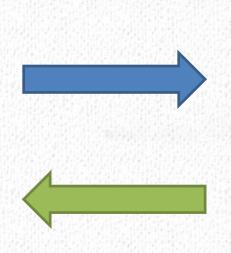
Exploiting Evolutionary Modeling to Prevail in Iterated Prisoner's Dilemma Tournaments

Marco Gaudesi, Elio Piccolo Alberto Tonda, Giovanni Squillero

Iterated Prisoner's Dilemma

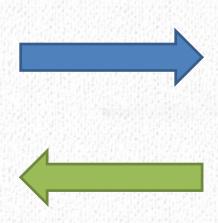
Player B		
	Defection	Cooperation
Player A		
Defection	(<mark>P: 1, P: 1</mark>)	(T : 5, <mark>S</mark> : 0)
Cooperation	(<mark>S</mark> : 0, T : 5)	(R : 3, R : 3)


and statistication of	
Google	prisoner's dilemma
Scholar	About 3,540 results (0.14 sec)
Articles Case law My library	[HTML] We can see inside: Accurate prediction of Prisoner's Dilemma decisions in announced games following a face-to-face interaction <u>A Sparks, T Burleigh, P Barclay</u> - Evolution and Human Behavior, 2016 - Elsevier Abstract Humans form impressions and make social judgments about others based on information that is quickly and easily available, such as facial and vocal traits. The evolutionary function of impression formation and social judgment mechanisms have
Any time Since 2016 Since 2015 Since 2012 Custom range	Related articles All 6 versions Cite Save More Reciprocity in Human-Robot Interaction: A Quantitative Approach Through the Prisoner's Dilemma and the Ultimatum Game EB Sandoval, J Brandstetter, M Obaid International Journal of, 2016 - Springer Abstract Reciprocity is an important factor in human-human interaction, so it can be expected that it should also play a major role in human-robot interaction (HRI). Participants
Sort by relevance Sort by date	in our study played the Repeated Prisoner's Dilemma Game (RPDG) and the mini Cited by 1 Related articles All 4 versions Cite Save More [HTML] Power Asymmetries and Punishment in a Prisoner's Dilemma with Variable
 ✓ include patents ✓ include citations 	Cooperative Investment JE Bone, B Wallace, R Bshary, <u>NJ Raihani</u> - PloS one, 2016 - journals.plos.org Abstract In many two-player games, players the payoffs than those who abstain from punishin punishment at promoting cooperation, espec
Create alert	When is the risk of cooperation we difficulty in its field"

