walk.” Thus the game forces us to work out mechanically a task 

that most of us perform every day yet to which we do not devote 

much active thought. Users are precluded from relying on their 

own experience and knowledge of balancing and walking on two 

legs, because QWOP reroutes the motor skill of synchronized leg 

muscle manipulation to the user's fingers via the game controls. 

Players are also limited with regard to the amount and type of 

relevant sensory feedback available to tell how well they are doing 

and make necessary adjustments to their runner's gait, as the only 

available sensory feedback is the visual state of the runner. 

The second factor that complicates QWOP is its ragdoll physics 

engine. Ragdoll physics is a method for procedurally animating 

characters based on a skeletal configuration of rigid bodies 

connected by joints and muscles in a simulated physical 

environment [6]. The physics system is an approximation but 

reasonably realistic simulation of a real runner’s body with regard 

to physical laws like gravity, friction, and inertia. The player must 

constantly work not only to complete the race, but also to keep the 

runner from falling over with each step. Every slight movement of 

the runner's legs carries with it consequences of momentum and 

velocity compounded by the game world's gravity and friction. As 

a result, achieving QWOP's seemingly simple goal becomes 

extremely difficult, as the game is unforgiving to imprecise and 

even slightly poorly-timed movements. 
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2.2 Genetic Algorithm Models 
Genetic algorithms (GA) are search algorithms based loosely on 

the principles of natural genetic evolution. They have been useful 

mainly for optimization, by applying simplified notions of 

selection, crossover, mutation, and survival of the fittest to an 

artificial population of encoded candidate solutions. Each member 

of the population is evaluated by a fitness function, and the GA 

iterates the genetic operations through generations until it reaches 

some terminating condition, such as a sufficiently optimized 

solution or a fixed number of generations. 

The Simple Genetic Algorithm (SGA) is a generational model 

described by Holland [5], in which the entire population is 

replaced by a new population of individuals at each iteration. 

A Steady-state GA does not follow a generational model, instead 

creating only a few new individuals at a time, which replace 

weaker individuals. In some versions, a few individuals are 

selected at random, using the strongest of those as parents, and the 

offspring replace the weakest only if they have higher fitness. The 

steady-state model has been shown to have advantages over the 

generational model in many problem spaces [12]. 

In a Cellular GA, each individual in a population selects a mate 

from those in its local proximity. This mechanic simulates 

isolation by distance within the population, and promotes niches 

of subpopulations that can improve diversity and help to prevent 

premature convergence [7]. Our version is based on a CGA 

described in a previous study [4]. 

2.3 Evolving Gaits 
GAs have been explored for learning and optimizing gaits in 

hexapod [8], quadruped [2], and biped robots [13]. Biped robotic 

gait learning offers a slightly different problem domain from 

learning for robots with more than two legs, as walking with only 

two legs necessarily involves periods of time during which the 

robot is supported entirely by only one leg. Thus, bipedal gaits 

require more careful balance than gaits in which multiple legs are 

supporting the robot at any given moment. Most research on 

evolving bipedal gaits uses either physical or simulated robots 

with relatively high degrees of freedom compared to QWOP’s 

runner, which has only four degrees of freedom. 

Brodman and Volstad used reinforcement learning to achieve 

bipedal gaits in a stick-figure simulation of QWOP. Their 

program took a multi-dimensional feedback approach that moved 

the runner and adjusted his various limbs based on their 

horizontal, vertical and angular velocities, the body's calculated 

center of mass, and whether or not at least one foot was touching 

the ground. Their learning approach was able to achieve both a 

stable "shuffle-like” gait and a less stable but faster more standard 

gait, depending on the reinforcement learning model used [1]. 

3. Qwopper  INTERFACE 
In March of 2011, Vaucher implemented and described a Java-

based controller program that could play QWOP through a web 

browser [10]. Unlike the work of Brodman and Volstad, which 

uses a model of QWOP, Vaucher's program attempts to play 

QWOP itself. Vaucher's QWOP controller program, named 

“Qwopper”, uses the java.awt.Robot class to interact with the 

screen and play QWOP. It captures screen images and compares 

them with screenshots and known patterns and colors found in the 

QWOP interface to locate the game window. Once the game 

window is located, Qwopper gives it focus by sending a mouse 

event to the game. Once the game window has focus, QWOP is 

played entirely using keyboard commands sent by Qwopper. 

