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Abstract—Among Real-Time Strategy games few titles have
enjoyed the continued success of StarCraft. Many research lines
aimed at developing Artificial Intelligences, or “bots”, capable
of challenging human players, use StarCraft as a platform.
Several characteristics make this game particularly appealing for
researchers, such as: asymmetric balanced factions, considerable
complexity of the technology trees, large number of units with
unique features, and potential for optimization both at the
strategical and tactical level. In literature, various works exploit
evolutionary computation to optimize particular aspects of the
game, from squad formation to map exploration; but so far, no
evolutionary approach has been applied to the development of
a complete strategy from scratch. In this paper, we present the
preliminary results of StarCraftGP, a framework able to evolve
a complete strategy for StarCraft, from the building plan, to
the composition of squads, up to the set of rules that define the
bot’s behavior during the game. The proposed approach generates
strategies as C++ classes, that are then compiled and executed
inside the OpprimoBot open-source framework. In a first set
of runs, we demonstrate that StarCraftGP ultimately generates a
competitive strategy for a Zerg bot, able to defeat several human-
designed bots.

I. INTRODUCTION

Real Time Strategy (RTS) games are a sub-genre of tactical
videogames where the action takes place in real time, i.e., there
are no turns. Players must manage units, production structures
and resources in order to, normally, win a battle against a rival.
Some famous and successful RTSs are Age of EmpiresTM,
WarcraftTMand StarCraftTM. The latter has also become very
popular among the scientific community, as it is considered the
unified test-bed for several research lines [1], such as Machine
Learning, content generation, and optimization.

StarCraft [2] was developed by Blizzard Entertainment in
1998. It is a space strategy game in which three different races
fight to dominate the galaxy: Terran, humans with futuristic
weaponry; Protoss, aliens with highly advanced technology
and powerful but expensive units; and Zerg, insect-like mon-
sters that usually aim at overrunning the opponent with swarms
of small units. A good part of StarCraft’s success is due to an
excellent balance between the three species, the complexity of
units and buildings, and the existence of many different viable
strategies.

A huge research community is centered on the creation
of agents that play this game [1], also called “bots” (short
for robots), with several periodic StarCraft AI competitions
[3] held at annual conferences such as CIG or AIIDE, that
encourages researchers to improve their methods and create
stronger bots.

There are normally two levels of Artificial Intelligence
(AI) in RTS games [4]: the first one takes decisions over the
whole set of units (for instance, workers, soldiers, machines
or vehicles), plans a build order, and generally defines a high-
level direction of the match. The second level concerns the
behavior of each unit, or small subsets of units. These two
levels can be considered strategic and tactical, respectively.
This paper focuses on the strategic part of the AI engine.

Although most of the development of StarCraft bots is fo-
cused on manually writing an AI, or improving the parameters
on which its behavior depends on using Machine Learning
techniques [5], the automatic creation of complete strategies
from scratch has not been addressed so far.

This paper presents a framework for the automatic gen-
eration of strategies for StarCraft, using Genetic Program-
ming (GP) [6]. GP belongs to the category of Evolutionary
Algorithms [7], optimization techniques inspired by natural
evolution. This method is commonly used to create solutions
internally encoded as trees or linear graphs [8], but it has also
been used for the generation of Turing-complete programs.
These algorithms are normally used to generate computer
programs to perform an objective task, optimizing a metric or
objective functions called fitness. This technique can produce
combinations of conditions and actions that are potentially
very different from what a human programmer could design,
making it possible to obtain competitive bots from scratch,
i.e. without adding human knowledge. This introduces a high
difference with respect to the usual improvement of behavioral
models by mean of EAs [9], [10], [11], which is based on the
optimization of parameters that guide the bots behavior, and
consequently constrained to a human-designed model and its
possible limitations.