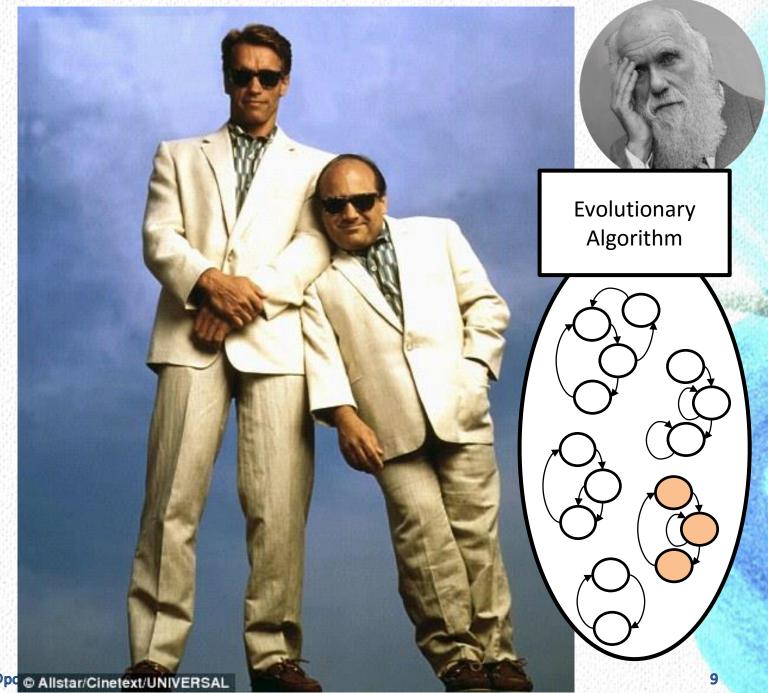
giovanni.squillero@polito.it

IEEE Xplore®	ary			provided by: cnico di Torin Out	0		IEEE				
BROWSE 🗸		MY SETTINGS 🗸	GET HELP 🗸	WHAT	CAN I ACCESS?						
Prisoner's Dilemma							Q Search				
Basic Search Auth	or Search	Publication Searc	h		Advanc	ed Search	Other Search Options ∨				
Displaying results 1-25 Year: 2015-2016 ×	of 30 for Pri			ed by							
Show All Results	~	Per Page	25 ~	Sort By	Relevance	~					
Search within results of Content Type	iterat Lee-A 2015 Year: Page	ed Prisoner's Di Ann Barlow; Jeffre	lemma y Tsang o on Computatio : 10.1109/CIG.2	nal Intelliger	s on evolution in th ace and Games (CIG	_					
Search within results	iterat Lee-A 2015 Year: Page IEEE	ed Prisoner's Di Ann Barlow; Jeffre IEEE Conference 2015 s: 368 - 375, DOI: Conference Pub	lemma by Tsang on Computation : 10.1109/CIG.2 ilications	onal Intelliger 015.731795(ice and Games (CIG						
Search within results Q Content Type	iterat Lee-A 2015 Year: Page IEEE ► Ab:	ed Prisoner's Di Ann Barlow; Jeffre IEEE Conference 2015 s: 368 - 375, DOI: Conference Pub stract ((html))	lemma by Tsang e on Computation : 10.1109/CIG.2 blications (5527	nal Intelliger 015.731795(Kb) ©	ice and Games (CIG						
Search within results Content Type Conference Publications (24)	iterat Lee-A 2015 Year: Page IEEE ► Abs C Evolution C	Ann Barlow; Jeffre IEEE Conference 2015 s: 368 - 375, DOI: Conference Pub stract ((html)) ditionary Prisone power system of Vakula; A. Padma Generation, Transr 2015, Volume: 9, s: 445 - 456, DOI:	lemma by Tsang e on Computation : 10.1109/CIG.2 clications (5527 r's Dilemma in oscillations aja; K. Rama S mission & Distr Issue: 5 : 10.1049/iet-g	nal Intelliger 015.731795(Kb) ©	proble) em c	of indisputa				
Search within results Content Type Conference Publications (24) Journals & Magazines (6) Year	iterat Lee-A 2015 Year: Page IEEE ► Ab: • Ab: • Evolution damp V. S. IET G Year: Page IET J	tionary Prisone Ann Barlow; Jeffre IEEE Conference 2015 s: 368 - 375, DOI: Conference Pub stract ((html)) tionary Prisone o power system (Vakula; A. Padma Generation, Transr (2015, Volume: 9,	lemma by Tsang e on Computation : 10.1109/CIG.2 clications (5527 r's Dilemma in oscillations aja; K. Rama S mission & Distr Issue: 5 : 10.1049/iet-g	nal Intelliger 015.731795(Kb) ©	proble) em c	of indisputa in its field'				