Qwopper monitors the current game score, consisting of the 

current distance traveled by the runner, by periodically capturing 

a rectangular image of the location on the game screen where the 

score is displayed. Qwopper then applies a thresholding function 

that converts the image to black and white, tokenizes each 

character in the image, and then compares against a set of 

reference images of each character to parse the score for each 

runner. If the runner falls over, Qwopper sends a spacebar 

command to restart the game [10]. 

 

 

Figure 1. QWOPPER system interface 

 

We use Vaucher's Qwopper software to evaluate the fitness of 

each runner in a GA population, by decoding each individual in 

the population into a sequence of runner keystrokes, and then 

playing QWOP according to each runner's genetic sequence, 

which is looped until the runner crashes, reaches the time limit, or 

wins the game. Generations of runners evaluated by Qwopper are 

evolved using a genetic algorithm and logged for analysis. 

4. QWOP GAIT EVOLUTION 

4.1 Genetic Encoding 
Two different encodings were explored. The first encoding was 

described by Vaucher [10]. A second encoding was developed for 

this project to address disruptive effects of crossover and mutation 

discovered to be particular to QWOP gaits. The two methods are 

dubbed “encoding 1” and “encoding 2”, respectively. 



Vaucher’s original encoding (Encoding 1) encodes a sequence of 

QWOP inputs as a string of characters. Each character represents 

either a key press, a key release, or a delay. An example individual 

is shown in Figure 2: 

 

QO+qPW+wpo+QPW+wO+qp+P+Q+++

qp+QPW+wo+qp+POQ+q+W+Qp+qwo 

Figure 2.  Example runner using Encoding 1 

 

A capital letter represents pressing that key on the keyboard, a 

lowercase letter represents a key release, and the ‘+’ represents a 

delay in which the current state of inputs is maintained for a set 

length of time. The individual in the above figure translates to 

“Press Q and O, hold them for 150ms, release Q, press P and W, 

hold for 150ms, release W, P and O, wait…” and so on.  An 

advantage of Encoding 1 is that it is easy to read and understand 

the sequence of inputs represented by the solution candidate. 

Encoding 1 proved problematic when crossover and mutation 

were introduced, because the control state at any given point on 

an individual using this encoding is highly dependent on its 

context within the sequence. Crossover and mutation operations 

on individuals defined with Encoding 1 resulted in producing 

“non-coding DNA” or redundant commands such as consecutive 

capitals or lower-case letters. Encoding 1 was designed such that 

each letter indicates a change in the current input state. Each 

crossover and mutation operation had a high probability of 

rendering one or more characters in the chromosome redundant, 

which often dramatically altered the input sequence. 

The second genetic encoding explored (Encoding 2) encodes 

input sequences using a 16-character alphabet, each letter of 

which represents one of the possible input combinations in 

QWOP. In order to describe Encoding 2, we must first describe 

the alphabet it uses, shown in Figure 3. 

QWOP uses only four buttons, so there are 16 possible input 

combinations that comprise QWOP’s input space. Each letter in 

Encoding 2 maps to one of these 16 input combinations. Unlike 

Encoding 1, input sequences built with this alphabet assume a 

small delay between each letter’s execution, since each letter 

defines a distinct input state for all four control keys. Encoding 2 

does not suffer from the context-dependence of letters in 

Encoding 1, since each letter here represents a distinct input state 

for all four keys. As seen in Figure 3, a key value of 0 indicates a 

key release command, and the key value 1 indicates a command to 

press the key. Redundant sequential press commands for a given 

key will simply continue to hold the pressed key continuously, 

while redundant release commands will just continue to refrain 

from pressing that key. 

An example individual defined using Encoding 2 is shown in 

Figure 4. Each letter in the sequence is separated by an implied 

wait period of 150ms, like Encoding 1, during which the current 

input state is maintained, meaning that any keys pressed according 

to the current letter are held until a letter is encountered that 

releases that key. The individual in Figure 4 translates to “press Q 

and O, hold for 150ms, press P and release O while continuing to 

hold Q, wait for 150ms, release Q and O and press W, hold for 

150ms, release W and press O, wait…” and so on. 