The proposed approach directly writes the candidate strate-
gies as C++ classes, that are then compiled in the open-source



bot OpprimoBot [12]. Since the focus of this contribution is
on high-level strategies, the tactics of units and squads are
left to be managed by OpprimoBot’s default AI. The fitness
function used to drive the evolutionary process is based on a
series of actual matches against properly selected opponent.
The resulting statistics are then analyzed and parsed to obtain
a numerical metric. Even if a military victory is always
considered the most important result, two different functions
are tested:

1) Victory: the default final score returned by StarCraft
at the end of one match against each of 12 different
opponents;

2) Report: a more complex metric, aiming at separating
military success from in-game economy development,
using different rewards, computed after 3 matches
against each of 4 different opponents.

The aim of these trials is to obtain indications on which
kind of fitness metric could prove more beneficial: whether
the result of a match can be generalized to multiple matches
against the same opponent; and whether evaluating a candidate
against a smaller variety of tactics could still return a strategy
able to play well against new opponents.

The best strategies obtained after the evolutionary runs
are then validated against different human-designed bots, also
based on OpprimoBot: since the tactical low-level aspects of
these bots are the same, theoretically the comparison should
mainly concern the efficiency of the respective high-level
strategies. Preliminary results show that the proposed approach
can generate competitive Zerg bots, able to effectively tackle
new opponents not used during training or never seen before,
opening promising perspectives for future works.

The rest of the paper is structured as follows: after a
background in computational intelligence in RTS in Section
II, the proposed methodology is shown in Section III. Then,
the experimental results are explained in Section IV. Finally,
the conclusions and future work are presented.

II. BACKGROUND

A. Genetic Programming for bot generation

GP [6] belongs to a wide class of probabilistic optimization
techniques, loosely inspired by the neo-Darwinian paradigm of
natural selection. The algorithm is defined by a set (population)
of candidate solutions (individuals) for a target problem, a
selection method that favors better solutions, and a set of oper-
ators (crossover, mutation) that act upon the selected solutions.
First, an initial population is created (usually randomly). Then,
the selection method and operators are successively applied to
produce new solutions (offspring) that might replace the less
fitted in the population. In fact, at the end of each iteration
(generation), the candidate solutions are compared on their
goodness (fitness), and the worst ones are removed. Through
this process, the quality of the individuals tends to increase
with the number of generations.

A candidate solution in GP is usually internally modeled
as a tree or as a linear graph [8]. In µGP [13], the framework
used in this contribution, each node in the internal representa-
tion (genome) corresponds to a user-defined macro, eventually
with a set of parameters. The operators can modify a macro’s

parameters or even the structure of the genome, adding or
removing nodes and subtrees. As the genome of an individual
can be constrained in several ways, the resulting solutions
can feature a considerable complexity. When applied to AI
in games, GP solutions have been encoded as sets of rules or
finite-state machines. Being non-human is, in fact, one of the
main advantages of GP: the candidate solutions proposed by
this algorithm can be very far from human intuition, and still
be competitive.

Thus, GP has been used to generate autonomous playing
agents (bots) in different types of games, such as famous case
studies in Game Theory [14], simple board games [15], strat-
egy games involving Assembly programs [16] and even First
Person Shooters [17]. Bots created using GP have sometimes
obtained higher rankings than solvers produced by other tech-
niques, defeating even high-ranking human players (or human-
designed solutions) [18]. In the case of RTS, some works are
focused on the Planet Wars game, as it is a simplification of
an RTS. In this case, genetic programming was proved as a
valid way to generate bots that can outperform optimized hand-
made bots [19]. In other works different fitness functions were
compared, and the results showed that a fitness that compare
individuals using victories produces more aggressive bots [20].
These promising results are a good motivation to apply GP to
a more complex commercial game, such as StarCraft.

B. AI in StarCraft

Thanks to BWAPI, an open-source API developed by fans1

of the game, StarCraft has become a challenging test-bed
for research in RTS, used in dozens of publications on the
subject2. Different research lines targeted different aspects
of this game, ranging from building order definition, micro-
management optimization, strategy prediction, efficient map
navigation, or maximizing resource production.

