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ABSTRACT
Themodern machine learning methods allow one to obtain the data-
driven models in various ways. However, the more complex the
model is, the harder it is to interpret. In the paper, we describe the
algorithm for the mathematical equations discovery from the given
observations data. The algorithm combines genetic programming
with the sparse regression.

This algorithm allows obtaining different forms of the resulting
models. As an example, it could be used for governing analytical
equation discovery as well as for partial differential equations (PDE)
discovery.

The main idea is to collect a bag of the building blocks (it may
be simple functions or their derivatives of arbitrary order) and
consequently take them from the bag to create combinations, which
will represent terms of the final equation. The selected terms pass
to the evolutionary algorithm, which is used to evolve the selection.
The evolutionary steps are combined with the sparse regression to
pick only the significant terms. As a result, we obtain a short and
interpretable expression that describes the physical process that
lies beyond the data.

In the paper, two examples of the algorithm application are
described: the PDE discovery for the metocean processes and the
function discovery for the acoustics.
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1 INTRODUCTION
The modern machine learning methods utilize data-driven models
for various purposes. It could be sophisticated surrogate-assisted
models [6] as well as the complex model identification using ap-
proaches based on the evolutionary optimisation [2].

Nevertheless, the question of the interpretability of the models
arises in the applications. Generally, we follow the extensive defini-
tion of the model interpretation provided [3]. Unfortunately, the
complexity of the model and interpretability of it, in most cases,
require trade-off to obtain good quality and the understanding of
how the given model works [5].

Physics-based models could be the good examples of the inter-
pretable models [8]. However, physical laws are mostly obtained
manually by an expert in the field. We could try to derive them
automatically in the closed form of the function [11], ordinary
differential equation (ODE) , as well as the partial differential equa-
tions (PDE) [1, 10]. However, actual realizations require much pre-
liminary work, such as a library of possible terms collection for
symbolic regression [9].

In the paper, we try to extend the method of the PDE discovery
[4] that, in our opinion, allows us to combine the transparency of
the physical-based models and flexibility of genetic programming.
Moreover, the utility of the sparse regression makes the resulting
model form as concise as possible. The method is also similar to
the symbolic regression. However, genetic programming allows us
to build a flexible library of terms for regression.

2 THE ALGORITHM DESCRIPTION
The algorithm consists of three main elements: the building blocks,
which we will call tokens below, selection, the evolutionary step,
and the sparse regression step. We describe them consequently in
this section. The general workflow of the algorithm is presented in
Alg. 1.

2.1 The tokens selection
The tokens could be chosen arbitrary and do not have any restric-
tions on their nature. However, we stop on the applications of the
homogeneous (in terms of the origin) set of the tokens. It means
that we take only basic functions or only single derivative terms
for evolution.

As an example, it can be all derivatives of the field up to the
order 𝑘 . An example of the first derivative token is shown in Eq. 1.

𝑐 (𝑥, 1) = 𝜕𝑢

𝜕𝑥
(1)
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As seen token encodes the atomic expression. The form of the
expression, as we said above, could be chosen arbitrarily.

From the set of tokens 𝑇 , we compose the words of the length 𝑘 ,
which is the first hyperparameter of the algorithm. We assume that
every token in the word has the weighting coefficient and could be
replaced with another one without model corruption.

2.2 The evolutionary part
The main goal of the evolutionary part of the algorithm is the
detection of token combinations set (which can be denoted as
𝐶 = {𝑐𝑚 = 𝑡1 · 𝑡2 · ... · 𝑡𝑘 | 𝑡𝑖 ∈ 𝑇,𝑚 = 1, 𝑀}, where 𝑀 is the
maximum number of terms in the equation, and belongs to the
class of all possible token combination sets C), that is able to form
the nontrivial linear combination with the minimum absolute value.
This approach represents the task to detect structure of function or
equation, which can be viewed as the minimization of functional
|∑𝑁

𝑖=0 𝑎𝑖𝑐𝑖 | → 0 : ∃ 𝑗 : 𝑎 𝑗 ≠ 0, where 𝑐𝑖 take roles of the the
equation terms, and 𝑎𝑖 - weights of the terms.

2.3 The regression part
While the previously discussed evolutionary part of the algorithm
was developed to discover the best set of token combinations, which
will represent the desired structure of the model, the regression
methods are utilized to calculate the weights for these terms. Not
only the best but also some redundant token combinations may
be present in the best discovered set 𝐶 ′. Therefore, the task of set
filtering is also bestowed to the regression element of the algorithm.
The primary method that can perform these jobs is the sparse
(regularized) regression, performed with LASSO operator.

3 CONCLUSION
In the paper, we describe the algorithm for the physical-based
equations discovery. We want to outline the following properties
of it:

* It does not depend on the form of the equation: it could
be a polynomial, differential equation, and potentially the
other models. However, additional work for the adaptation
for each type of the equation is required;

* The genetic programming can be used to obtain an optimal
bag of the terms from the small set of the building blocks
and preliminarily defined mutation and crossover rules;

* The sparse regression step allows one to filter out the non-
descriptive terms that lead to a robustmodel. As an additional
advantage the resulting model has the short form of the
expression, which makes the interpretation process easier;

* PDE discovery implementation is noise stable even for multi-
dimensional data cases. The overall performance of the al-
gorithm implementation allows reproducing tempo-spatial
physic fields correctly.

The code and extended version of the article are publicity avail-
able at GitHub [7].
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Input: set of elementary tokens 𝑇
Parameters :𝑀 - number of token combinations in a single

individual; 𝑘 - number of elementary tokens
in a combination; 𝑛_𝑝𝑜𝑝 - number of
candidate solutions in the population;
evolutionary algorithm parameters: number
of epochs 𝑛𝑒𝑝𝑜𝑐ℎ𝑠 , mutation 𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 &
crossover rates 𝑟𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 , part of the
population, allowed for procreation 𝑎𝑝𝑟𝑜𝑐 ,
number of individuals, refrained from
mutation (elitism) 𝑎𝑒𝑙𝑖𝑡𝑒 ; sparse regression
parameter - sparsity constant _

Result: set of token combinations 𝐶𝑏𝑒𝑠𝑡 (if required, with
accompanying weights), representing best
model/equation for the data

Generate population P of individuals of size 𝑛_𝑝𝑜𝑝 , with𝑀 -
random permutations of 𝑘 tokens to form sets 𝐶 𝑗 ;
for epoch = 1 to 𝑛𝑒𝑝𝑜𝑐ℎ𝑠 do

for individual in population do
Apply sparse regression to individual to calculate
weights;
Calculate fitness function to individual;

end
Hold tournament selection and crossover;
for individual in population except 𝑛_𝑝𝑜𝑝

>
𝑎𝑒𝑙𝑖𝑡𝑒 "elite"

ones do
Mutate individual;

end
end
Select the individual with highest fitness function value as
the final solution to the problem;

Algorithm 1: The pseudo-code of the algorithm operation
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