 

Alphabet Q W O P 

 P 0 0 0 0 

 D 0 0 0 1 

 C 0 0 1 0 

 J 0 0 1 1 

 B 0 1 0 0 

 I 0 1 0 1 

 H 0 1 1 0 

 N 0 1 1 1 

 A 1 0 0 0 

 G 1 0 0 1 

 F 1 0 1 0 

 M 1 0 1 1 

 E 1 1 0 0 

 L 1 1 0 1 

 K 1 1 1 0 

 O 1 1 1 1 

 

Figure 3.  Encoding 2 Alphabet with Input States 

 

 

FGBCHFELMIEFNGJCLHLEMCLJKJLNEKGHDGJDAJLE 

 

Figure 4.  Example runner using Encoding 2 

 

The mutation operator used throughout the project, for both 

genetic encodings, was to randomly select and alter a single 

character in every child runner. 

We tested two different crossover strategies: single-point “cut-

and-splice” crossover, and standard two-point crossover. The 

“cut-and-splice” strategy selects a different crossover point for 

each parent, allowing for varying chromosomal lengths to be 

produced in offspring. The motivation for this approach was that 

the appropriate length of a good input loop in QWOP is not at all 

obvious, and we anticipated that this strategy could increase the 

search power of the algorithm with regard to the length of looped 

input sequences. By contrast, the two-point crossover strategy 

selects two crossover points for each parent at the same location 

on both parent chromosomes, thus maintaining chromosomal 

length in children and throughout all generations. 

 



 

 

 

 

 

 

Figure 5.  One-point “Cut-and-splice” crossover (above), 

and standard two-point crossover (below). 

 

4.2 Genetic Algorithm 
We tested two different implementations of the evolutionary 

model: a standard generational model (SGA, described earlier) 

and a cellular model. 

Our cellular GA implementation uses a local selection strategy 

that restricts the pool of potential mates for a given runner to 

those nearest to it in the population. Local selection was realized 

using a two-dimensional borderless “wrap-around” grid structure 

so that each individual has the same number of neighbors. Local 

selection was introduced to prevent, or at least slow considerably, 

premature convergence on a suboptimal solution due to loss of 

genetic diversity in the population. Children are only allowed to 

advance to the next generation (i.e., replace their parents) if they 

perform better than their parents. This both guarantees that 

average population fitness can only increase, and also introduces a 

form of elitism, whereby good solutions that outperformed their 

children would continue survive to the next generation. 

In our cellular configuration, each runner is allowed to mate only 

with its fittest neighbor. The cellular configuration is 

synchronous, meaning that the algorithm proceeds from the top 

left individual through each row until every individual has mated. 

A temporary population is used to store the best runners produced 

for each index. After the entire population has mated, the current 

generation is replaced with the new temporary population. 

The fitness function uses two parameters collected by Qwopper. 

The first is the final state at the end of a run, that is, either stopped 

or crashed. If the runner falls over, Qwopper considers the final 

state crashed, and in that case we assign a fitness of 0.0 

(regardless of the distance achieved before crashing). If the run 

ends for any other reason, such as the time limit being reached or 

the race having been completed, the final state is stopped, and in 

that case we assign a fitness equal to the second parameter, which 

is the final score, in particular the distance, achieved when the 

game is stopped. Other combinations were explored through 

experimentation, but are not reported here. 

 

Figure 6.  Genetic Algorithm real-time QWOP interface 

 

The population was initialized in one of two ways. In the first 

method, a collection of hundreds of random runners were 

generated and fitness-tested. Each random runner played QWOP 

for 60 seconds or until it fell down. Generation 0 was then seeded 

with the best performing randomly generated runners. In the 

second method, Generation 0 was populated completely with 

untested randomly generated runners. 

We used a population size of 16 individuals for the SGA 

implementation, and a population size of 30 for the CGA 

implementation. 

5. RESULTS 
The combination of the physics engine and restrictive control 

scheme make falling over in QWOP very easy, both for humans 

and, as it turned out, also for the GA implementations described. 

It is critically important for the player to achieve a stable gait. 

While the fitness function also selects for speed, this can only 

evolve after stability is achieved. Compounding the difficulty is 

the fact that some amount of randomness exists when the 

Qwopper program plays QWOP. Because of the ragdoll physics 

system, when the game starts, the runner is first initialized to a 

standing state, and then the physics rules are immediately applied, 

causing his body to “settle in” due to gravity. To illustrate the 

runner’s instability, one can simply start a game and not press any 

buttons, then watch as the runner eventually begins to wobble and 

fall forward as the physics calculations appear to create a feedback 

loop that increases the wobble. This introduces some amount of 

random variability in the performance of any given solution 

sequence played by the Qwopper program. A single sequence of 

inputs, run multiple times, will rarely result in the exact same 

score. It was often observed in early generations that the same 

runner could score well in one trial and crash in the next. This is 

evident in the run logs, as many populations were initialized to the 

same generation of runners, and in each trial these runners 

achieved different scores. This inconsistency increases the 

importance of a stable gait, as the best surviving gaits were 

necessarily those that crashed the least despite this variability. 