In [21] Togelius et al. used a multi-objective evolutionary
algorithm to automatically generate maps taking into account
aspects such as playability, skill differentiation and fairness.
But it is in the creation of bots where most of efforts are
focused. Ontañón et al. recently presented a survey on research
in this topic [1]. They also proposed a classification of the
bot’s AI taking into account the problems to address: strategy,
tactics and reactive control. Different techniques have been
used to generate (or optimize) AIs for this game: Hagelbäck
[12] combined potential field navigation with the A* algorithm
for the behavior of the squads, while Churchill and Buro [22]
used a Branch & Bound algorithm to optimize the building
order of the structures and units in real time.

EAs have been used to optimize StarCraft bots at different
levels: for example, Othman et al. evolved the parameters of
hand-coded high level strategies [5], while Liu et al. [23]
optimized the 14 parameters of the micro-management tactics
for units. However, these methods require a hand-coded base to
optimize their numerical values, and human expertise to design
the bots in the first place. To the best of our knowledge, no
other authors have used GP to automatically generate strategies
for StarCraft from scratch.

1https://github.com/bwapi/bwapi
2https://github.com/bwapi/bwapi/wiki/Academics

https://github.com/bwapi/bwapi
https://github.com/bwapi/bwapi/wiki/Academics


III. PROPOSED APPROACH

In the proposed evolutionary framework (depicted in Figure
1) the evolutionary core (the algorithm) receives a set of code
constraints used to automatically generate the code of the
bots by means of GP. For each individual in the population,
a .cpp file is generated, compiled by the external evaluator
and compared against a set of enemies in several StarCraft
matches, to ultimately obtain its fitness. The fitness value
associated to an individual will later influence its probability
to reproduce, creating new derived solutions, and to survive in
future generations of the algorithm.

External Evaluator 

Evolutionary Core 

Constraints 

.txt 

.txt 

Fig. 1. High-level scheme of the proposed approach. Following user-defined
constraints, the evolutionary core creates individuals encoded as C++ classes.
The obtained files are then sent to an external evaluator, that will return a
fitness value. The fitness values will be then exploited by the evolutionary
core to create better and better solutions.

The next subsections will detail the encoding of the indi-
viduals in the population, and the two fitness functions used.

A. AI encoding

Each individual in the proposed framework represents
the AI that manages the strategy of a StarCraft bot, and is
encoded as a C++ class inside such a bot. The class features
two methods: a constructor, defining the initial building plan
(which units/structures will be built in which order) and the
initial squads (groups of units with a specific role, such as
attacker or defender); and a method called every frame to
compute new actions (such as adding units to a squad, creating
new squads, modifying the building plan) on the basis of the
current situation. It is important to notice that only the strategy
is evolved, while the tactics (e.g. the behavior of a single
unit) are managed by other classes inside the bot, remaining
unchanged during the process.

Producing compilable C++ code through a GP-like evo-
lutionary toolkit is not a trivial task: the structure of an
individual is considerably complex, and relies upon the con-
cepts of Section, Subsection and Macro. In the following, a
Section is defined as a part of the individual that contains
several Subsections and appears exactly once in the genome;
a Subsection can appear multiple times and contain several
Macros, but Subsections strictly follow the order in which they
are declared, and all their instances appear before or after the
instances of other Subsections; finally, a Macro represents a
single instructions, or block of code, and Macro instances can
appear in any order inside the Subsection they belong to. Using
this block hierarchy, a properly defined structure guarantees
that every individual produced by the algorithm will compile
without errors.

As the class features two methods, the structure of
an individual is divided into two Sections, here called

initialization and computeActions. A scheme for
the individual’s structure is reported in Figure 2.

botInitialization 

botComputeActions 

buildingPlan (1) 

squadInitialization (2-10) 

rule (2-10) 

addBuilding (5-50) 

addUnitToSquad (1-10) 

changeBuildingPlan 
changeSquad 

(1-10)  

Section 

Subsection 

Macro 

Fig. 2. Individual structure: Sections appear only once; SubSections can
appear multiple times, always in the same order; Macros can appear multiple
times, in any order.

