Engineering Applications of Artificial Intelligence 119 (2023) 105715

Contents lists available at ScienceDirect
Artificial
Intelligence

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

Generative design of physical objects using modular framework R)

Check for
updates

Nikita O. Starodubcev **, Nikolay O. Nikitin ?, Elizaveta A. Andronova ", Konstantin G. Gavaza?,
Denis O. Sidorenko ?, Anna V. Kalyuzhnaya?

aITMO University, Saint-Petersburg, Russia
b peter the Great St. Petersburg Polytechnic University, Saint-Petersburg, Russia

ARTICLE INFO ABSTRACT

Dataset link: https://github.com/ITMO-NSS-tea
m/GEFEST, https://github.com/ITMO-NSS-tea
m/GEFEST-paper-experiments

In recent years generative design techniques have become firmly established in numerous applied fields,
especially in engineering. These methods are crucial for automating the initial stages of the engineering
design of various structures, which reduces the amount of routine work. However, existing approaches are
limited by the specificity of the problem under consideration. In addition, they do not provide the desired
flexibility in choosing a method for a particular problem. To avoid these issues, we proposed a general approach
to an arbitrary generative design problem and implemented a novel open-source framework called GEFEST
(Generative Evolution For Encoded STructure) on its basis. This approach is based on three general principles:
sampling, estimation, and optimization. This ensures the freedom of method adjustment for the solution of the
particular generative design problem and therefore enables the construction of the most suitable one. A series
of experimental studies was conducted to confirm the effectiveness of the GEFEST framework. It involved
synthetic and real-world cases (coastal engineering, microfluidics, thermodynamics, and oil field planning).
The flexible structure of GEFEST makes it possible to obtain results that surpass baseline and state-of-the-art
solutions: 12% improvement in the coastal engineering problem; 9% in microfluidics; 8% in thermodynamics
and 7% in oil field planning.

Keywords:

Generative design

Deep learning
Evolutionary algorithms
Optimization problems

1. Introduction and problem definition

Over the past decades artificial intelligence, machine learning, and
optimization methods have become an inevitable part of the solution
to engineering design problems (Chen et al., 2020; Steinbuch, 2010;
Zheng and Yuan, 2021). These methods demonstrate great potential
to improve and simplify tasks usually performed by engineers. The
particular complexity of engineering design problems is associated
with a large design space originating from a great number of param-
eters (Danhaive and Mueller, 2021; Harding, 2016). Human efforts
are not enough to explore such a high-dimension space. In contrast,
computational-based approaches can be examined as efficient tools for
given purposes.

The most common computational-based methods for an engineering
design problem are generative design (Vajna et al., 2005) and topol-
ogy optimization (Bendsge, 1989). In general, the main goal of these
methods is the same — to find one or several physical objects whose
properties are more preferable than those of the existing ones while
taking into account their geometrical and boundary restrictions (Bend-
spe and Kikuchi, 1988; Bendsge, 1989; Vajna et al., 2005). The key
difference lies in the way this goal is reached. Topology optimization
seeks to enhance performance and reduce the weight of the already

* Corresponding author.

existing objects via optimizing material distribution in it (Bendsoe,
1989; Tyflopoulos et al., 2018). Conversely, in the generative design
there is no prior knowledge about the initial object, it “‘generates”
structures based on space constraints and design goals only (Vlah et al.,
2020). The aforementioned approaches have gained widespread accep-
tance in various applied fields, for instance, ocean engineering (Tian
et al.,, 2022), mechanical design (Oh et al., 2019), heat and mass
transfer (Qian et al., 2022), thermal engineering (Zou et al., 2022).
However, well-defined theory fundamentals were established only for
topology optimization(Bendspe and Kikuchi, 1988; Bendsge, 1989),
whereas a strict problem statement in the generative design of physical
objects is still missing (Vlah et al., 2020).

In previous works several definitions of generative design were
proposed, Shea et al. (2005): “Generative design systems are aimed at
creating new design processes that produce spatially novel yet efficient
and buildable designs through exploitation of current computing and
manufacturing capabilities”, Kallioras and Lagaros (2020): “Generative
Design is the methodology for automatic creation of a large number
of designs via an iterative algorithmic framework while respecting
user-defined criteria and limitations”. Nevertheless, the production
and creation mechanisms of designs were not explained accurately.
Originally, in statistical theory, generative modeling problems have

E-mail addresses: nstarodubtcev@itmo.ru (N.O. Starodubcev), nnikitin@itmo.ru (N.O. Nikitin).

https://doi.org/10.1016/j.engappai.2022.105715

Received 30 August 2022; Received in revised form 3 December 2022; Accepted 4 December 2022

Available online xxxx
0952-1976/© 2022 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.engappai.2022.105715
https://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2022.105715&domain=pdf
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
mailto:nstarodubtcev@itmo.ru
mailto:nnikitin@itmo.ru
https://doi.org/10.1016/j.engappai.2022.105715

N.O. Starodubcev, N.O. Nikitin, E.A. Andronova et al.

20
m samples from P(X)
Q) rectangular area
154
10 A

X2

—10 4

=15 T T T T T T
=15 -10 =5 0 5 10 15

(a) True joint distribution P(X, Y) and samples from uniform distribution on the
hatched rectangle

Optimization

Engineering Applications of Artificial Intelligence 119 (2023) 105715

Y
1.0
15 1
Created
samples
101 0.8
> Lo.6
0<
Fo.4
_5
0.2
_10<
-15 T . T T . . 0.0
-15 -10 -5 0 5 10 15

(b) True joint distribution P(X, Y) and designed samples

Fig. 1. Two-dimensional example X = (X;,X,) for sample production from P(X,Y) using a uniform distribution, gradient boosting and genetic algorithm as object distribution,

conditional target distribution and optimization method, respectively.

been aimed at the reconstruction of the joint probability distribution
P(X,Y) on random variables X (observable variable) and Y (target
variable) (Ng and Jordan, 2001; Jebara, 2012). Generative design is
associated with the same problem, but joint distribution is extremely
intricate. Special complexity is related to the variables X and Y that
correspond to a real physical object and its performance, respectively.
For instance, heat-generating components of electronic systems and
temperature fields (Qian et al., 2022); car wheel and its cost, novelty,
compliance (Oh et al., 2019); ship hull form and its strength (Liu et al.,
2022). In generative design, objects with the highest performance are
of greatest interest, and joint distribution allows one to obtain (produce
or create) such physical objects using sampling procedures. Thus, the
production and creation mechanisms of designs lie in sampling from
P(X,Y), and the generative design problem is focused on the estima-
tion of joint probability distribution on real physical objects and its
performance.

However, reconstruction of P(X,Y) for real objects is not available
as of this day for the following reasons: (1) extremely high dimension
of design space; (2) numerous geometrical and boundary restrictions
on X variable; (3) possible continuity of target space which might
also be multi-dimensional. Existing approaches enable to obtain only
a minority of samples from the joint distribution. All of them include
the following stages (we call this a generative design procedure):

1. define object distribution P(X) to sample X;
2. model conditional target distribution P(Y|X) to acquire perfor-
mance of sampled X;
3. solve optimization problem
X* = argmax Y(X) 'e))
X~P(X)
An implementation example of the mentioned procedure used for sam-
ple creation from the joint distribution P(X,Y) in two-dimensional
space is shown in Fig. 1. Uniform distribution, gradient boosting, and
a genetic algorithm were used as the object distribution P(X), the
conditional target distribution P(Y|X), and the optimization method,
respectively. It can be clearly seen that the number of designed X is
low compared to the number of all possible samples from P(X,Y). A
detailed discussion of the outlined stages is given in Section 2.

In this paper we propose a flexible open-source framework GEFEST
(Generative Evolution For Encoded STructures) for the generative de-
sign of two-dimensional physical objects from various applied fields.
We consider physical objects that can be represented as flat polygons
neglecting their internal structure. Our approach is based on the gen-
erative design procedure. The flexibility of the framework is attained

due to the possibility of toolkit construction for a particular applied
problem, where the toolkit implies a set of methods for implementing
the generative design procedure. Since the GEFEST framework offers
different approaches for each stage, it is possible to select the most
suitable of them for a considered problem and thereby improve the final
designs. Moreover, we provide an opportunity to implement custom
approaches and modify the GEFEST core. In addition, the framework
allows it to operate with physical objects of different natures due
to the universal representation of each processed object. Our main
contributions are the following:

» Formulation of the general approach to an arbitrary generative
design problem.

» Novel generative design framework implemented as an open-
source tool. The novelty lies in the individual approach to the
solution of each stage in the generative design procedure achieved
through flexible combination and modification of multiple meth-
ods for a particular problem.

+ Validation of our framework on several real-world problems and
comparison with baselines.

The paper is organized as follows. In Section 2 we consider related
works to this paper. In Section 3 we explain our general approach to the
generative design problem. In Section 4 we describe the implementa-
tion details of the proposed framework. In Section 5 we show real-world
applications of the GEFEST framework. Finally, in Sections 6 and 7 we
conclude this work with the pros and cons of our framework and future
directions of research.

2. Related works

In this section a review of different approaches to the solution
of each stage in the generative design procedure will be carried out.
Moreover, existing generative design frameworks will be discussed.

2.1. Definition of object distribution

The brute force approach involves the selection of standard distri-
butions U(X), for example, uniform or normal as P(X) (Nikitin et al.,
2021; Mukkavaara and Sandberg, 2020). U(X) is defined on a variable
X from design space D = {X € R"| f(X) = 1}, where f = {0,1}
is a geometrical and boundary constraint identification function, n is
the dimension of the design variable X. The described method is ac-
companied by several challenges. Firstly, dimension » may vary within

N.O. Starodubcev, N.O. Nikitin, E.A. Andronova et al.

one considered problem, which causes difficulties in further conditional
distribution P(Y|X) modeling. Secondly, the sampling procedure from
U(X) will be time-consuming if a form of D is non-trivial. In other
words, samples X ~ U(X) may not satisfy the boundary conditions,
therefore it should be rejected by f, and the sampling algorithm should
be repeated afterward. Lastly, the diversity of samples can be poor
because of the simplicity of the selected standard distribution.

Another rapidly developing class of approaches for P(X) estimation
is based on deep generative neural networks (Oh et al., 2019; Qian
et al., 2022; Tan et al., 2020). These are data-driven approaches usually
using implicit (or semi-implicit) models. The latter work in black box
mode, and are only able to generate samples X. In addition, they com-
monly require a great amount of data as well as training time. Despite
the shortcomings, if the models are well trained, this class will be free
from challenges that were inherent in the brute force approach. The
vast majority of approaches are based on generative adversarial net-
works (Goodfellow et al., 2014) and variational autoencoders (Kingma
and Welling, 2013).

2.2. Modeling of conditional target distribution

In generative design a well-established approach to the perfor-
mance estimation (or estimation of the conditional target distribution
P(Y|X)) of objects is numerical modeling. These models are based on
equations of mathematical physics that can be solved using physical
simulators Sim(X), for instance, species distribution modeling (Xu et al.,
2021a), computational fluid dynamic (Xu et al., 2021a), COMSOL
multiphysics (Nikitin et al., 2021), Simulating WAves Nearshore (James
et al., 2018). Although such equation-based models provide a highly
accurate approximation of performance (i.e. Sim(X) =~ Y), this ap-
proach is computationally expensive and consequently extremely time-
consuming.

Another approach that focuses on solving the mentioned problem
of high computational complexity is surrogate models (Chen et al.,
2020; Deshpande et al., 2020; Palar et al., 2019; Gonzalez-Gorbena
et al.,, 2016). The main idea is to build a lightweight data-driven
model Surr(X) that will approximate outputs of Sim(X) with reasonable
accuracy. A wide range of machine learning and deep learning methods
can be used as surrogate models: random forest, kriging, gradient
boosting, neural networks, etc.

2.3. Solving optimization problem

After P(X) and P(Y|X) are specified, the last stage of the generative
design procedure, i.e., optimization problem (1), should be discussed.
This is the main step to get samples with the highest performance
from joint distribution P(X,Y), which is the goal of generative design.
Gradient-based methods and biologically inspired algorithms can be
considered as tools for this purpose.

In generative design different variations of evolutionary algorithms
are the most common approaches in solving optimization problems
for real physical objects (Shen et al., 2022; Qian et al., 2022; Nikitin
et al., 2021). In addition to generative design, evolutionary algorithms
and other metaheuristics methods (Ramezani et al., 2021) are widely
used in neural architecture search (Xue et al., 2021b,a), tumor diag-
nosis (Hu and Razmjooy, 2021; Tian et al., 2021) and other applied
fields (Yin and Razmjooy, 2020). The increased attention to empha-
sized algorithms is caused by the following reasons: (1) gradients of
Sim(X) with respect to X are difficult to calculate, whereas evolutionary
algorithms are gradient-free; (2) evolutionary algorithms can be easily
generalized to a multi-criteria optimization problem (Y € R¥, k& > 1),
while for gradient-based methods this operation is more complicated.
However, the convergence of such algorithms strongly depends on
genetic operators and in some cases can be time-consuming.