Proposed Approach



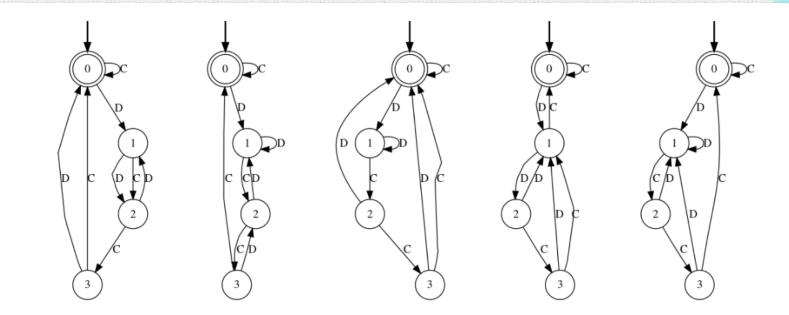
giovanni.squillero@polito.it


Proposed Approach

giovanni.squillero@pc © Allstar/Cinetext/UNIVERSAL

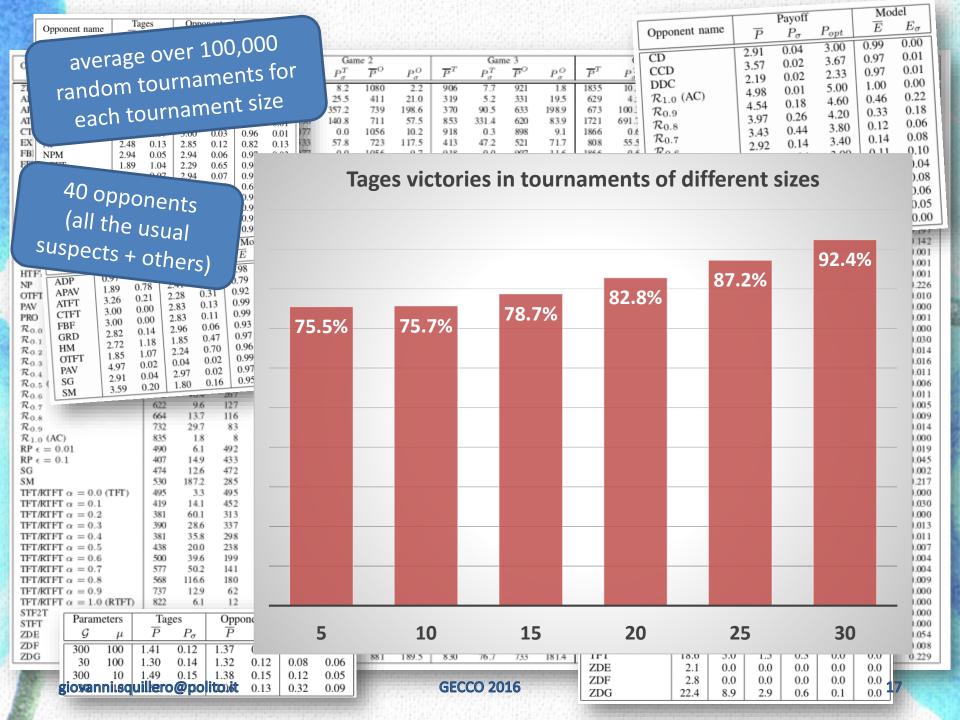
Laran (2011)

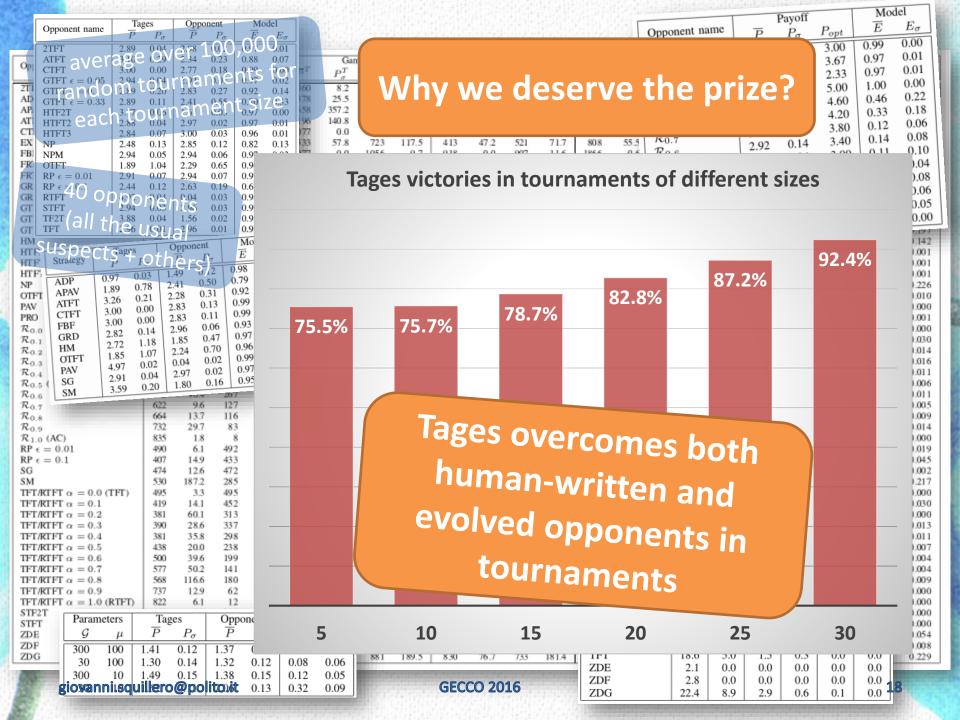
- First prototype based on FSM
- Turan (2014)
- First prototype based on ND-FSM
- Tages (2016)