It is therefore no surprise that the primary trait that emerged was a 

sort of “stability gene,” usually expressed as an opening sequence 

that resulted in a stable stance. There were two button 

combinations that almost always came to dominate the 

population. Namely, to simultaneously press Q and O or to 

simultaneously press W and P. 

The ‘QO’ combination moves the left thigh backward and extends 

the right calf forward, causing the runner to step forward and drop 

to his left knee with the right leg extended in front. The ‘WP’ 

opening performs the inverse operation of bending the right leg 

back and extending the left leg forward, which drops the runner to 

his right knee. In both openings, the runner lowers his center of 

gravity and spreads his legs wide, as if trying to do the splits. 

Figure 7 illustrates both combinations. 

 

 

 

Figure 7.  Opening moves ‘QO’ (above) and ‘WP’ (below) 

 

The ‘QO’ and ‘WP’ openings dominated populations, even when 

using a local selection policy in a large population to slow 

premature convergence. 

Notably, the opening consistently used by the fastest human 

QWOP scores documented is instead ‘WO’, which causes the 

runner to push off with the back foot and raise the knee of the 

other leg, as shown in Figure 8. The GA always evolves away 

from this opening because following it with a stable gait is likely 

impossible without the visual sensory feedback that the fastest 

human players enjoy, and that is not yet a part of Qwopper. Our 

GA implementation, which uses an essentially “blind” input loop, 

is inherently unable to react to visual feedback to adjust its gait 

during a run like a skilled and sighted human player can, so the 

‘WO’ gene is quickly bred out of the population in favor of 

solutions with more stable openings. 

 

 

 

Figure 8.  The ‘WO’ opening stride and resulting stance 

 

Our best-evolved solutions transitioned from one of the two stable 

openings shown in Figure 7, into a gait that scooted forward while 

largely maintaining the runner’s stable stance. Later generations 

gave way to the transition from scooting forward to more of a 

hopping gait. In these gaits, the runner would typically hop on one 

knee while kicking his free leg out in front of him to increase 

forward momentum. Even in the hopping gait, the legs remained 

spread apart, maintaining stability. Figure 9 shows the runner 

engaged in this evolved hopping gait.  The gait is able to complete 

the QWOP race in about 2 minutes. 

We posted a video of the evolved gaits, starting with some initial 

unsuccessful gaits and ending with the evolved hopping gait, at  

http://www.youtube.com/watch?v=eWxFI3NHtT8. 

 

 

 

Figure 9.  Gait involving hopping on one knee while kicking 

forward with the free leg. 



5.1 Algorithm Performance 
Three configurations of the GA models and parameters described 

earlier are tested. The first configuration uses a generational 

model, encoding 1, 3:2 tournament selection (three individuals are 

selected at random, the best two of which serve as parents), 

single-point cut-and-splice crossover, and a population consisting 

of the 16 best-performing runners from a pool of 390 randomly-

generated individuals. As seen in Figure 10, this configuration 

fails to evolve solutions that played QWOP any better than the 

best randomly generated ones. This lack of improvement was 

attributed to a consistently observed high rate of failure in 

children (>50%). Because this GA configuration used a naïve 

succession policy wherein every child produced was guaranteed to 

succeed to the next generation, this high failure rate precluded the 

gene pool from improving with any significance. 

 

 

Figure 10.  Fitness improvement in Generational GA model 

 

The second configuration tested is identical to the first (including 

the same initial population), except that it uses a succession policy 

similar to that of the steady-state model. In this configuration, 

children only survive to the next generation if they outperform the 

worst of the three potential parents selected. This single 

modification results in a GA that produces positive results, as 

shown in Figure 11. 

Note that average generational fitness does not always improve, 

because offspring are not required to be better than their parents. 

The third configuration, and the one that yields the most stable 

and consistently efficient gaits, uses the CGA model, encoding 2, 

two-point crossover and a population size of 30 individuals. This 

population is initialized with the best individuals from a pool of 

500 randomly-generated runners. Figure 12 shows the relative 

performance of configurations 2 and 3. 