Engineering Applications of Artificial Intelligence 119 (2023) 105715

With the growth of machine learning technologies, gradient ap-
proaches are gaining more and more popularity in generative de-
sign (Tan et al., 2020). If the surrogate model ensures a high approxi-
mation accuracy, in the optimization problem it is possible to replace
Sim(X) with Surr(X). Modern optimizers, such as Adam or RMSProp,
enable to obtain gradients of the machine learning model Surr(X)
quickly and efficiently.

The major issue for the integration of optimization approaches with
generative design is the uncertainty of the model and the underlying
physical system itself. First, some physical processes (e.g. thermo-
dynamic mixing, wind waves or turbulent flows) can be considered
stochastic rather than deterministic (Zielinski, 1991). Second, the mod-
eling results of both physics-based and data-driven models also con-
tain a significant stochastic component (Palmer and Williams, 2008).
For this reason, the generative design results can be very unstable
to any disturbances since the underlying distribution P(X) can be
considered multimodal. A similar problem arises in the analysis of
non-linear dynamical systems (Xu et al.,, 2021b). For example, the
stability problems are solved in control algorithms of dynamic technical
systems (Djordjevic et al., 2022). In the field of generative design,
the implementation of optimization techniques also should take the
stability issues into account to produce the appropriate solutions. In
this case, the population-based methods can be preferred since it allows
preserving better diversity of the solutions (Cheng et al., 2018).

2.4. Generative design frameworks

Attempts to develop generative design frameworks have been made
for quite some time. It is necessary to highlight the work presented
by Singh and Gu (2012). In this paper the authors proposed a frame-
work based on different generative design approaches: genetic algo-
rithms, swarm intelligence, L-systems, cellular automata and shape
grammars. Eventually, they came to the conclusion that there is no
universal approach to the generative design problem. In other words,
a generative design framework needs to be flexible, that is, to provide
various approaches to a specific problem.

In recent years the development of generative design frameworks
has become more widespread. For example, Mukkavaara and Sandberg
(2020) devised a framework for architectural design. In the presented
paper researchers tried to develop a generic framework including sev-
eral generators of designs (genetic algorithm and random sampling).
However, this work suffers from the lack of modern deep learning
models.

Moreover, the Autodesk generative design framework (Buonamici
et al., 2020) deserves special attention as one of the best-known com-
mercial software. This framework provides a flexible approach for the
user-specified problem. For obtaining designs numerical analysis of
differential equations is performed on external cloud servers. Despite
the advantages of the given software, its implementation details and
essential features are not discussed.

Increasingly, works with a combination of deep learning networks
and traditional approaches are being published. For instance, Oh et al.
(2019) presented a framework that consists of topology optimiza-
tion (Solid Isotropic Material with Penalization) and a generative
model (Generative Adversarial Network). This approach demonstrated
high diversity and aesthetics of created designs in resolving the two-
dimensional wheel problem. Nevertheless, it has not been validated on
tasks from different applied fields.

To consider the difference between the GEFEST and other gener-
ative design frameworks we propose to compare five, as we believe,
most important properties of the tools:

« Applicability to the design of 3D objects.

* Versatility. The possibility of applicability for tasks from various
fields.

* Flexibility. The ability of the framework to provide different ap-
proaches to a specific problem.

N.O. Starodubcev, N.O. Nikitin, E.A. Andronova et al.

Engineering Applications of Artificial Intelligence 119 (2023) 105715

GEFEST workflow

~N

(" Polygon encoding Toolkit constructing Generative design
Domain boundaries VTt N ' i Created objects
' i v xSample <. !
> ' Sampler | . l S
> I | v] DA =
N ! Estimator | » 1 Estimate P —
> ' ' N : > T
1) 1 [N v . 1
+ Optimizer ! Optimize = |
\ __________________________ * _____)
GEFEST tools /
: Samplers Estimators Optimizers i
: Standard Physics-based Gradient-based i
' Deep Surrogate Biologically '
! learning models inspired .

Fig. 2. The GEFEST approach for the generative design of physical objects including polygon encoding, toolkit constructing, and generative design. In the generative design stage

hatched and thick lines mean possible and required gates, respectively.

Table 1
Comparison between generative design frameworks using selected properties.
Framework Property
3D Versatility Flexibility Openness Arbitrary shapes
Singh and Gu (2012) X X v X
Mukkavaara and Sandberg (2020) v X X X v
Buonamici et al. (2020) v v X X v
Oh et al. (2019) X X X X X
Proposed framework (GEFEST) X 4 4 v X

* Openness. This property includes two points: does the framework
provide an opportunity for the user to implement their own
modules and is the source code open?

« Arbitrary shapes. The property answers the question: is the tool ca-
pable of potentially approximating physical objects of any shape?

Based on the analysis of Table 1, we can conclude that the potential
advantages of the proposed approach against other generative design
frameworks are as follows: flexibility (compared to Singh and Gu (2012)
we also incorporate deep learning algorithms in our framework) and
openness. In other words, our framework provides the opportunity to
consider different approaches to a specific problem and incorporate
user-defined modules that implements SOTA approaches. However, the
disadvantages are that GEFEST cannot be applied to 3D objects and
cannot approximate physical objects of arbitrary shapes (as we show in
Section 5.1.2)

3. GEFEST approach for generative design

As was mentioned earlier, there is no universal approach to gen-
erative design. Each applied problem requires detailed consideration
and long-term research. However, the combined application of deep
learning, numerical modeling and optimization can be regarded as a
general trend in solutions to the generative design problem. With the
right combination of different methods from these specified branches,
well crafted physical objects can be produced. This is the main idea of
the GEFEST approach.

The GEFEST framework is a modular tool for the generative de-
sign of two-dimensional physical objects that can be presented as flat
polygons without an internal structure. The essential points of the
framework architecture are shown in Fig. 2. First of all, the GEFEST
receives the boundaries of the considered two-dimensional domain as

input. Optimization will be carried out in this domain. Then the work-
flow including polygon encoding, toolkit constructing, and generative
design is performed. In the output, GEFEST generates samples from the
joint probability distribution P(X,Y).

Our approach is mostly based on three tools:

» Sampler. This tool is designed to generate samples X (we asso-
ciate this variable with a physical object). In other words, it solves
the first stage of the generative design procedure.

- Estimator. We developed the Estimator to obtain the perfor-
mance of a physical object, i.e., target variable Y.

» Optimizer. The final stage of the generative design procedure can
be solved by the Optimizer. The latter is aimed at obtaining the
most efficient X.

These tools are presented abstractly because we want to provide the
desired flexibility in choosing a specific implementation of each tool.
Whichever implementation is chosen, each of them will be within the
same procedure. Some implementations are listed in Section 3.2.

3.1. Polygon encoding

The first stage of the GEFEST workflow is the polygon encoding.
This procedure allows the representation of real physical objects as
two-dimensional (flat) polygons. We distinguish two types of structure:
opened-form and closed-form, however, the framework operates them
in the same manner. An example of encoding is shown in Fig. 3. It is
clear that each polygon node is identified by corresponding Cartesian
coordinates. Hence, the polygon can be described by a set of points,
ie. X = (s V15X, 95), X € R%. If X satisfies the boundary and
geometrical constraints (f = 1), it will belong to the design space
D. The restrictions are based on the domain boundaries that are ob-
tained as input in GEFEST. A set of different X corresponding to all

N.O. Starodubcev, N.O. Nikitin, E.A. Andronova et al.

Opened-form encoding Closed-form encoding

(x1, y1)? (x1, ya)!

(x3, y3)!

(x3, y3
(x4, ya)! ya)' (x4, ya)'
(X2, y2)2 (1, y1)2 (x2, y2)?
(x1 y/1\ (x3, y3)? U (x3, y3)?
(xa, ya)? ‘X
»

Fig. 3. Opened-form and closed-form polygon encoding in Cartesian coordinates.

possible polygons and their combinations defines the design space. It
is worth noting that the dimension of this space is high, especially for
closed-form polygons.

3.2. Toolkit constructing using GEFEST tools

After the specification of the design space, it is necessary to set
a certain approach for each stage of the generative design procedure.
To accomplish this purpose, we implemented GEFEST tools (Samplers,
Estimators, Optimizers) including various computational methods. Se-
mantically, each tool can be divided into two classes: deep learning
(Generative Adversarial Networks, Variational Auto Encoders, etc.)
and standard (standard statistical distributions) for Samplers; surro-
gate models (fully connected/convolutional neural networks, krig-
ing, etc.) and physics-based (different physics simulators) for Estima-
tors; biologically-inspired (genetic/evolutionary algorithms, etc.) and
gradient-based (Adam, gradient descent, etc.) for Optimizers. Such a
variety of approaches provides the opportunity to deal with applied
problems of different natures and goals. For example, for problems with
opened-form polygons and multi-criteria target (Nikitin et al., 2020) it
will be effective to select a standard distribution and multi-objective
evolutionary algorithm as the sampler and optimizer, respectively. In
cases requiring high diversity of polygons with closed-form, a deep
learning sampler is preferable.

3.2.1. GEFEST standard sampler

The principal requirement imposed on the sampler is the computa-
tional efficiency of sample generation. We would like to create correct
polygons, i.e., without any self-intersections or intersections with other
domain elements and out-of-bound parts in an acceptable amount
of time. For these purposes, we implemented the GEFEST standard
sampler including two stages: generation of the centroid region and
generation of points inside this region. We refer our sampler to the
standard class because it is based on standard statistical distributions.
In a simplified form, the sampling procedure is presented in Algorithm
1 and Fig. 4.

First of all, the centroid is created using a uniform distribution on
a rectangle area. This poses the central point of the region called the
centroid region. The size of the latter is determined by the radius, which
is also a sample from a uniform distribution. However, the support of
this new one is different. More precisely, for the radius we considered

Mpoly
Q. The selection of such an upper bound is motivated by the following

idea: when the number of polygons increases, it becomes more difficult
to find a correct region with a large radius. To avoid this, the ray can
be reduced by n,,, times. Finally, when the correct region is created, a
polygon can be freely generated inside it. The polygon consists of points
sampled from a normal distribution with parameters x and g, the mean
and the variance, respectively (the latter is chosen taking into account

uniform distribution on the ray (0, Q'J instead of the rectangle area

Engineering Applications of Artificial Intelligence 119 (2023) 105715

Algorithm 1 GEFEST standard sampling

Require: Q, X, N, max > Rectangle area, optimization
domain, number of polygons to generate and maximum number of
points in polygon

Ensure: §

1: S = Array()

2: while |S| < N do

3: Npory = 1S+ 1
additional one to avoid O

4 x ~U(Q)

5 while x not in ¥ do

6: x ~U(Q) > Repeat until x is in optimization domain

7 r~ (O, 120

Mpoly

8

9

> The GEFEST Structure (set of polygons)

> Number of already created polys and

> Creating centroid

> Creating radius of centroid region
while xr is incorrect do

r ~ U((0, n‘ﬂ]) > Repeat if region is incorrect
ol y

> Number of points
> Initialization of polygon

npoint =]Uim(max)
11: P = Array()

12: while |P| #n do

point
13: ~ N(x,) > Creating polygon point
14: P append (p)

15: S.append(P)
16: return .S

the three-sigma rule). Note that in Algorithm 1 we do not adduce details
about the stopping criterion (when the while loop takes a good deal of
time), postprocessing, and recreating the centroid (in cases when radius
creation becomes time-consuming).

3.2.2. Deep learning estimators and samplers

Within the GEFEST framework, the deep learning estimator and
sampler work with the images of polygons, not the polygons them-
selves. This is caused by the various dimension of the latter. As can
be seen from Fig. 3, the number of points describing the polygons
can be different. It depends on the number of its segments. Thus, in
the application of classical machine learning methods, certain diffi-
culties arise (the dimension of the input data varies). To avoid these
issues, it is necessary to make the universal polygon parameterization
insensitive to the number of its points. In this work we considered
three-dimensional matrix parameterization that is invariant to changes
in the number of points. In other words, an image is mapped to each
polygon or polygon structure. The produced images are binary in which
maximum intensity corresponds to the polygon. Such a representation
allows the consideration of well-established practical tools, namely
convolutional neural networks.