1) initialization: This part of the individual defines
the initial building plan and the starting groups of units. The
Subsection buildingPlan, that appears only once, lists
between 5 and 50 instances of the Macro addBuilding, the
instruction that adds a building to the queue of structures to
be built. The Subsection squadInitialization defines a
squad: between 2 and 10 squads can be created by the strategy.
The Macro addUnitToSquad adds 1 to 5 units of a certain
type to the squad, so a squad can initially feature between 1
and 50 units. Figure 3 shows an example of a building plan
generated by the proposed approach.

2) computeActions: This Section represents a method
encoding a set of rules that will change the behavior of the
bot during the execution, depending on the current situation.
Figure 4 shows an example of a generated computeActions
method.

B. Genetic Operators

Different genetic programming operators are
used to cross and mutate the structure of the
individuals. onePointImpreciseCrossover and
twoPointImpreciseCrossover can combine two
individuals, cutting their structures in one or two
points, respectively. subGraphInsertionMutation,
subGraphRemovalMutation and
subGraphReplacementMutation can add, remove
or replace an instance of a Subsection, respectively.
insertionMutation, removalMutation
and replacementMutation can add, remove
or replace an instance of a Macro, respectively.
singleParameterAlterationMutation and
alterationMutation act on a Macro instance,
randomizing one or all its parameters, respectively. These
operators are part of the µGP framework, and are illustrated
in more detail in [13].

C. Evaluation

The efficiency of a StarCraft strategy can be easily mea-
sured by matching it against different opponents. This fitness



Fig. 3. Example of a generated initialization method.

evaluation, taking into account victories as primary target to
improve, has been successfully used in previous works to
generate agents for RTS games using GP [19]. Obtaining a
reliable global assessment of a strategy’s strength, however,
requires a considerable number of evaluations [20]: not only
the fact that some game plans are more effective on specific
maps, due to their shape or size; but it is well-known that
some strategies can be used as a counter to specific plans
(for example, an early attack could be efficiently blocked by
a defensive deployment); and finally, the game uses some
random elements (e.g. amount of damage inflicted) that, while
reasonably constrained between thresholds, can still influence
the development of a match, so two games between the two
same strategies on the same map could lead to two different
outcomes [20]. However, extra information may also help to
guide the evolution, for example differencing military and
economic victories to generate more aggressive bots (focused
in win killing the enemy and not collecting materials).

1) Victory-based fitness: This fitness compares, in lexico-
graphical order, a vector of the number of victories against
4 different tiers of opponents in different tiers of strength.
The tiers have been created through a preliminary tournament
between the 12 considered strategies. In order to save compu-
tational time, a candidate bot is evaluated against a tier if it
won at least once against an opponent from the lower one. The
final position of the vector is a ratio between the average score
obtained by the bot over the score obtained by the opponents.

2) Report-based fitness: There are several in-game metrics
that can be exploited to provide a smoother slope towards good
solutions, such as the number of enemy units destroyed, the
amount of resources gathered, the number of units produced,
etc. In particular, the following have been chosen as fitness
values, to be maximized and evaluated in lexicographical
order:

1) Military victory: each time the candidate strategy is
able to defeat an opponent before the alloted time
runs out, this score is incremented by 1.

2) Economic victory: if the alloted time runs out, but
the in-game score for units and structures of the
candidate strategy is higher than the opponent’s, this
score is incremented by 1.

3) Relative destruction: the average score for units
and structures destroyed, over the same score for the
opposing strategy.

4) Time to loss: the average time the candidate strategy
resisted before losing against the opponents it was
not able to defeat.

5) Relative economy: the average score for units and
structures built, over the same score for the opposing
strategy.