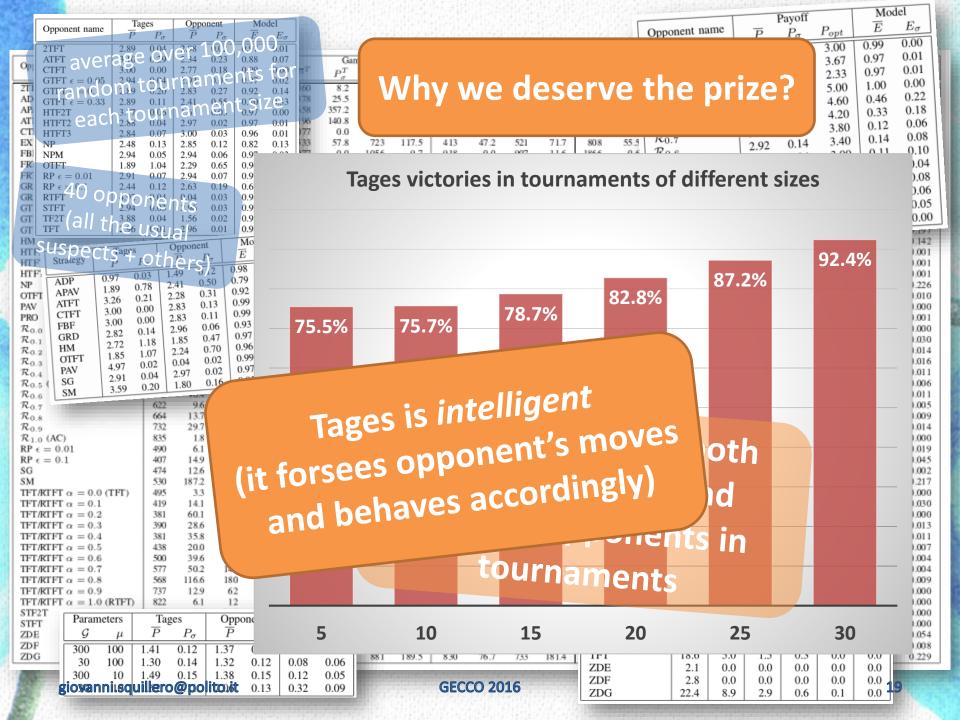

What if the opponent is <u>not</u> an FSM?

Turan: Only strong players can be good models

The player behaves differently from the real opponent


The player is a loser


- Turan: Only strong players can be good models
- Laran: Models don't need to be exact to be useful



- Turan: Only strong players can be good models
- Laran: Models don't need to be exact to be useful
- Laran: Lose a match, win the tournament