The generalized architecture of the deep learning estimator is shown
in Fig. 5. The estimator passes an input binary matrix through the
convolutional backbone and prediction layers to approximate the tar-
get. As options for the backbone, various widely-used convolutional
architectures (Khan et al.,, 2020) can be listed: VGG, ResNet, UNet,
AlexNet. The choice is dictated by the complexity of the considered
problem and the amount of training data. Fully connected networks
are usually used as prediction layers.

A deep learning sampler works the opposite way, it tries to create
a realistic output binary matrix as shown in Fig. 6. The main purpose
of the sampler is to create a plausible binary matrix from noise. The
generator should produce images with the correct geometric form
of polygons. The most common approaches to the construction of,
for example, a convolutional generator are Variational Auto Encoder,
Generative Adversarial Networks, Normalizing Flows, etc. The final
step is the transformation from matrix parameterization to Cartesian
coordinates encoding. This can be done using classical computer vision
algorithms detecting edges (Canny, 1986).

N.O. Starodubcev, N.O. Nikitin, E.A. Andronova et al.

Engineering Applications of Artificial Intelligence 119 (2023) 105715

O— existed polygon

x, r ~U(Q) p~ N(x,3£)
generate generate
centroid points
region f
‘ — correct region . — poly created

‘ — incorrect region

from points

Fig. 4. Visualization of a single step of the GEFEST standard sampler. Our sampler operates in two main stages: centroid generation and points generation inside the centroid
region. Here U(£2)— uniform distribution of x,r on the rectangle area; x,r — centroid and radius of the centroid region, respectively; N(x, %)— normal distribution, where x,% —

its mean and variance, respectively.

Input binary matrix Convolutional backbone Prediction layers

Target

LinearLayer

ConvLayer
Activation

Regularization
Activation

Fig. 5. The generalized architecture of the deep learning estimator takes the image of
polygons as input.

Convoluional generator Output binary matrix Coordinates of polygons

a
a

“Sample
ConvLayer
‘Activation

Regularization

r
L

YL
Fig. 6. The generalized architecture of the deep learning sampler in GEFEST. It tries
to produce a sample from the noise distribution using a convolutional generator.

X

Y

Original object Full rotation Full displacement
\)/‘&
Il X X X
Y Y Y
Points displacement Add m/deletem segment Addm/deletem polygon

¢ |9 ¥

A X [X [X

Fig. 7. Geometrical transformations over polygons: rotation, displacement, adding,
removal.

3.2.3. Evolutionary core

The optimization step, particularly the biologically inspired one, de-
serves special attention. It is known that the convergence rate of every
evolutionary algorithm strongly depends on the genetic operators (Song
et al., 2021). For effective convergence, the latter must be implemented
taking into account the semantics of the problem being solved. In the
case of two-dimensional polygons, it is natural to consider geometric
transformations shown in Fig. 7 as mutation operators. We realized the
following transformations over polygons: rotation of the center of mass
by a certain angle; polygon and points displacement; adding/deleting
segments and polygons. Moreover, we used the crossover operator
shown in Fig. 8. These genetic operators constitute the evolutionary
core of GEFEST. More precisely, every evolutionary algorithm used in
the framework utilizes this evolutionary core.

Y Y
First configuration First configuration

Crossover

Y
. Y
Second configuration Second configuration

I
|

Fig. 8. Example of a crossover operator. In the left figures, we present configurations
before transformation, and in the right figures — after.
3.3. Generative design

The fundamental stage of the GEFEST workflow is the generative
design, depicted as the last step in Fig. 2 and in Algorithm 2. This

Algorithm 2 GEFEST generative design
Require: P =(S,E,O)
Ensure: Dy,

1: D, < S.sample()

> User-defined toolkit
> Final designed objects
> Initial designs

2: while stopCriteria do

3 PF « E.estimate(D,,,,) > Design performance

4 D.,,, < E.select(PF,D,,,,) > Selecting k best objects

5 if O.required then

6: D.,,, < O.optimize(D,,,,, PF)

7 if S.required then

8 Dyyppre < S-sample()

9 Deyrr < Digmpie Y Deyrr > Combination
10: else > Skip optimization
11: Dyyppre < S.sample()

12: Dcurr « Dsample U DCMI'I'
13: Dfin « Dcurr

14: return Dy,

procedure is based on three principles: sampling, estimation, and op-
timization, which can be combined in different ways. The traditional
approach includes lines 1, 3, 4, and 6 in Algorithm 2. It performs single
sample operation, whereas estimation and optimization are repeated
until the stopping criterion is reached. Therefore, low exploration
and high exploitation rates are inherent in this process. However, in

N.O. Starodubcev, N.O. Nikitin, E.A. Andronova et al.

Engineering Applications of Artificial Intelligence 119 (2023) 105715

GEFEST implementation

’ = Italics indicates classes Speciﬁc problem ‘
= Green elements are defined
by the user r Initial parameters! T "For example:
= Blue elements are part l - population size -ma;;l. numlber of points
- number of the generative ~ Within polygon
of the GEFEST framework)) . design steps - type of polygon
« Red elements are third—party 1. Domam' 2. Toolkit) 3. (%enerauve - max. number of polygons - additional parameters
tools configuration configuration design within structure if required
A
Domain > design()
. random . extra
f—-—— -I R el - Toolkit search traditional sampling
i Constraints | |\ Geometry | t
F= = =\
- allowed area 11 | [E I L : sample() sample()
| allowed area) (Seff)’;’;g;'gr:ns) Il Sampler | Estimator Optimizer sample()
\ v K P- sample() | - estimate() ! - optimize() J estimate() estimate()
1 1 S 1 1= Structure i =»Performance ! \—»Structure estimate()
! b } [V] |i . setasquput i setasouput || _setasoutput | J
1 [} /907, [I T S .
I - prohibited 1 ™ Point [T optimize()” | ‘optimize()?
: elements : :) | : Fm e ——— — _I ________ -
: : : : : Tools : ?After optimize() step, Postprocessing
I] H , Samplers Estimators | Optimizers | s used
| [N |
! 1 P = ! : - standard = -.. - genetic :
I (| ranstormations | 1 . I
| . a(510 la(;) I | - machine algorithm | — *
—_— | - rotate poly | . .
: . should not : : |- resize poly() | : : - generative > learningm. | - SPEA2 :
1 ’ be crossed |1 1 | :intersection() | I | ™ network - physics N |
: : :L o J: | simulator + |
L e - — - PR N | 1
N I a
Shapel |
lib pely | Pytorch Tensorflow -~COMSOL
ibrary

Fig. 9. The scheme of the GEFEST framework implementation. The specific problem can be solved by completing three main steps: domain and toolkit configuration and design.

some problems, it is necessary to increase the exploration rate. This
can be done by integration of lines 8 and 9, i.e., by executing the
addition sample operation at each stage of the loop, we call this extra
sampling. As an alternative, it is possible to skip the optimization phase
completely (lines 1, 3, 4, 11, and 12). Such a method, characterized by
a great exploration rate, is called random search.

4. Open-source software framework

We provide our framework GEFEST as an open-source tool for the
solution of a user-specified generative design problem. The architecture
of the framework is presented in Fig. 9. Certain problems may be
solved by adjusting the following main blocks: domain, toolkit, and
design. It is worth noting that access to them must be carried out in the
presented order. This stems from the fact that subsequent blocks require
elements configured at the previous stages. Furthermore, to make user
interaction available, we divided GEFEST elements into three groups:
user-defined, internal and external.

4.1. Domain

First of all, it is necessary to configure the Domain class, which
is responsible for the whole information about the geometry of the
problem. In order to do this, the user should define Constraints, namely
the allowed area and prohibited elements. The first of them determines
the domain in which optimization will take place. The second one is
responsible for fixed elements within the domain that should not be
intersected by the generated polygons.

In addition to the Constraints, we set the Geometry class, which
consists of Structure and transformations. Structure is necessary for
the creation of abstraction over real objects in accordance with the

following hierarchy scheme: Structure — Polygon — Point. Lastly, to
realize the geometrical transformations over polygons (for instance,
rotation, resizing and etc.) we provide access to the external methods
from the Shapely library (Gillies et al., 2007).

4.2. Toolkit

The next stage, after the Domain specification, is toolkit configu-
ration. Note that this is the core part affecting the performance of
created objects. The toolkit comprises three classes: Sampler, Estimator,
and Optimizer realizing corresponding abstract methods (sample(), esti-
mate(). and optimize()). Such an abstraction is necessary to define the
general behavior of objects, which are inserted in the GEFEST tools. In
the latter block, we implemented our own objects and integrated ex-
ternal elements from machine learning frameworks and physics-based
applications. In addition, we provided access to custom tools.

It should be pointed out that the main requirement imposed on
tools is consistency. In other words, the inputs and outputs of class
methods should have the same type. For example, if the sample()
method delivers a Structure array, then the input of the estimate()
method should have the same type. Initially, all methods operate with
the Structure array, however other options are available (for example,
array of images).

4.3. Design

The final step is a generative design based on Algorithm 2. Here
we offer three possible options (random search, traditional and extra
sampling methods), as was discussed earlier. We just emphasize that
after the optimize() step, generated structures undergo Postprocessing
by which defective polygons (self-intersected, out-of-domain and etc.)
are corrected.

N.O. Starodubcev, N.O. Nikitin, E.A. Andronova et al.

o o
"R
© o

°
f
o

Error for best structure

o o o

[T T

s & &
-
-

-
- E -

o o
> o
& =

E
-
-

(a) Variable number of objects in optimal solution

Engineering Applications of Artificial Intelligence 119 (2023) 105715

Error for best structure

S PL L
NS SIS AN R AN,
B DR RO X P R R

Expected domain size

(c) Variable size of the search domain

0.144

°
=
o

0.104

Error for best structure

DRV A RO AR A AV AP A0 AR D A AN a0 AP D D P e
Expected number of vertices

(b) Variable number of vertices in optimal solution

Fig. 10. The dependence of solution search error from (a) number of objects in the optimal solution; (b) number of vertices in the optimal solution; (c) size of the search domain.

Table 2
Summary of all experimental studies including the main goal.
Section Type Main goal
5.1 Synthetic Reveal the applicability of the GEFEST framework
5.2 Coastal engineering Demonstrate the benefits of combining different estimators
5.3 Microfluidics Compare deep learning and standard samplers
5.4 Heat Sources Illustrate how to perform generative design with an only dataset
5.5 0Oil field Show how to apply GEFEST to a specific subproblem

5. Experimental studies

This section considers the application of the GEFEST framework to
physical objects of different natures. The main purpose of the experi-
ments lay in the demonstration of framework versatility and flexibility
by addressing real-world problems from different specific areas using
the same GEFEST approach (Fig. 2). It is necessary to highlight that
we cannot apply other generative design frameworks discussed in Sec-
tion 2.4 because they are not open source. However, we implemented
state-of-the-art approaches in specific areas as a part of the framework
and involved them in the experiments. Also, we analyzed existing
results for the considered problems and proposed our own baselines.
A summary of all experimental studies is presented in Table 2.

It should be noted that the computational complexity and working
time strongly depend on the chosen methods. For example, if neural
networks are selected as an estimator or sampler, then a GPU is
usually required for training and utilization. Also, some optimization
algorithms can work slower than others, e.g. SPEA2 works slower
than Differential Evolution. Thus, the computational complexity may
vary depending on the chosen sampler (generative neural networks
are calculated faster than classical distributions, but require training);
estimator (physics-based simulators require much more time for cal-
culation than deep learning algorithms), and optimizer (metaheuristic
algorithms are usually slower than gradient-based methods).

All subsequent experiments were conducted using a Windows 2008
Server with 32 core units and DGX 1 NVIDIA Cluster with Tesla V100.

5.1. Synthetic cases

5.1.1. Applicability of GEFEST

It is necessary to analyze the applicability of GEFEST to problems
with different properties before getting down to real-world cases. To
achieve this purpose we conducted several synthetic experiments in
which we varied different properties to get the optimal solution: num-
ber of polygons, number of vertices, and domain size. The main purpose
of these experiments is to investigate the relationship between the
complexity of the expected optimal solution and the efficiency of the
search. The hypothesis is that there is a linear relationship for GEFEST
since it implements a generalized approach that is not specific to some
sub-classes of the generative design problem.

In this section, we considered the following GEFEST tools:

» Sampler: standard approach (GEFEST Standard Sampler)

+ Estimator: synthetic estimator based on the distance between the
obtained and reference solution.

» Optimizer: biologically-inspired method (Genetic Algorithm).

Variable number of objects

The first experiment was devoted to an analysis of GEFEST’s appli-
cability for reproducing configurations that consist of various numbers
of polygons (from 1 to 30). A boxplot that describes the effectiveness
of GEFEST for this task is presented in Fig. 10(a).