IV. EXPERIMENTAL EVALUATION

Given the consideration in Subsection III-C, it is easy to see
how the number of evaluations needed for the assessment of a



Fig. 4. Example of a generated computeActions method.

candidate strategy quickly explodes: considering a minimum of
3 matches in the same conditions to obtain a reliable average,
evaluating a candidate strategy against 10 opponents on 10
different maps would require 3 · 10 · 10 = 300 matches;
and a match long enough to be significant would last at
least 10 wall-clock minutes, even at maximum in-game speed.
Thus, a self-evident disadvantage of the proposed approach
is the sheer quantity of computational power necessary to
evaluate the individuals. For this reason, in this proof-of-
concept experimental evaluation, the focus is on a limited
number of strategies, evaluated on a single map: overfitting
the final strategy on these conditions is almost a given, but the
objective is not to obtain a tournament-competitive player, but
rather to assess whether the approach is viable.

The most competitive bots in current championships usu-
ally implement Protoss and Terran [1] strategies, meaning that
they are probably easier to manage for hand-coded AIs. For
this first approach, we choose to evolve a Zerg strategy, a
weaker strategy in principle, to assess whether a GP engine
can successfully manage this faction, and also because it is
based in quick and cheap units.

A. Setup

The experiments have been performed on a group of 8
VirtualBox3 virtual machines (VMs), one Master and 7 Clients,
running Windows XP (see Figure 5). The Master VM runs the
evolutionary algorithm µGP 4 [24], that creates the strategy
classes following the constraints specified in Subsection III-A.
The algorithm is configured with the parameters reported in
Table I. These parameters have been chosen because they
have been used successfully in previous works that use GP
for RTS bot generation [19]. It is important to notice that the
30 generations set as a stop condition correspond to about 5
days (120 hours) of computation, on the hardware used for the
experiments.

Candidate strategies are compiled inside the OpprimoBot5
framework [12], v14.12, obtaining a DLL with the complete
bot. Finally, the DLL is sent to the TournamentManager6

3http://www.virtualbox.org/
4http://ugp3.sourceforge.net
5http://code.google.com/p/bthai/
6http://webdocs.cs.ualberta.ca/∼cdavid/starcraftaicomp/tm.shtml
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software, that distributes the matches to be played among the
Client VMs and collects the results. A Python 2.7 script directs
the execution of all the involved programs, and parses the
TournamentManager files to obtain the fitness values.

TournamentManager 

External Evaluator 

Individual.DLL 

results.txt Parser 

Fitness values 

VM Server 

VM Client 

VM Client 

VM Client 

…  

VStudio Compiler 

Individual.cpp 

Fig. 5. Evaluator used during the evolutionary process. The candidate strategy,
a C++ class, is compiled in the OpprimoBot framework, obtaining a DLL. The
DLL is then sent to the TournamentManager software, to run several matches
on virtual machines connected over a virtual network. Lastly, the results are
parsed to obtain the fitness values.

TABLE I. PARAMETERS USED DURING THE EVOLUTIONARY PROCESS.
ACTIVATION PROBABILITIES FOR THE OPERATORS AND SIZE OF THE

TOURNAMENT SELECTION ARE SELF-ADAPTED DURING THE RUN, USING
THE α INERTIAL PARAMETER TO SMOOTHEN THE VARIATION OF VALUES.
THE GENETIC OPERATORS CAN REPEAT MUTATIONS ON THE BASIS OF THE

σ PARAMETER.

Parameter Value Meaning
µ 30 Population size
λ 30 Number of genetic operators applied at each generation
σ 0.9 Initial strength of the mutation operators
α 0.9 Inertia of the self-adapting process
τ (1,4) Size of the tournament selection

MG 30 Stop condition: maximum number of iterations (generations)

Different strategies have been chosen as competition to
test our approach and measure the fitness, taken from those
available in OpprimoBot 14.12 [12], and one Dummy player,
that essentially builds some structures and then keeps gathering
resources, without producing offensive units or attacking. The
Dummy’s purpose is to smoothen the fitness values at the
beginning of the evolution, allowing the evolutionary core
to discriminate between individuals that show some good
qualities and those who are just inert. Three matches are played
against each strategy, on the map Benzene.scx, a very
common map used in competitions, taken from those available
in the 2014 AIIDE competition 7: this map has been selected
for its relatively small size and classical layout.