23	Charles and the second	1-1-14		datala.	a the s		264	실간권			1.14			法反律	1993年		Sec. 4	11111		dirt. S. G	Payoff		Mod	el
1	Opponent name	$\frac{Ta}{P}$	ges P_{σ}	Oppo P	P_{σ}	$\frac{Mode}{E}$	E_{σ}									Зr	Oppo	nent na	me	\overline{P}	P_{σ}	P_{opt}	\overline{E}	E_{σ}
16	2TFT	2.89	0.04	2.98			$\frac{D_{\sigma}}{0.01}$	a since			Sec.	11. 10.		11 Martin State					\rightarrow	2.91	0.04	3.00	0.99	0.00
Op	ATFT CTFT	3.10	0.29 0.00	2.34			0.07		ne 2			Gam				4	CD			3.57	0.02	3.67	0.97	0.01 0.01
	GTFT $\epsilon = 0.05$	2.94	0.00	2.77 2.92			0.00	$T = P_{\sigma}^{T}$	\overline{P}^{O}	P_{σ}^{O}	\overline{P}^T	P_{σ}^{T}	\overline{P}^{O}	P_{σ}^{O}	\overline{P}^T	P_{c}	CCD			2.19	0.02	2.33	0.97 1.00	0.01
2TI AD	GTFT $\epsilon = 0.1$ GTFT $\epsilon = 0.33$	2.89	0.20	2.83			/14	0 8.2 78 25.5	1080 411	2.2 21.0	906 319	7.7 5.2	921 331	1.8 19.5	1835 629	10.		(AC)		4.98	0.01	5.00 4.60	0.46	0.22
AP	0.53 HTF2T	2.89	0.11 0.06	2.41 1.61			0.33	8 357.2	739	198.6	370	90.5	633	198.9	673 1	100.3	\mathcal{R}_{0} .			4.54	0.18 0.26	4.00	0.33	0.18
ATI	HTFT2 HTFT3	2.88 2.84	0.04	2.97 3.00			0.01 0.01	6 140.8 77 0.0	711 1056	57.5 10.2	853 918	331.4 0.3	620 898	83.9 9.1	1721 6 1866	591.1 0.6	\mathcal{R}_{0} .	8		3.97 3.43	0.20	3.80	0.12	0.06
EX	NP	2.84	0.07 0.13	2.85				3 57.8	723	117.5	413	47.2	521	71.7	808	55.5	\mathcal{R}_{0} .			2.92	0.14	3.40	0.14	0.08
FB: FR	NPM OTFT	2.94 1.89	0.05 1.04	2.94 2.29				77 0.0 99 11.9	1056 1056	9.7 11.4	918 906	0.0 7.3	907 894	11.6 9.1	1866 1850	0.6 5.4	\mathcal{R}_{0}	6 5 (RNI	»	2.68	0.24	3.00	0.11	0.10 0.04
FR	RP $\epsilon = 0.01$	2.91	0.07	2.29				6 12.4	1034	18.6	892	16.0	883	143	1827	23.2	\mathcal{R}_0		- /	2.14	0.17	2.60	0.16	0.04
GR	RP $\epsilon = 0.1$	2.44	0.12	2.63				7 46.2	1068	12.8	888	35.7	911	10.2		116.7	Ro			1.83	0.12	2.20 1.80	0.25	0.06
GR GT	RTFT STFT	4.92	0.04 0.03	0.04 2.96				01 165.4 8 10.7	531 1066	153.7 14.1	393 913	114.7 4.9	412 912	105.5	759 1	105.0	\mathcal{R}_0			1.51	0.11 0.15	1.40	0.56	0.05
GT	TF2T	3.88	0.04	1.56			0.00		1043	44.1	883	48.4	863	73.6	Player		\mathcal{R}_0			1.01 0.86	0.03	1.00	1.00	0.00
GT HM	TFT	2.96	0.01	2.96		0.98 Model	0.00		779 646	218.6 206.7	871 785	55.8 418.6	633 498	198.5 111.0	2TFT	-	\mathcal{R}_0	0.0 (AD	0.2	0.00	0.0	0.0	0.0	0.142
HTI	B	Tages		$\frac{D}{P}$ pponen		\overline{E} E		6 14.0	550	6.5	1216	73	168	41	AC			28.1	10.4	2.8	0.5	0.0	0.0	0.001
HTH			P _σ .03 1.		12 0.9				10	- 11	г /	_	Х	-~	AD ADP			19.3	1.1	0.0	0.0	0.0	0.0	0.001 0.001
NP	ADP 0.		.78 2	41 0	.50 0.7	79 0.2 92 0.0	5 8	64.9	5		J	_			ADP			33.0 19.5	17.1 5.0	7.7	2.4	0.3	0.0	0.226
OTH	ATFT 3.	26 0				99 0.0	0		2						ATFT			29.4	10.3	3.5	0.7	0.1	0.0	0.010
PRO) CTFT 3	.00	.00	.83 0	.11 0.	.99 0. .93 0.	04 10	0 1.8	1(CTFT			20.3	6.7	2.2	0.6	0.1	0.0	0.001
$\begin{bmatrix} \mathcal{R}_0 \\ \mathcal{R}_0 \end{bmatrix}$	GRD 2	.82 0	0.14 2		1.00	.97 0.	04								EXT2 FBF			1.6 19.7	0.0 6.7	0.0	0.0	0.0	0.0	0.000
\mathcal{R}_0	2 HM 2			2.24	0.70 0		02 1	12 38.1	1						FRT3			12.1	1.5	0.1	0.0	0.0	0.0	0.014