N.O. Starodubcev, N.O. Nikitin, E.A. Andronova et al.

a
140 - /
120 - y
100 - g
2 80 4
o P
60 - o
40 - e -
20-
0- Mmoo u
0 1 2 3 4 5 6
complexity

Fig. 11. Behavior of the loss function (estimator values) with the increasing complexity
of the figure to be approximated.

Variable number of vertices

The main difference in the second experiment was the variability of
the number of vertices in a single polygon (from 10 to 100) instead of
the number of polygons. Obtained results are presented in Fig. 10(b).

Variable domain size

Another factor that can influence the effectiveness of the proposed
approach is the size of the domain that represents the two-dimensional
search space. Obtained results are presented in Fig. 10(c).

As can be seen, the restoration error’s dependence on the configu-
ration’s complexity can be considered near-linear for synthetic cases. It
empirically confirms the formulated hypothesis. We can conclude that
the proposed approach has no bias towards any property of the problem
under consideration.

5.1.2. Biasness of GEFEST

In previous experiments, we concluded that GEFEST could poten-
tially be applied to problems with different properties (domain sizes,
number of structures, and vertices). However, it is also necessary to
understand the bias of GEFEST to the type of structures that need to
be generated. For this purpose, we considered the problem of figure
approximation with various complexity. We set the same tools as in the
previous section except for the estimator. As the latter, we considered
the maximum length of the relative complement of two polygons. The
results are presented in Figs. 11 and 12. As can be seen from the results,
our framework can easily handle right-form figures (examples 1, 2, 4 in
Fig. 12) and their combinations (examples 3 and 5 in Fig. 12). However,
if the polygon is not derived from the right one, the framework cannot
approximate its irregularities (examples 6 and 7 in Fig. 12) even with
a small number of points.

So, it is possible to conclude that the proposed approach with
the GEFEST standard sampler can be applied to structures of regular
shape and their derivatives. However, for complex shapes, the standard
sampler can be changed to a deep learning sampler, as we showed in
Section 5.3.

5.1.3. Sensitivity to hyperparameters choice

Hyperparameters are one of the most important tuning values and
their configuration can make a serious effect on the final result. So, in
this part, we aim to analyze the sensitivity of GEFEST to the hyperpa-
rameters choice.

In GEFEST we distinguish the following main hyperparameters: pop-
ulation size, crossover, and mutation rates. To analyze the sensitivity
we approximated two circles (example four in Fig. 12) each of which
contains 15 points. As the estimator we choose an area-to-length ratio,
it is well known that for a circle this ratio is the largest among other
figures. The number of design steps was equal to 200 and each run was
repeated five times. The results are presented in Fig. 13.

As it can be seen from Fig. 13(a) the results are slightly worse for
high crossover rates (0.8 and 0.9) and low mutation rates (0.2, 0.1)
compared to other values. This is due to the fact that mutations are

Engineering Applications of Artificial Intelligence 119 (2023) 105715

more effective than crossover for polygons in our realization. So, we
recommend giving preference to mutations in your experiments, for
instance, 0.3 and 0.7 for crossover and mutation rate, respectively. In
Fig. 13(b) we can see that for a small population size (5 individuals)
the result is the worst. For the other values, the error is approximately
the same. To give recommendations on the choice of the population
size, we considered the dependency between the time to run 200 steps
and the population size. It is presented in Fig. 14.

As we can see, the dependency can be considered linear. So, our
recommendation is to choose medium values for the population size
(for example 50-150). Because at high values, the post-processing time
of polygons becomes significant and at low values, the results are
worse.

5.2. Coastal engineering

In this subsection, we consider a real-world design problem from
the coastal engineering field. This task is dedicated to protecting critical
objects (targets) in the water area from natural phenomena (sea waves).
Breakwater structures are being developed for these purposes. The main
goal is to find a configuration of breakwaters (opened-form polygons
in terms of the GEFEST encoding), which minimizes the wave heights
at significant points. The cost of breakwaters should also be taken
into account. More details about this problem can be found in existing
works (Xu et al., 2021a; Nikitin et al., 2020).

In Fig. 15 configuration of our breakwaters design problem is
shown. First of all, we specified bathymetry (water depth at each point
of the water area), as well as the direction and speed of the wind. In
this particular case, we set two land areas, fairways, and three targets.
These objects are fixed, whereas the position of breakwaters (red
polygon in Fig. 15) should be optimized to ensure maximum protection
of critical objects from sea waves. In addition, a crucial constraint
is imposed: protecting constructions should not cross fixed objects.
Breakwater length, meanwhile, is of great importance, since it directly
affects the cost. Therefore, the target variable is two-dimensional Y €
R?: the first component is responsible for the sum of wave heights, and
the second one — is for the cost of breakwaters. And the third step of
the generative design procedure is a multi-objective optimization problem
with constraints (see Appendix A.1 for formal basics). Worth noting
that in this case, we consider the optimization problem (1) in terms
of minimization. As a baseline solution, we choose a configuration of
breakwaters specially created by ourselves. It is shown in Fig. 15(b).
Also, we determined a low value of the breakwater protection coeffi-
cient. It means that wave height at the point will increase quite quickly
when moving away from the breakwater.

In this problem statement, we considered the following GEFEST
tools:

» Sampler: standard approach (GEFEST Standard Sampler (GSS))

+ Estimator: physics-based simulator (Simulating WAves Nearsh-
ore) and deep learning (Convolutional Neural Network (CNN)),

» Optimizer: biologically-inspired methods (differential evolution
(DE) and SPEA2, details about the last algorithm are provided in
Appendix A.2).

The main purpose of this example is to demonstrate how physics-based
and deep learning estimators can be combined to enhance the obtained
solution. Moreover, we aim to show the opportunity to utilize different
optimizers. Thus, we constructed the following toolkits based on the
mentioned GEFEST tools: (1) GSS + SWAN + DE; (2) GSS + SWAN
+ SPEA2; (3) GSS + CNN/SWAN + SPEA2, and compared them. The
second toolkit implements an existing approach from the work (Nikitin
et al., 2020). It represents the optimization strategy that is widely used
in state-of-the-art works (Elchahal et al., 2013), so we incorporated
it into GEFEST. All toolkits used Algorithm 2 in a traditional manner,
except for the third one, in which we added extra sampling to increase
the exploration rate. Algorithm 2 was repeated three times for each

N.O. Starodubcev, N.O. Nikitin, E.A. Andronova et al.

Engineering Applications of Artificial Intelligence 119 (2023) 105715

1 2 3 4 5 6 7
True / N
figure 7 - — — | | —> — —
N Complexity

——— >
Predicted 5 (> — — eoular
fioure Irregularity

g \ is ignored

3 points 4 points 6 points

40 points

26 points 14 points 57 points

Fig. 12. Real figures that should be approximated (top row) and the GEFEST prediction (bottom row). The framework easily copes with right-form figures (examples 1, 2, 3, 4,

5). However, it cannot approximate the irregularities (examples 6, 7).

Values of 1— area/length.

Crossover rate

09 08

07 06 05 04 03

Mutation rate

02 0.1

(a) We ran experiment five times
and calculated average values.

Fig.

1751

150

1251

100 A

754

Time, sec.

504

254

0 25 50 75 100 125 150 175 200

Population size

Fig. 14. Time (in seconds) to run 200 steps of the generative design for different
population sizes.

toolkit with a time limit of 10 h for one run. Also, we set the population
size to 30 and the archive size to 15.

The third toolkit needs to be discussed in more detail. The most
time-consuming procedure among the considered GEFEST tools is the
physics-based SWAN model estimation of the wave heights. In order
to reduce the number of SWAN calls we included an additional deep
learning estimator, which is noticeably more lightweight. On the other
side, the deep learning estimator is less accurate. Nevertheless, high
accuracy is required only for solutions close to the minimum, whereas
in other cases a rough approximation is sufficient. More formally, such
a combination is described in Algorithm 3. This procedure allows the
execution of more optimization steps dew to fewer calls to the physics-
based model. The parameter threshold provides an opportunity to skip
unsuccessful samples, in our case, it is equal to 6.0.

The deep learning estimator chosen for this problem is based on
the generalized architecture (Fig. 5). To collect data for its training,
Algorithm 2 with the second toolkit (GSS + SWAN + SPEA2) was in
progress for 3 h. As a result, about 700 labeled examples were obtained.
After the deep learning estimator was prepared, about 6.7 h were

0.175

0.150

0.125

0.100

0.075

0.050

0.025

0.000

10

0.22

75th percentile — s m—
50th percentile —» =——=
25th percentile

— ==

0.20

0.18

1— areallength.

0.16

50 75 100

Population size

125 150

(b) We ran experiment five times
and calculated percentiles.

13. The dependency of the area-to-length ratio on the crossover and mutation rates (a) and on the population size (b). The lower values are better.

Algorithm 3 Combination of physics based and deep learning
estimators
Require: DL, PB,sample > Deep learning, physics-based estimators
and sample for estimation
Ensure: pf
1: pf = DL.estimate(sample)
using deep learning model

> Performance of sample
> Calculating performance of sample

2: if pf < threshold then

3: pf = PB.estimate(sample) 1> Recalculating performance using
physics-based model if the sample is close to the minimum

4: return pf

left for generative design with the third toolkit. The details about the
architecture and training procedures are in Appendix B.1.

The results of the experiments are shown in Table 3 and Fig. 16.
We decided to use hypervolume as a metric for comparison because it
is the main measure in multi-objective optimization problems (Zitzler
et al., 2001, 2004). For each toolkit, we calculated the 25th, 50th,
and 75th percentiles of the latter based on three runs. Moreover, in
Table 3 the minimum wave heights among three runs are shown. As
can be clearly seen from the results, the toolkit with the deep learning
estimator shows superior performance. This outcome can be explained
by the greater number of generative design steps (140 against 60 and 80
for non-deep learning estimator toolkits). The integration of the deep
learning estimator enables the application of the physics-based model
only for important breakwaters and provides more time for further
optimization steps. This fact allows for the inclusion of extra sampling.
Furthermore, one out of three of our approaches surpasses the baseline
solution.

In Fig. 17 some created samples for each toolkit are presented.
As can be observed, the only approach permitting generating the
breakwater close to small land includes the deep learning estimator.
Furthermore, it excels in sample diversity. Such outcomes are related
to the higher exploration rate of the third toolkit compared to others.
As was mentioned above, it was achieved by the use of extra sampling.

N.O. Starodubcev, N.O. Nikitin, E.A. Andronova et al. Engineering Applications of Artificial Intelligence 119 (2023) 105715

Bathymetry map

Weight height map

20

15

10

0.0
() (b)

Fig. 15. The problem statement for the generative design of coastal breakwaters. Bathymetry increases from the lower left corner (0 meters depth) to the upper right (25 meters
depth); wave height depends on the position of the breakwaters, the maximum value is 2.5. In the right figure the baseline solution is presented.

GSS+SWAN+DE 35 GSS+ CNN/SWAN + SPEA2 GSS + SWAN + SPEA2
35 —— — 75th percentile » percentile
bt v e
e 30 $ 30 < 30
g g 2 g 2
E} =2 2
S 20 £ 20 £ 2
N 9 0
8 & &
15
m&: 15 & 2 15
10 10 10
51— : : : : : : 5-— v y T v T T T 51— v T v T
0 10 20 30 40 50 60 0 20 40 60 80 100 120 140 0 20 40 60 80
(a), Number of epochs (b), Number of epochs (c), Number of epochs

Fig. 16. Hypervolume of the population at each step (epoch) of the generative design. The hypervolume was calculated based on three runs, and after the 25th, 50th, 75th
percentiles were calculated.

+GSS
+CNN/SWAN
+SPEA2

+GSS
+SWAN
+DE

+GSS
+SWAN
+SPEA2

Fig. 17. Visualization of some created samples for the breakwaters design problem. Three samples for each toolkit are demonstrated. The left figures in each row show the
best-found samples with corresponding wave heights for each target.

11

N.O. Starodubcev, N.O. Nikitin, E.A. Andronova et al.

Table 3

Engineering Applications of Artificial Intelligence 119 (2023) 105715

Comparison between different toolkits. The hypervolume is calculated relative to the maximum possible.
Here we present the hypervolume at the final step of the generative design. Wave heights are the sum of
wave heights at all targets. In the table arrow 1 reflects the larger the better rule, for | the opposite is true.

Toolkit Hypervolume 1 (%), percentile Wave heights | (m)
25th 50th 75th
GSS+SWAN+DE 22.42 2299 24.49 4.56
GSS+SWAN/CNN+SPEA2 27.47 29.36 31.28 4.05
GSS+SWAN-+SPEA2 (Nikitin et al., 2021) 21.80 22.04 24.53 4.59
Baseline - - - 4.41
Table 4

fixed trap

Us

fixed trap

Umain,

v - velocity
- - @ - certain particle

Velocity, m/s

Fig. 18. The problem statement for the generative design of microfluidic devices. A
flow of particles passes through this device. Barriers (closed-form polygon in GEFEST
term) can be located inside the optimization domain.