We took a closer look at the two encoding methods (Vaucher’s 

original keystroke encoding, and the newer alphabet of keystroke 

combinations) to determine to what extent the quality of the 

initially-generated populations might be influencing the results. 

To this end, two pools of random runners were generated, one for 

each encoding method, and compared. Although the vast majority 

of randomly-generated runners for both methods crashed at or 

near the starting line, the top 30 runners from a pool of 500 using 

encoding 2 traveled, on average, over twice as far as the best 16 

runners from a pool of 390 using encoding 1. The average fitness 

of the 30 fastest random runners from encoding 2 was 5.767 

meters per minute, while encoding 1 averaged 2.033 meters per 

minute in its 16 fastest random runners. 

 

 

Figure 11.  Fitness improvement in Steady-State model 

 

 

Figure 12.  Fitness improvement in Config. 2 vs. Config 3 

 

To control for this performance gap between the best random 

runners generated by the two different encodings, Configuration 3 

was further tested using a different initial population of random 

runners, all of which had crashed outright when first tested by 

Qwopper. Despite a low average fitness of this initial population 

at 1.3 meters per minute, the average generational fitness 

accelerated just as quickly in early generations as did the 

population seeded with high quality random candidates. 

Regardless of the fitness of the initial population, Configuration 3 

consistently performed better than Configuration 2, suggesting 

that the other GA parameters were largely responsible for the 

algorithm’s accelerated evolution toward faster runners compared 

to the previous configurations. 

The performance of configuration 3, initialized with fit versus 

unfit randomly-generated individuals, is shown in Figure 13. 

 

 

Figure 13.  performance, fit vs. random initial populations 



6. CONCLUSIONS 
This project experimented with and compared many different 

flavors of the genetic algorithm and its components on the task of 

evolving QWOP gaits. Some of configurations were demonstrably 

better suited to solving this particular problem than others. This 

experiment found the greatest success with a Cellular GA. 

The results confirm that steady-state evolutionary models 

outperform generational models when the fitness of potential 

solutions is highly sensitive to small changes in their encoding. 

This is intuitive considering the high failure rate of children 

observed throughout this experiment. Maintaining successful 

individuals and only replacing the weak ones with children of 

higher quality was critical to evolving successful gaits. 

Through repeated trials we observed that certain traits, 

particularly traits that conferred a greater degree of gait stability, 

consistently emerged and eventually came to dominate the 

population. This observation held true even in a Cellular GA 

implementation which used a local selection policy in conjunction 

with a larger population size. If an argument can be made that the 

GA prematurely converged toward only solutions with the most 

stable opening moves, it is likely a consequence of requiring the 

system to learn to play QWOP without the ability to react to 

dynamic sensory feedback. 

The results suggest methods that might evolve even better 

solutions to QWOP. Clearly the GA would benefit from a fitness 

function that provided more sensory information, such as the 

physical configuration of the legs or body of the runner at a given 

time. Another possible improvement would involve separating the 

opening stage from the looped stage, since it is possible that an 

optimal input loop may not contain the same sequence that starts 

the runner from his initial standing position, which is only needed 

once at the beginning of the race. There is also room for further 

exploration with regard to solving QWOP using other variations 

of the genetic algorithm that were not explored here. 

One factor that limited the amount of experimentation we were 

able to do is the time that it takes to evaluate the fitness of an 

individual. Qwopper is a bot that must run each individual in a 

browser window in real time; a typical population of size 30, 

evolving for only 30 generations, often required over 20 hours of 

uninterrupted execution. Fortunately, the steady-state GA models 

that we used (including the CGA) have already been shown to be 

highly parallelizable [4], representing another potential avenue for 

improving the results. 

Interestingly, the best solutions ultimately found by the CGA bear 

a striking resemblance to the way many people actually play the 

game. Most people who play QWOP do not post speed-run videos 

on YouTube and compete for the world record, which is currently 

held by Roshan Ramachandra at 51 seconds [9]. Finding a 

repeatable pattern and scooting to the finish line is a commonly-

recommended strategy in online discussions about how to beat 

QWOP, which is the same type of solution that the GA 

consistently achieves. 

Considering QWOP’s volatile ragdoll physics system, its limited 

control scheme, and the fact that the GA has no mechanism for 

direct sensory feedback with which to respond and make 

adjustments, the gaits achieved by the GA implementations 

described in this paper serve as a proof of concept for robotic gait 

learning in a complex space with minimal inputs and feedbacks. 
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