\mathcal{R}_0	3 0111	4.97	0.02	0.01	0.0-		01	23 41.0 54 46.9	4						FRT4			15.1	2.2	0.2	0.0	0.0	0.0	0.016 0.011
$\begin{array}{c c} \mathcal{R}_0\\ \mathcal{R}_0 \end{array}$	SG	61. J &		<i>L.</i> , <i>J</i>			.03								GRD			26.5	14.3	6.8	2.4	0.5	0.0	0.006
\mathcal{R}_0	6 SM	3.59	0.20		267	53.6			44						GRM GTFT	< - 1	0.05	19.5 32.5	7.7 25.4	1.6	0.1	0.0 6.4	0.0 2.6	0.011
$\begin{bmatrix} \mathcal{R}_0 \\ \mathcal{R}_0 \end{bmatrix}$			622 664	9.6 13.7		29.7									GTFT			36.3	33.1	29.4	23.1	16.7	10.5	0.005
\mathcal{R}_0	.9		732	29.7	83	38.8									GTFT	$\epsilon =$	0.33	40.0	36.0	31.4	25.0	18.1	10.8	0.014
	ϵ_{0} (AC) $\epsilon = 0.01$		835 490	1.8 6.1	8 492	2.7			1	- 111	г Г	<u> </u>	\mathbf{N}	-~	HM			2.0	0.0	0.0	0.0	0.0	0.0	0.000
	$\epsilon = 0.1$		407	14.9		22.6		0 63.6	1		LJ.	-			HTF21 HTFT2			26.4 13.2	9.2 1.3	2.4	0.4	0.0	0.0	0.045
SG SM			474 530	12.6	472 285	19.4 37.5			1033 584	27.9	901 961	10.8 441.9	- 876 - 479	22.0	HTFT			17.9	3.1	0.5	0.0	0.0	0.0	0.002 0.217
TFI	$/RTFT \alpha = 0.0$ (ΓFΓ)	495	3.3	495	3.3	107	4 1.6	1074	1.6	916	1.3	916	1.3	NP			2.7	0.0	0.0	0.0	0.0	0.0	0.000
	WRTFT $\alpha = 0.1$ WRTFT $\alpha = 0.2$		419 381	14.1 60.1	452 313	10.6			868 511	195.9 54.4	658 609	84.9 2.1	618 396	155.6 29.7	OTFT PAV			36.2 29.4	30.3 11.5	27.3	22.9	15.6 0.1	6.9 0.0	0.030
TFI	$RTFT \alpha = 0.3$		390	28.6	337	43.4	82	22.5	510	90.8	689	20.4	349	33.4	PRO			1.1	0.0	0.0	0.0	0.0	0.0	0.013
	π /RTFT $\alpha = 0.4$ /RTFT $\alpha = 0.5$		381 438	35.8 20.0	298 238	64.6 79.6			387 326	68.6 118.5	804 889	47.1 56.5	280 245	36.1 72.1	RND			6.1	0.1	0.0	0.0	0.0	0.0	0.011 0.007
TFI	/RTFT $\alpha = 0.6$		500	39.6	199	53.3	109	7 28.2	250	16.5	979	31.1	196	20.1	$RP \epsilon =$		1	6.5	0.2	0.0	0.0	0.0	0.0	0.004
	$\frac{1}{\sqrt{RTFT}} \alpha = 0.7$		577 568	50.2 116.6	141 180	64.1 104.4			190 201	46.1 113.0	1120 1191	22.9 67.6	138 164	27.5	RP ϵ = RTFT	= 0.1		5.1 11.0	0.1 1.2	0.0	0.0	0.0	0.0	0.004
	$\alpha = 0.8$ (RTFT $\alpha = 0.9$		737	12.9		26.4			96	43.5	1370	44.4	50	2.8	SG			25.2	12.7	6.3	2.7	0.8	0.1	0.009
	/RTFT $\alpha = 1.0$ ()	RTFT)	822	6.1	12	4.4	170	5 13.2	18	8.8	1505	13.8	15	9.2	SM			36.5	20.9	11.8	5.6	1.8	0.3	0.000
STF	T Paramet	ers	Tag			onent		Model	545	3.8 1.6	1218 911	3.6 1.6	465 916	4.5 1.6	STF2T			31.3	12.0	3.5	0.8	0.1	0.0	0.000
ZDI	g g	μ	\overline{P}	P_{σ}	\overline{P}	P_{σ}	Ī		650	97.6	369	44.1	480	86.7	STFT Tages			3.0 75.5	0.1 75.7	0.0 78.7	0.0 82.8	0.0 87.2	92.4	0.054
ZDI	300 1		1.41	0.12	1.37	0.11	0.2		503 881	64.0 189.5	618 830	20.4 76.7	366 733	36.0 181.4	TFT			18.6	5.0	1.5	0.3	0.0	0.0	0.008 0.229
_	30 1		1.30 1.49	0.14 0.15	1.32 1.38	0.12 0.15	0.0				Terre and	10105794	10 TO TO TO TO TO	and the second	ZDE			2.1	0.0	0.0	0.0	0.0	0.0	
100	30		1.49	0.15	2.06	0.13	0.3		1575		GEC	CO 20	16		ZDF			2.8	0.0	0.0	0.0	0.0	0.0	5
100	TRANSPORT	a for the second	and and a state	110000		at a set of the		A POINT OF A POINT			1778	15111			ZDG	69.25	1.1.1	22.4	8.9	2.9	0.6	0.1	0.0	1423

Thanks

HPC@POLITO (computational resources) Andrea Mussano (Laran)

Denny De Vito (presentation) Arnold Schwarzenegger (presentation)