5.3. Microfluidics

A microfluidic device is a system with a size of about hundreds
of micrometers, permeated with several microchannels, the fluid flow
through which is investigated. One of the most prominent applications
of microfluidics is studying the behaviors of single red blood cells for
further biological analysis, disease diagnostics and etc. Conventionally,
only certain particles need to be analyzed and thus they should be
separated from the unwanted flow components. For these purposes,
hydrodynamic traps are used. The faster the flow passes between these
traps, the higher the trapping probability becomes. For more details,
refer to the works (Grigorev et al., 2022; Man et al., 2020).

The general problem statement is shown in Fig. 18. This task can
be formulated as the construction of barriers that can be represented as
closed-form polygons (in terms of GEFEST). The main goal is to create
polygons inside the optimization domain to maximize the velocity
of particles through fixed traps (1-5). The increase in the flow rate
enhances the capture probability of certain particles by fixed traps. In
addition, the reduction of the velocity through the main and pressure-
dropping (PD) channels facilitates achieving the primary goal. Hence,
the target variable can be written as follows:

5
_ Z[:] Ui

Umain t Upd

(2)

In this case, the optimization problem includes only boundary restric-
tions without constraints caused by fixed objects within the domain (as
it was in the previous section).

For the generative design of the hydrodynamic cell traps, we utilized
the following GEFEST tools:

» Sampler: standard approach (GEFEST Standard Sampler) and
deep learning (Generative Neural Network (GNN)),

12

Comparison between final target variable for considered toolkits. Here we presented
the best value of the target variable among individuals of the population in the last
epoch. We ran the experiment three times and calculated the 25th, 50th, and 75th
percentiles. In the table arrow 1 reflects the larger the better rule.

Toolkit

Target variable Best target 1

25th 50th 75th
GSS + COMSOL + GA 0.333 0.347 0.354 0.361
GNN + COMSOL + GA 0.333 0.336 0.337 0.339
GA (Grigorev et al., 2022) - 0.329

+ Estimator: physics-based simulator (COMSOL Multiphysics),
» Optimizer: biologically-inspired method (Genetic Algorithm).

For the closed-form polygon encoding, the application of the deep
generative model is more reasonable than in the case of the opened-
form polygons. This fact is associated with greater variability of closed
structures.

The main goal of this study is to reveal the benefits of the deep
learning sampler compared to the standard sampler. To this end, we
built the following toolkits: (1) GSS + COMSOL + GA; (2) GNN +
COMSOL + GA. In order to show the influence of samplers on the
generative design results, we used Algorithm 2 in extra sampling mode.
As in the previous section, the calculation was repeated three times
with a time limit of 10 h for each. The population size was set to 40.
As a baseline solution we took the result from the paper (Grigorev et al.,
2022), which can be considered as state-of-the-art in microfluidics. In
short, the approach of Grigorev et al. (2022) is based on a genetic
algorithm that starts optimization with an expert solution. Thus, we
further denote it as GA.

For the preparation of the deep learning sampler, we collected
100 000 training objects using the standard GEFEST sampler, which took
nearly 1.5 h. In addition, the training in the deep generative model
required about 30 min. Moreover, beyond the main experiment, we
compared different generative neural networks with regard to sample
diversity and quality. Details are presented in Appendix B.2. Based
on the comparison, for this problem, we chose the Adversarial Auto
Encoder as a deep learning sampler.

The results of the experiments are shown in Table 4 and Fig. 19.

As can be seen from Table 4, the toolkit based on the GEFEST stan-
dard sampler performs slightly better. However, the difference between
toolkits is negligible. Moreover, both of our approaches surpass the
state-of-the-art solution. Actually, it is necessary to highlight another
significant fact. As depicted in Fig. 19, the deep learning sampler-based
toolkit enables the creation of higher target variable samples at the ini-
tial steps of the generative design. This suggests that the deep learning
sampler produces more beneficial primary objects, that is, allows to get
the generative design process to start from better samples. In addition,
in Fig. 20 several samples created by both methods are presented. As
can be observed, the deep learning based approach generates more
diverse and unconventional samples. Creation of such objects using the
standard sampler would be a cumbersome and lengthy procedure.

Besides, we compared the sampling time for both approaches. The
results are demonstrated in Table 5.

It can be clearly seen that the deep learning sampler works approx-
imately four times faster than the standard method. Worth noting that

N.O. Starodubcev, N.O. Nikitin, E.A. Andronova et al.

0.350 1

0.3251
P~
.l; 0.300 1
'? 0.2751 :
= —— «— 75th percentile
< | —— «+— 50th percentile
z 0.250 ——— +— 25th percentile
] —
80 0.225 — -GSS +COMSOL + GA
st —_

0.200 { — - GNN+ COMSOL + GA

0.175 1

40 60 80

Number of epochs

0 20

Fig. 19. Dependence of target variable on the number of the generative design step
for two considered toolkits. The generative design with the normal distribution-based
toolkit takes a greater number of epochs due to the training time of the deep learning
sampler which we took into account.

Table 5
Sampling time of 50, 500, and 1000 objects for deep learning and the standard sampler.
Each time measurement was repeated 10 times.

Sampler Time (s.) for sampling

50 500 1000
Deep learning 0.56 + 0.02 6.2 + 0.3 13.2 + 0.2
Standard 2.49 + 0.17 253 + 0.6 50.6 + 1.1

the most time-consuming operation in deep learning sampling is the
GEFEST polygon encoding, that is, a transformation from the image to
the Cartesian coordinate set.

In Fig. 21 we demonstrated the best objects found using two toolk-
its. As can be seen, obtained structures closely resemble each other.
In both cases, the optimization converges to easy-form polygons. How-
ever, for the other problems, the opposite may be required.

5.4. Heat-source systems

In this part, we demonstrate the capabilities of the GEFEST frame-
work as a tool for dealing with already prepared datasets. Note that
the corresponding dataset for the generative design field can be hardly
found in open access. Moreover, researchers usually investigate their
own specific problems and therefore conventional benchmarks are
scarce. Here, we considered an open dataset from the related field that
is engaged in the heat-source systems investigation (Chen et al., 2021a).

Heat-source systems are part of an electronic microdevice (micro-
or nanometers-sized) that poses a source of heat and therefore temper-
ature field. The control over the temperature distribution within the
microdevice (usually called heat management) plays a significant role
in practical applications. For instance, real-time knowledge of tempera-
ture distribution allows avoiding technical failures, in particular caused
by exceeding the critical temperature, thereby lengthening the life of
the electronic device. However, the distribution across the entire device
is commonly unknown. But instead, we have the temperature of the
monitoring points at our disposal. Thus, the problem of temperature
field reconstruction within the microdevice often attracts the attention
of researchers. For more details, refer to the existing works (Chen et al.,
2020, 2021a).

The chosen dataset consists of 10 000 examples, each representing
two images. We demonstrate one instance in Fig. 22. The left image
provides the selected heat-source system inside the electronic microde-
vice. In this dataset, heat-sources are divided into three types according
to their shape (circle, rectangle and capsule). Their number remains
constant and equals 10, aside from the rare cases when it is reduced
by one. Also, each source generates heat evenly, that is, the value is
the same within the component. The right image is a temperature field
produced by the given combination of heat-sources. Note that adiabatic
conditions are applied to the boundaries of the device, except for one

13

Engineering Applications of Artificial Intelligence 119 (2023) 105715

point, in which the heat sink is located. The temperature of the latter
is a constant quantity equal to 298 K.

In most existing works, authors examined the reconstruction of the
temperature field using a set of heat-sources (Sun et al., 2022; Chen
et al., 2020, 2021b). However, we formulated another problem more
specific to the generative design. Our goal is the production of a heat-
source system that insures a minimum average temperature within the
device. Thus, the target variable had the following form:

€]

where M, N — the number of grid points, 7;; — the temperature at a
certain point. It is worth noting that in this experiment the optimization
problem was considered in terms of minimization. As a baseline solu-
tion, we chose an example from the dataset with the minimum target
value.

For the solution to the mentioned problem, we selected the follow-
ing GEFEST tools:

+ Sampler: deep learning (Generative Neural Network),
+ Estimator: deep learning (Convolutional Neural Network),
» Optimizer: -.

Data-driven methods were chosen because we limited ourselves to the
dataset only in this case. More precisely, the data generators (that
produce new heat-sources) and the physics simulators (that accurately
estimate the temperature field for new objects) were left beyond the
scope of the described experiment. Thus, the constructed toolkit (GNN
+ CNN) is completely based on deep learning models. Since in the
toolkit the optimizer is absent, Algorithm 2 was run in random search
manner. Nevertheless, the deep learning based toolkit can be expanded
by including a certain optimizer, but this option will be discussed later.

As in the previous section, the Adversarial Auto Encoder was se-
lected as a deep learning sampler. We trained this model on images of
the heat components without taking into account its temperature field.
The deep learning estimator learned to approximate the average tem-
perature within the device from the image of heat-sources. Some details
are presented in Appendix B.3. Note that the number of iterations for
Algorithm 2 was set to 10 000.

Before proceeding to the results of the generative design, it is
necessary to compare the existing samples and the samples created by
the deep learning model, presented in Fig. 23. As can be observed, the
generative model has acquired the ability to generalize. In other words,
in addition to existing objects, the deep learning sampler generates
objects that were not in the original dataset. Consequently, the number
of the heat-sources can vary. Such a generalization may produce new
unseen samples, which possess a significant value in the generative
design.

The results of the generative design are presented in Figs. 24 and 25.
As can be seen from the comparison between the minimum tempera-
ture in the dataset and the minimum value obtained during generative
design, we found the configuration of heat-sources reduced the average
temperature by 25 degrees. This advantageous configuration is depicted
in Fig. 25. Note that the found object was not present in the original
dataset.

5.5. Oil field planning

In this part, we consider the problem of the optimal location of
wells and roads in an oil field. The location of wells is the most
important stage of field development. So, here we aim to maximize the
production of the field. In modern works (Minton, 2012; Tukur et al.,
2019; Jesmani et al., 2020) real limitations in the development of fields
are not considered. More precisely, it does not pay attention to various
geographical objects (lakes, swamps, or rivers) that make it difficult to
build wells and roads. In such a way we consider a more general and
realistic formulation of the problem. Our optimization task is to find

N.O. Starodubcev, N.O. Nikitin, E.A. Andronova et al.

Deep learning sampler

Engineering Applications of Artificial Intelligence 119 (2023) 105715

Standard sampler

DL+COMSOL+GA GSS+COMSOL+GA

74 o

Fig. 21. The best objects found by two toolkits in three runs.

the optimal location of wells and roads taking into account inaccessible
areas that represent geographical objects. Thus, the joint optimization
of wells and roads is being considered in the presence of a set of areas
that either prohibit the construction of roads and wells or allow it to
be done with a significant penalty. An example of a field with a road,
an inaccessible area, and three wells is shown in Fig. 26.

The main goal of this study is to illustrate how to apply the GEFEST
framework only to a subproblem. In other words, GEFEST should solve
one part of the whole task, and another tool should solve the rest. For
this purpose, we used a cooperative algorithm that can be divided into
two parts:

+ an algorithm for optimizing the location of wells considering
roads and inaccessible areas as fixed;

+ an algorithm for optimizing roads considering the location of
wells and inaccessible areas as fixed.

As the first algorithm, various approaches developed on the basis of the
GA and PSO algorithms were used. At this stage, the basic algorithms
have been modified to consider the structures of wells and deposits
and also to take into account inaccessible points and roads during
optimization. As the second one, the GEFEST was used. For both parts
of the joint algorithm, special objective functions were used. More
precisely, these functions have the following form:

1. When optimizing the location of wells, the N PV function is used
as the target function, which reflects the economic benefit from
the developed field (Minton, 2012):

T
NPV = Z
=1

where

CF,

Txry _ Ceavex _
r

road X €dist>

14

LW
(e

Sl A 4
N/

Fig. 20. Several objects created using deep learning and the standard sampler for the microfluidic generative design problem. An adversarial autoencoder was used as a deep
learning sampler.

« r is the percentage of profit or discount rate;

T is the number of periods;

CF, is profit in the period 7, which is equal to the difference
between revenue and expenses in this period. The costs of
operating the well are constant, and the profit depends on
the volume of oil that was produced in a given period of
time in accordance with the physics-based simulator;
ceareX s the cost of well development work. This value
takes into account the costs of well construction at the
field. The cost depends on the length and gradient of the
well;

Froad 1S the coefficient of the cost of one road cell;

e4is: 1S total distance from wells to road.

A mathematical model was used as a geosimulator that uni-
formly pumps oil based on only a part of the oil in a certain
volume. This model was used for calculating CF,. The synthetic
deposit SPE2' was used as test data.

2. A function linearly dependent on the length of the necessary
roads is considered as an objective function for road optimiza-
tion:

NPVraad = Froad X (lenraad + edisr)’
where len,,,, is the length of the roads built;

The cooperative approach to the optimization of wells and roads in the
field consists of the periodic exchange of information between the well
optimization algorithm and the road optimization algorithm with the
transfer of information about the current optimal locations.

Take a closer look at using the GEFEST framework to solve the
problem described in this paragraph. Besides the optimization problem
mentioned above, this tool was used for the generation of inaccessible
areas. In terms of GEFEST, encoding roads are opened-form polygons
with fixed beginnings and ends, inaccessible areas are closed-form
polygons. For the optimization problem, we configured the GEFEST
toolkit based on the following tools:

» Sampler: standard approach (GEFEST Standard Sampler),
+ Estimator: synthetic approach (N PV,,,, function),
» Optimizer: biologically-inspired method (Genetic Algorithm).

1 https://www.spe.org/web/csp/datasets/set02.htm#case2a

https://www.spe.org/web/csp/datasets/set02.htm#case2a

N.O. Starodubcev, N.O. Nikitin, E.A. Andronova et al.

1.0

0.2

0.0

(a) Heat components in the form of
cirlcle, rectangle and capsule.
Monitoring points shown as m

Engineering Applications of Artificial Intelligence 119 (2023) 105715

385
375
365
355
345
335
325

amjeraduay,

315
305
295

(b) Temperature field generated by the heat
components system.

Fig. 22. One example from the heat-sources dataset. Heat components (a) and corresponding temperature field (b).

Deep learning samples

mn" W

Fig. 23. Visualization of several existing samples from the dataset and samples
generated by the deep learning model.

Existed samples

n

M 330 e

- - .

g !\\ baseline, 323 K
= .

g 320 = .

] L

E‘ 310 .

1 -
= =
300- 298 K\:\.

Fig. 24. The average temperature of the best samples found during generative design.

For the generation of inaccessible areas, we used the GEFEST Standard
Sampler.

In Fig. 27 an example of the location of objects on the surface of the
deposit is shown. In this case, a field with five wells and an inaccessible
area filling 2% of the field surface is presented. The blue line shows the
road, the yellow dots represent the optimized location of five wells on
the surface of the field and the red dots represent 8 inaccessible points
where it is impossible to build wells and roads.

Investigating this task, no developed or published solutions were
found. To evaluate the effectiveness of the realized joint algorithm for
wells and roads optimization, taking into account inaccessible areas, a
naive approach was chosen, which is based on the following steps:

1. Optimization of the location of wells without considering roads.
2. Building a road through optimized well locations without opti-
mizing roads.

15

Temperature - 298K Temperature - 323K

(a) GEFEST solution. The best found
sample providing the minimum
average temperature. It was not
presented in the original dataset.

(b) Baseline. Object with the minimal
average temperature in the original
dataset.

Fig. 25. Visual representation of the (a) GEFEST solution and (b) baseline solution for
heat-sources.

— T

Fig. 26. Example of a real field model (wells are colored in red, the road in brown,
and the lake in blue).

The presented algorithm was used as a baseline for evaluating the
effectiveness of the joint approach. Unlike the cooperative approach,
this naive one does not imply optimization of the road. To compare
the baseline and our approach, the following metric was built:

NPV,

Jjoint —

NPV — NPVmad ~ T'road X €dists

This function allows for taking into account the economic benefits of
developed wells and the costs of necessary roads.

In Tables 6 and 7 results for different sizes of the inaccessible area
and various road cost coefficients are presented. These tables show the
values of the coefficient K:

NPVcoopemtiue
< - 1) * 100%.

Jjoint
NPV
As can be seen from the presented results, the cooperative approach is
more effective than the naive approach in all cases.

For convergence of the joint algorithm, 200 iterations of the al-
gorithm were used to optimize the location of roads. An example of
an averaged convergence curve is shown in Fig. 28. We presented the

4

N.O. Starodubcev, N.O. Nikitin, E.A. Andronova et al.

20.0 1 @ Starting point of the road -
' @ Ending point of the road
+ Invalid point
17.5 4 Location of wells
15.01
Q
o
L
3125
™
o
Q
$ 10.04
[
s
bS]
v 7519
x
©
>
5.0
2.51
0.0 1
0.0 25 5.0 7.5 10.0 12.5 15.0 17.5 20.0

x-axis of the deposit surface

Fig. 27. An example of the location of roads, oil wells, and inaccessible points on the
surface of the field.

Table 6
Evaluation of the effectiveness of the cooperative and naive approaches depending on
the size of the inaccessible areas.

Number of wells Size of inaccessible areas

0% 2% 4% 6%

3 wells 4.13% 6.41% 7.35% 10.93%

5 wells 4.88% 5.16% 5.96% 8.77%

7 wells 4.56% 6.05% 6.31% 9.19%
Table 7

Evaluation of the effectiveness of the cooperative and naive approaches depending on
the road cost coefficient.

Number of wells Road cost coefficient

500 1000 3000 4000
3 wells 4.14% 6.41% 11.95% 18.09%
5 wells 2.77% 4.17% 7.19% 11.84%
7 wells 2.84% 4.96% 9.67% 13.91%
Learning curve for optimizing the location of roads
with considering and optimizing 5 wells
150000 5
—— Average NPV roads value for 5 runs
° Median NPV roads value for 5 runs
140000 + o
°
0
]
= 130000 1
>
@
e
3 120000
> =
z
110000«@ u \I‘ U
100000 4 U H U J U H
Coococoooocococoocoooo Qoo
w N M T N O™~ 0 000 A AN M ST N O™~ 0O O
A A H H M H A A H AN
r

Fig. 28. An example of the convergence curve of the objective function for roads when
optimizing the location of 5 wells.

dependency of N PV,,,, on the iteration number in the case of location
optimization of 5 wells with an inaccessible area occupying 2% of the
deposit.

So, the developed cooperative approach with the GEFEST frame-
work proved to be consistently more effective than the naive approach.

16

Engineering Applications of Artificial Intelligence 119 (2023) 105715

Also with the growth of the road price, the efficiency (K-coefficient) of
the cooperative algorithm increases compared to the naive algorithm.

6. Discussions

In the experimental studies, we demonstrated the flexibility of the
GEFEST approach, which can be applied to various practical problems.
In addition, we revealed the benefits of some tools that can be valuable
in addressing unexamined real-world problems. Moreover, we showed
the opportunity of GEFEST to generate novel objects when the problem
has a limited dataset.

In the coastal engineering problem, the combination of a physics-
based model and convolutional neural network in a single approach led
to the results surpassing those provided by standard methods. Further-
more, we obtained a hard-to-reach extremum, that is, the structure of
polygons covering all targets by increasing the exploration rate (extra
sampling procedure). Such techniques can be easily applied to different
problems taking into account that the deep learning estimator should
be sufficiently trained.

In the microfluidic problem, we showed the contribution of the deep
learning sampler. The latter allows the creation of higher-performance
objects at the initial steps of the generative design. In addition, the
generative network can produce not merely regular samples but also
diverse and unusual objects in contrast to the standard sampler. It is
worth noting that these properties depend on the inductive bias of the
utilized generative neural network. More precisely, it may be the case
that a generative model creates samples analogous to those contained in
the training set, i.e. reproducing them without any distinguishing fea-
tures. The choice of a particular model is generally conditioned by the
specific problem under consideration. Anyway, despite the appearance
of the samples, the inference of the deep learning sampler is faster than
for the standard, as was shown earlier. Thus, the deep learning sampler
is preferable, if a large set of objects is needed.

In the heat-source systems problem, we demonstrated that the
generative design can also be performed using only a prepared dataset.
In this case, we used Algorithm 2 in random search manner, that is,
without the optimization step. However, another option exists: it is
possible to integrate a gradient-based optimizer in the toolkit. In this
case, the gradient of the deep learning estimator is calculated with
respect to the input object. Then, the input updates by gradient descent
step. Nevertheless, such a procedure can only be applied to neural
networks well-trained on huge datasets.

Finally, in the oil field design problem, we illustrated that our
framework can be implemented as part of the solution to the whole
problem. Considering such a situation can be useful for users who want
to apply our framework only to a specific subproblem of their task.

6.1. Limitations

The primary limitation of our framework is the impossibility of
its application for three-dimensional objects that are of the greatest
interest in practical fields.

Furthermore, the GEFEST standard sampler is only suitable for the
production of arbitrary polygonal samples. More precisely, user-defined
shapes (e.g. circles, rectangles, ellipses) are infeasible. In such cases, it
is necessary to utilize other generators or train generative networks on
prepared datasets.

Finally, in our approach we considered physical objects neglect-
ing their internal structure. These limitations can be crucial in some
generative design problems.

6.2. Future work

Future work focuses on extensions of our framework to three-
dimensional problems and other types of physical objects. Further,
it would be useful to consider dimensionality reduction methods be-
cause of the redundant dimension of polygon structure images. Finally,
it is essential to explore gradient-based algorithms as a part of the
generative design concept.

N.O. Starodubcev, N.O. Nikitin, E.A. Andronova et al.

Table 8

Engineering Applications of Artificial Intelligence 119 (2023) 105715

The summary of all experimental studies, including quantitative results. In the table, the arrow 1 (]) reflects the larger (smaller) the better

rule. *SOTA means state-of-the-art approach or result. **result or approach was not presented earlier and we take our own baseline. ***

we

calculate this value as the average among values of Tables 7 and 6. In square brackets, we indicated the improvements achieved by GEFEST
in percentages. In parentheses, we note the specific approach by which the value was achieved. The following abbreviations are used: GSS —
GEFEST Standard Sampler; GA — Genetic Algorithm; GNN — Generative Neural Network; CNN — Convolutional Neural Network.

Applied field Coastal engineering (Section 5.2)

Microfluidics (Section 5.3)

Heat Sources (Section 5.4) Oil field (Section 5.5)

Values Metric

Wave heights |, m

Relative velocity 1, (2)

Average temperature |, K, (3) NPV coefficient 1, %, (4)

SOTA* 4.59 (Nikitin et al., 2020)
(GSS+SWAN+SPEA2)
4.05 [+12%]

(GSS+SWAN/CNN+SPEA2)

(GA)

GEFEST 0.361 [+9%]

0.329 (Grigorev et al., 2022)

(GSS + COMSOL + GA)

323 0

(**) ()

298 [+8%] +7.39%**
(GNN + CNN) (GSS + GA)

7. Conclusions

In this paper, we propose a novel open-source framework for the
generative design of two-dimensional physical objects. The developed
approach is based on three general principles: sampling, estimation,
and optimization. These elements constitute the core of the solution
to every generative design problem that can be applied to various
real-world tasks.

We demonstrated the relevance and flexibility of our approach by
addressing different applied tasks from ocean engineering, microflu-
idics, heat-source systems, and oil field planning. Furthermore, it was
shown that the modification of the general approach ensures superior
performance over baselines. In Table 8 we present the final quantity
comparison between the GEFEST and SOTA/baseline results. As it can
be seen GEFEST gives 12% improvements in the coastal engineering
problem; 9% in microfluidics; 8% in heat-sources and 7% in oil field
planning.

Finally, we revealed the benefits of some GEFEST tools inspired
by state-of-the-art solutions. For instance, in the coastal engineering
problem, the deep learning estimator can be combined with the physics-
based simulator to skip less important objects; in the microfluidic
problem, the deep learning sampler can create more diverse and higher-
performance objects than the standard method. And, as we believe,
these findings can provide objects with refined performance in other
generative design problems.

CRediT authorship contribution statement

Nikita O. Starodubcev: Conceptualization, Methodology, Software,
Writing — original draft. Nikolay O. Nikitin: Software, Visualization,
Writing — review & editing. Elizaveta A. Andronova: Conceptualiza-
tion, Methodology, Writing — review & editing. Konstantin G. Gavaza:
Data analysis. Denis O. Sidorenko: Software, Visualization. Anna V.
Kalyuzhnaya: Supervision, Project administration.

Declaration of competing interest

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing inter-
ests: This research is financially supported by The Russian Scientific
Foundation, Agreement #22-71-00094.

Code and data availability

The software implementation of all the described methods and
algorithms is available as a part of the GEFEST framework in the open
repository https://github.com/ITMO-NSS-team/GEFEST. The code and
data for experimental studies are available at https://github.com/
ITMO-NSS-team/GEFEST-paper-experiments.

Acknowledgment

This research is financially supported by The Russian Scientific
Foundation, Agreement #22-71-00094.

17

ATFo

reference point

Hypervolume

Fig. A.29. Hypervolume definition. As the algorithm converges, the Pareto front tends
to the lower left corner, increasing the hypervolume.

Appendix A. Multi-objective optimization problem

Here basic concepts of a multi-objective optimization problem with
constraints are discussed. Moreover, some details about the SPEA2
algorithm are presented.

A.1. Basic concepts

We consider a multi-objective optimization problem with constrai-
nts, which can be formulated as follows:
in F
mip £
st g(x) =0 (A1)
s(x) >1

where F : X - R™, m > 2 — is a multi-criteria function; g(x) = 0, g(x) >
1 — are constraints that are required to be satisfied. Usually, there is no
solution that minimizes all criteria of F simultaneously. In such cases,
the Pareto front is considered. This is a set of all Pareto efficient points
in the functional space, more formally (Zitzler et al., 2001):

Definition 1 (Pareto Front). Let F : R™ — R”" is a vector function with
a set of values Y = {y € R" : y = F(x),x € R™}. The Pareto front is a
setP(Y)={yeY:Vy #yeYy>y}.

In the definition sign “>" means Pareto domination.

Definition 2 (Pareto Domination). Let y!,y?> € R™, y! Pareto dominates
¥ (>) = Vi=1...my} 5y%and5|j=1...m:yj'.<y/2..

The main measure of convergence of a multi-objective optimization
algorithm is a hypervolume, which can be defined as the area between
the Pareto front and the reference point as shown in Fig. A.29. As the
algorithm converges, the Pareto front aspires to the left bottom corner
(in case of a minimization problem), thus hypervolume should increase.

https://github.com/ITMO-NSS-team/GEFEST
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments
https://github.com/ITMO-NSS-team/GEFEST-paper-experiments

N.O. Starodubcev, N.O. Nikitin, E.A. Andronova et al.

A.2. SPEA2 dlgorithm

The Strength Pareto Evolutionary Algorithm 2 (SPEA2) is an evolu-
tionary-based algorithm for approximating the Pareto front. In SPEA2
two types of populations are considered: the archive A and the popula-
tion P. The archive contains individuals not dominated by any other. In
other words, an archive is necessary to preserve elitism. The population
P allows bringing new individuals via genetic transformation (muta-
tion, selection, crossover). A core of the SPEA2 is a fitness calculation

based on raw and density functions:
F(I) = R(I) + D), (A.2)

where I — is the individual from the population, R,D — are the raw
and density functions, which are defined as follows:

R(H= Y [I'>1]-8U",

I'eAuP (A.3)
SUN=#{I|I1€AUP:I'>1)}.
1
D) =)
) d¥ +2 A.4)

In (A.3) S(I') is the strength, which defines the number of individuals
dominated by I’, in (A.4) d’; is the distance from I-th individual to
its k-th neighbor in the functional space. For non-dominated solutions,
R(I) = 0, whereas the density function is necessary to increase the
diversity of the population.

The main loop of SPEA2 is shown in Algorithm 4, (Zitzler et al.,
2004).

Algorithm 4 SPEA2

Require: M,N,T 1 Population, archive size and maximum number
of steps
Ensure: A

1: Random initialization

> Archive population

2: Fitness calculation > Assigning fitness to each individual from
PUA

3: Environmental selection
solutions

> Filling the archive with not dominated

4: Termination
: Mating selection
6: Variation

> If stopping criterion is satisfied then return A

> Perform selection operator on PU A

> Apply crossover and mutation operators to the
selected population

9]

Appendix B. Deep learning models

Here architectures and training processes of the deep learning mod-
els used in the experimental studies are discussed.

B.1. Coastal engineering estimator

The deep learning estimator takes the image of the breakwaters as
input corresponding to Fig. 5. The estimator consists of three convolu-
tional layers with L2 regularization, one GlobalMaxPooling layer, and
two fully-connected layers. The total number of parameters is equal to
372 449.

For the evaluation of the convolutional neural network, we used
a validation set created outside the stage of generative design. The
results of the deep learning estimator approximation of wave heights
are shown in Table B.9 and Fig. B.30.

As can be seen from Fig. B.30, some predictions of the deep model
are prone to be overestimated. However, in our problem high accuracy
of prediction is not required.

18

Engineering Applications of Artificial Intelligence 119 (2023) 105715

Table B.9
Losses of the deep learning estimator and sizes for training, testing, and validation
datasets.

Dataset MAE MAPE Size

train 0.07 1.34 705

test 0.08 1.42 79

validation 0.20 3.69 2376
Table B.10

Frechet Inception Distance for different deep learning samplers in the microfluidic
generative design problem. We used 10 000 samples to evaluate the FID.

Adversarial Variational Normalizing Variational
Auto Encoder Auto Encoder flows GAN
FID 277 308 305 407

B.2. Microfluidic deep learning sampler

To train the deep learning sampler, we collected 100 000 examples
using a standard GEFEST sampler, some of which are shown in Fig. 20.
Produced objects pose right-form polygons without self-intersection,
intersection with other structures, and out-of-bound parts. The number
of polygons within the domain varied from 1 to 7. It is worth noting
that the GEFEST standard sampler has no restrictions on the number of
polygons. However, in the case of a large number of the latter, such a
straightforward procedure will be computationally expensive.

On the gathered dataset we trained and compared several deep
generative models: Variational Auto Encoder (Kingma and Welling,
2013), Adversarial Auto Encoder (Makhzani et al., 2015), Variational
Normalizing flows (Rezende and Mohamed, 2015) and Variational
Generative Adversarial Network (Larsen et al., 2016). In the inference
(or sample creation) mode all mentioned deep learning samplers are
based on the architecture (Fig. 6). For these models, we constructed
the same backbone: six convolutional layers with batch normalization
and ReLU activation with the exception of the last one where the tanh
function was used. The total number of parameters was generally about
4M, the accurate value depends on the specific model.

The key criteria in the selection of a generative neural network
are diversity, quality of samples, and speed of inference. The latter
turned out to be equal for outlined models due to an identical sam-
pling procedure (Fig. 6). The diversity and quality of samples can be
estimated using Frechet Inception Distance. The results are presented
in Table B.10. It is evident that the best performance was shown by
the Adversarial Auto Encoder. The AAE-produced samples are demon-
strated in Fig. 17. Based on calculated FID values, we decided on AAE
as a deep learning sampler in the microfluidic problem. Therefore, we
give a more detailed description of this method below

Adversarial Auto Encoder (Makhzani et al., 2015) is a generative
model that combines two of the most well-known generative models:
GAN (Goodfellow et al., 2014) and VAE (Kingma and Welling, 2013).
The main idea is to replace the regularization term in the VAE,
i.e. Kullback-Leibler divergence between the posterior distribution,
p(z|x) (where z — the latent variable and x — the sample from the
dataset), and prior distribution, p(z) (this is usually taken as a normal
distribution), to adversarial loss from GAN. In simple words, instead
of KL-divergence, we have a discriminator that should distinguish the
real latent variable, z ~ p(z), and latent variable from the posterior,
z ~ p(z|x). This modification allows choosing more diverse types of
posterior distributions than in the classical VAE.

B.3. Deep learning estimator for heat-source systems

We compared several deep learning models that predict the average
temperature in a device. The results are presented in Table B.11.
Despite the fact that the DenseNet demonstrates the best performance
in terms of MAE loss, we decided to choose the EfficientNet model (Tan

N.O. Starodubcev, N.O. Nikitin, E.A. Andronova et al.

Engineering Applications of Artificial Intelligence 119 (2023) 105715

Test

—— 5 percent error

5.6 5.8 6.0

Target wave heights

6.2

Validation

Train
6.501 —— 5 percent error
2
56.25
[
<
9 6.00
g
5 5.75
g
5 5.50
9
a
5.25
5.4 5.6 5.8 6.0 6.2
Target wave heights
6.504 —— 5 percent error
n
£ 6.251
2
£6.00
g
g 5.751
8§ 5.501
S
g 5.25
o
5.00

5.2 5.4

56

58 60 62

Target wave heights

Fig. B.30. Correlation plots between predicted wave heights and simulated wave heights for training, test, and validation samples.

400+
3901
380+
370+
360+
350
340+
330+
320+

Temperature, K

Boxplot of the real dataset Boxplot of the predicted values

Fig. B.31. Boxplots for the dataset values and predictions of EfficientNetBO.

Table B.11

Losses of various deep learning models in the problem of heat sources. We divided the
initial dataset into a train (80%) and test (20%) datasets. The number of the training
epoch was equal to 10.

Model Train MAE Test MAE N. params, M.
ResNet18 5.09 4.70 11.8

EffNetBO 5.03 4.63 7.2

VGG16 5.07 4.54 138
MobileNetV2 4.85 4.72 3.4

DenseNet 4.58 4.37 25.6

and Le, 2019) as a deep learning estimator. The main reason is that it
has a small number of parameters and provides fast inference mode.

To compare statistics between the real dataset and predictions of
the EfficientNet model, we created two boxplots (see Fig. B.31).

References

Bendsge, M.P., 1989. Optimal shape design as a material distribution problem. Struct.
Optim. 1 (4), 193-202.

Bendsge, M.P., Kikuchi, N., 1988. Generating optimal topologies in structural design
using a homogenization method. Comput. Methods Appl. Mech. Engrg. 71 (2),
197-224.

Buonamici, F., Carfagni, M., Furferi, R., Volpe, Y., Governi, L., 2020. Generative design:
an explorative study. Comput.-Aided Des. Appl. 18 (1), 144-155.

19

Canny, J., 1986. A computational approach to edge detection. IEEE Trans. Pattern Anal.
Mach. Intell. (6), 679-698.

Chen, X., Chen, X., Zhou, W., Zhang, J., Yao, W., 2020. The heat source layout
optimization using deep learning surrogate modeling. Struct. Multidiscip. Optim.
62 (6), 3127-3148.

Chen, X., Gong, Z., Zhao, X., Zhou, W., Yao, W., 2021a. A machine learning modelling
benchmark for temperature field reconstruction of heat-source systems. arXiv
preprint arXiv:2108.08298.

Chen, X., Zhao, X., Gong, Z., Zhang, J., Zhou, W., Chen, X., Yao, W., 2021b. A deep
neural network surrogate modeling benchmark for temperature field prediction of
heat source layout. Sci. China Phys. Mech. Astron. 64 (11), 1-30.

Cheng, S., Chen, J., Qin, Q., Shi, Y., 2018. Population diversity of particle swarm
optimisation algorithms for solving multimodal optimisation problems. Int. J.
Comput. Sci. Eng. 17 (1), 69-79.

Danhaive, R., Mueller, C.T., 2021. Design subspace learning: Structural design space
exploration using performance-conditioned generative modeling. Autom. Constr.
127, 103664.

Deshpande, A., Patavardhan, P., Estrela, V.V., Razmjooy, N., 2020. Deep learning as an
alternative to super-resolution imaging in UAV systems. Imaging Sens. Unmanned
Aircr. Syst. 2, 9.

Djordjevic, V., Stojanovic, V., Tao, H., Song, X., He, S., Gao, W., 2022. Data-driven
control of hydraulic servo actuator based on adaptive dynamic programming.
Discrete Contin. Dyn. Syst. Ser. S 15 (7), 1633.

Elchahal, G., Younes, R., Lafon, P., 2013. Optimization of coastal structures: Application
on detached breakwaters in ports. Ocean Eng. 63, 35-43.

Gillies, S., et al., 2007. Shapely: manipulation and analysis of geometric objects. URL
https://github.com/shapely/shapely.

Gonzélez-Gorbefia, E., Qassim, R.Y., Rosman, P.C., 2016. Optimisation of hydrokinetic
turbine array layouts via surrogate modelling. Renew. Energy 93, 45-57.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y., 2014. Generative adversarial nets. Adv. Neural Inf.
Process. Syst. 27.

Grigorev, G.V., Nikitin, N.O., Hvatov, A., Kalyuzhnaya, A.V., Lebedev, A.V., Wang, X.,
Qian, X., Maksimov, G.V., Lin, L., 2022. Single red blood cell hydrodynamic traps
via the generative design. Micromachines 13 (3), 367.

Harding, J., 2016. Dimensionality reduction for parametric design exploration. Adv.
Archit. Geom. 274-286.

Hu, A., Razmjooy, N., 2021. Brain tumor diagnosis based on metaheuristics and deep
learning. Int. J. Imaging Syst. Technol. 31 (2), 657-669.

James, S.C., Zhang, Y., O’'Donncha, F., 2018. A machine learning framework to forecast
wave conditions. Coast. Eng. 137, 1-10.

Jebara, T., 2012. Machine Learning: Discriminative and Generative. vol. 755, Springer
Science & Business Media.

Jesmani, M., Jafarpour, B., Bellout, M.C., Foss, B., 2020. A reduced random sampling
strategy for fast robust well placement optimization. J. Pet. Sci. Eng. 184, 106414.

http://refhub.elsevier.com/S0952-1976(22)00705-9/sb1
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb1
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb1
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb2
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb2
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb2
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb2
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb2
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb3
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb3
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb3
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb4
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb4
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb4
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb5
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb5
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb5
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb5
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb5
http://arxiv.org/abs/2108.08298
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb7
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb7
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb7
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb7
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb7
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb8
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb8
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb8
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb8
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb8
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb9
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb9
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb9
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb9
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb9
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb10
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb10
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb10
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb10
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb10
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb11
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb11
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb11
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb11
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb11
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb12
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb12
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb12
https://github.com/shapely/shapely
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb14
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb14
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb14
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb15
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb15
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb15
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb15
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb15
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb16
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb16
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb16
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb16
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb16
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb17
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb17
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb17
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb18
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb18
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb18
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb19
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb19
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb19
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb20
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb20
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb20
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb21
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb21
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb21

N.O. Starodubcev, N.O. Nikitin, E.A. Andronova et al.

Kallioras, N.A., Lagaros, N.D., 2020. DzAIN: Deep learning based generative design.
Procedia Manuf. 44, 591-598.

Khan, A., Sohail, A., Zahoora, U., Qureshi, A.S., 2020. A survey of the recent
architectures of deep convolutional neural networks. Artif. Intell. Rev. 53 (8),
5455-5516.

Kingma, D.P., Welling, M., 2013. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Larsen, A.B.L., Spnderby, S.K., Larochelle, H., Winther, O., 2016. Autoencoding beyond
pixels using a learned similarity metric. In: International Conference on Machine
Learning. PMLR, pp. 1558-1566.

Liu, X., Zhao, W., Wan, D., 2022. Multi-fidelity Co-Kriging surrogate model for ship
hull form optimization. Ocean Eng. 243, 110239.

Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B., 2015. Adversarial
autoencoders. arXiv preprint arXiv:1511.05644.

Man, Y., Kucukal, E., An, R., Watson, Q.D., Bosch, J., Zimmerman, P.A., Lit-
tle, J.A., Gurkan, U.A., 2020. Microfluidic assessment of red blood cell mediated
microvascular occlusion. Lab. Chip 20 (12), 2086-2099.

Minton, J., 2012. A comparison of common methods for optimal well placement.
Research rep., University of Auckland.

Mukkavaara, J., Sandberg, M., 2020. Architectural design exploration using generative
design: framework development and case study of a residential block. Buildings 10
(11), 201.

Ng, A., Jordan, M., 2001. On discriminative vs. generative classifiers: A comparison of
logistic regression and naive bayes. Adv. Neural Inf. Process. Syst. 14.

Nikitin, N.O., Hvatov, A., Polonskaia, I.S., Kalyuzhnaya, A.V., Grigorev, G.V., Wang, X.,
Qian, X., 2021. Generative design of microfluidic channel geometry using evolu-
tionary approach. In: Proceedings of the Genetic and Evolutionary Computation
Conference Companion. pp. 59-60.

Nikitin, N.O., Polonskaia, 1.S., Kalyuzhnaya, A.V., Boukhanovsky, A.V., 2020. The multi-
objective optimisation of breakwaters using evolutionary approach. arXiv preprint
arXiv:2004.03010.

Oh, S., Jung, Y., Kim, S., Lee, I., Kang, N., 2019. Deep generative design: Integration
of topology optimization and generative models. J. Mech. Des. 141 (11).

Palar, P.S., Liem, R.P., Zuhal, L.R., Shimoyama, K., 2019. On the use of surrogate
models in engineering design optimization and exploration: The key issues. In:
Proceedings of the Genetic and Evolutionary Computation Conference Companion.
pp. 1592-1602.

Palmer, T., Williams, P.D., 2008. Introduction. Stochastic physics and climate
modelling.

Qian, C., Tan, R.K., Ye, W., 2022. An adaptive artificial neural network-based generative
design method for layout designs. Int. J. Heat Mass Transfer 184, 122313.

Ramezani, M., Bahmanyar, D., Razmjooy, N., 2021. A new improved model of marine
predator algorithm for optimization problems. Arab. J. Sci. Eng. 46 (9), 8803-8826.

Rezende, D., Mohamed, S., 2015. Variational inference with normalizing flows. In:
International Conference on Machine Learning. PMLR, pp. 1530-1538.

Shea, K., Aish, R., Gourtovaia, M., 2005. Towards integrated performance-driven
generative design tools. Autom. Constr. 14 (2), 253-264.

Shen, Q., Vahdatikhaki, F., Voordijk, H., van der Gucht, J., van der Meer, L., 2022.
Metamodel-based generative design of wind turbine foundations. Autom. Constr.
138, 104233.

Singh, V., Gu, N., 2012. Towards an integrated generative design framework. Des. Stud.
33 (2), 185-207.

Song, S., Jin, H., Yang, Q., 2021. Performance analysis of different operators in
genetic algorithm for solving continuous and discrete optimization problems. In:
Filipe, J., Smialek, M., Brodsky, A., Hammoudi, S. (Eds.), Proceedings of the
23rd International Conference on Enterprise Information Systems, ICEIS 2021,
Online Streaming, April 26-28, 2021, Volume 1. SCITEPRESS, pp. 536-547. http:
//dx.doi.org/10.5220,/0010494005360547.

20

Engineering Applications of Artificial Intelligence 119 (2023) 105715

Steinbuch, R., 2010. Successful application of evolutionary algorithms in engineering
design. J. Bionic Eng. 7, S199-S211.

Sun, J., Zheng, X., Yao, W., Zhang, X., Zhou, W., 2022. Heat source layout optimization
using automatic deep learning surrogate model and multimodal neighborhood
search algorithm. arXiv preprint arXiv:2205.07812.

Tan, M., Le, Q., 2019. Efficientnet: Rethinking model scaling for convolutional neural
networks. In: International Conference on Machine Learning. PMLR, pp. 6105-6114.

Tan, R.K., Zhang, N.L., Ye, W., 2020. A deep learning-based method for the design of
microstructural materials. Struct. Multidiscip. Optim. 61 (4), 1417-1438.

Tian, X., Sun, X., Liu, G., Deng, W., Wang, H., Li, Z., Li, D., 2022. Optimization design of
the jacket support structure for offshore wind turbine using topology optimization
method. Ocean Eng. 243, 110084.

Tian, Q., Wu, Y., Ren, X., Razmjooy, N., 2021. A new optimized sequential method
for lung tumor diagnosis based on deep learning and converged search and rescue
algorithm. Biomed. Signal Process. Control 68, 102761.

Tukur, A.D., Nzerem, P., Nsan, N., Okafor, L.S., Gimba, A., Ogolo, O., Oluwaseun, A.,
Andrew, O., 2019. Well placement optimization using simulated annealing and
genetic algorithm. In: SPE Nigeria Annual International Conference and Exhibition.
OnePetro.

Tyflopoulos, E., Tollnes, F.D., Steinert, M., Olsen, A., et al., 2018. State of the art of
generative design and topology optimization and potential research needs. In: DS
91: Proceedings of NordDesign 2018, Linkoping, Sweden, 14th-17th August 2018.

Vajna, S., Clement, S., Jordan, A., Bercsey, T., 2005. The autogenetic design theory:
an evolutionary view of the design process. J. Eng. Des. 16 (4), 423-440.

Vlah, D., Zavbi, R., Vukaginovi¢, N., 2020. Evaluation of topology optimization and
generative design tools as support for conceptual design. In: Proceedings of the
Design Society: DESIGN Conference. 1, Cambridge University Press, pp. 451-460.

Xu, Y., Cai, Y., Sun, T., Tan, Q., Sun, J., Peng, J., et al., 2021a. Ecological preservation
based multi-objective optimization of coastal seawall engineering structures. J.
Clean. Prod. 296, 126515.

Xu, Z., Li, X., Stojanovic, V., 2021b. Exponential stability of nonlinear state-dependent
delayed impulsive systems with applications. Nonlinear Anal. Hybrid Syst. 42,
101088.

Xue, Y., Jiang, P., Neri, F., Liang, J., 2021a. A multi-objective evolutionary approach
based on graph-in-graph for neural architecture search of convolutional neural
networks. Int. J. Neural Syst. 31 (09), 2150035.

Xue, Y., Wang, Y., Liang, J., Slowik, A., 2021b. A self-adaptive mutation neural
architecture search algorithm based on blocks. IEEE Comput. Intell. Mag. 16 (3),
67-78.

Yin, Z., Razmjooy, N., 2020. PEMFC identification using deep learning developed by
improved deer hunting optimization algorithm. Int. J. Power Energy Syst. 40 (2),
189-203.

Zheng, H., Yuan, P.F., 2021. A generative architectural and urban design method
through artificial neural networks. Build. Environ. 205, 108178.

Zielinski, P.A., 1991. On the meaning of randomness in stochastic environmental
models. Water Resour. Res. 27 (7), 1607-1611.

Zitzler, E., Laumanns, M., Bleuler, S., 2004. A tutorial on evolutionary multiobjective
optimization. Metaheuristics Multiobjective Optimisat. 3-37.

Zitzler, E., Laumanns, M., Thiele, L., 2001. SPEA2: Improving the strength Pareto
evolutionary algorithm. TIK-Rep. 103.

Zou, A., Chuan, R., Qian, F., Zhang, W., Wang, Q., Zhao, C., 2022. Topology
optimization for a water-cooled heat sink in micro-electronics based on Pareto
frontier. Appl. Therm. Eng. 207, 118128.

http://refhub.elsevier.com/S0952-1976(22)00705-9/sb22
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb22
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb22
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb23
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb23
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb23
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb23
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb23
http://arxiv.org/abs/1312.6114
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb25
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb25
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb25
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb25
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb25
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb26
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb26
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb26
http://arxiv.org/abs/1511.05644
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb28
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb28
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb28
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb28
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb28
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb29
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb29
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb29
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb30
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb30
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb30
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb30
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb30
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb31
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb31
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb31
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb32
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb32
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb32
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb32
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb32
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb32
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb32
http://arxiv.org/abs/2004.03010
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb34
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb34
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb34
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb35
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb35
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb35
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb35
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb35
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb35
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb35
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb36
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb36
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb36
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb37
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb37
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb37
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb38
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb38
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb38
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb39
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb39
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb39
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb40
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb40
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb40
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb41
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb41
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb41
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb41
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb41
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb42
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb42
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb42
http://dx.doi.org/10.5220/0010494005360547
http://dx.doi.org/10.5220/0010494005360547
http://dx.doi.org/10.5220/0010494005360547
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb44
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb44
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb44
http://arxiv.org/abs/2205.07812
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb46
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb46
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb46
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb47
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb47
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb47
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb48
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb48
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb48
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb48
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb48
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb49
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb49
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb49
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb49
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb49
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb50
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb50
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb50
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb50
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb50
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb50
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb50
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb51
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb51
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb51
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb51
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb51
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb52
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb52
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb52
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb53
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb53
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb53
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb53
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb53
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb54
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb54
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb54
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb54
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb54
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb55
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb55
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb55
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb55
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb55
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb56
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb56
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb56
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb56
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb56
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb57
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb57
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb57
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb57
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb57
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb58
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb58
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb58
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb58
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb58
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb59
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb59
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb59
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb60
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb60
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb60
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb61
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb61
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb61
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb62
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb62
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb62
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb63
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb63
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb63
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb63
http://refhub.elsevier.com/S0952-1976(22)00705-9/sb63

	Generative design of physical objects using modular framework
	Introduction and problem definition
	Related works
	Definition of object distribution
	Modeling of conditional target distribution
	Solving optimization problem
	Generative design frameworks

	GEFEST approach for generative design
	Polygon encoding
	Toolkit constructing using GEFEST tools
	GEFEST standard sampler
	Deep learning estimators and samplers
	Evolutionary core

	Generative design

	Open-source software framework
	Domain
	Toolkit
	Design

	Experimental studies
	Synthetic cases
	Applicability of GEFEST
	Biasness of GEFEST
	Sensitivity to hyperparameters choice

	Coastal engineering
	Microfluidics
	Heat-source systems
	Oil field planning

	Discussions
	Limitations
	Future work

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Code and data availability
	Acknowledgment
	Appendix A. Multi-objective optimization problem
	Basic concepts
	SPEA2 algorithm

	Appendix B. Deep learning models
	Coastal engineering estimator
	Microfluidic deep learning sampler
	Deep learning estimator for heat-source systems

	References