For the Victory-based fitness, the strategies chosen to
evaluate the individuals during evolution are:

• Tier 1 (Easy): OBTerranDummy, OBProtossReaver-
Drop1B, OBProtossDefensive, OBZergHydraMuta

• Tier 2 (Medium): OBProtossTemplarRush, OBProto-
ssReaverDrop, OBTerranDefensiveFB, OBTerranDe-
fensive

• Tier 3 (Hard): OBZergLurkerRush, OBTerranWraith-
Harass, OBTerranPush, OBTerranMarineRush

7http://webdocs.cs.ualberta.ca/∼cdavid/starcraftaicomp/

For the Report-based fitness, the Dummy and three human-
designed players from the difficult tiers have been used:
OBTerranDummy, OBProtossReaverDrop, OBTerranWraith-
Harass, OBZergLurkerRush (repeating 3 times each strategy).

B. Results

As a StarCraft game requires real time to be executed (usu-
ally 10 minutes per match), even using 8 VMs in parallel, each
execution of the algorithm requires several days. However, as
this is a proof-of-concept, we analyze the only run we have
performed for each fitness compared. The best fitness obtained
for is shown in Tables II and III.

TABLE II. FITNESS OF THE BEST INDIVIDUAL OBTAINED AND
AVERAGE FITNESS OF THE POPULATION USING VICTORY-BASED

EVALUATION.

Best individual Average of population
Tier 3 4 1.73
Tier 2 3 1.83
Tier 1 3 2.93
Score ratio 0.0481 0.0378

TABLE III. FITNESS OF THE BEST INDIVIDUAL OBTAINED AND
AVERAGE FITNESS OF THE POPULATION FITNESS USING REPORT-BASED

EVALUATION.

Best individual Average of population
Military Victories 3 1.76
Economic victories 1 1.93
Relative destruction 400245 358172
Time to loss 1120 1380.7
Relative Economy 0.309 0.501

Evolution of the average individuals for both fitness ap-
proaches is shown in Figure 6 and Figure 7 (only the number
of victories of the fitness vector is plotted). It is interesting to
remark, that both obtained bots have been able to beat more
than one strategy at the end of the evolution. As it can be
seen, in both methods, the average fitness of the population
during all the run has lower values for the “difficult” type
of victory (first value of the fitness vector), while the obtained
best individuals (in Tables) have reached higher values for this
number (Tier 3 victories and military victories, respectively).
Therefore, the population is not stagnated for 30 generations,
so more generations may lead to even better individuals.

C. Validation

After the evolution, and in order to validate the generated
bots of the two different fitness approaches, a championship
has been performed. The two generated bots have been con-
fronted versus all the hand-coded strategies of OpprimoBot
(including those not considered for evolution, in the case
of the Report-based fitness) and also against the complete
OpprimoBot. Each bot has been confronted 10 times against
each enemy. Table IV shows the number of victories (from 0
to 10) of our generated bots.

Results of this championship show that the first runs of
our method have generated bots able to defeat human-coded
strategies, and even a complete complex bot (OpprimoBot). A
comparison of the two generated bots shows a prevalence of
the Victory-based fitness, that wins over more strategies, and
more times. This can be explained because a greater number
of bots has been used for the fitness value computation for

http://webdocs.cs.ualberta.ca/~cdavid/starcraftaicomp/


0

1

2

3

0 10 20 30
Generations

V
ic

to
rie

s

Legend

Avg Tier 1 wins

Avg Tier 2 wins

Avg Tier 3 wins

Fig. 6. Evolution of the average fitness value of the population during the
run using the Victory-based fitness (only victories in each tier are shown)
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Fig. 7. Evolution of the average fitness value of the population during the
run using the Report-based fitness (only victories are shown)

this approach, instead of repetitions of only 4. It is interesting
to notice that the Report-based fitness, although weaker, has
been able to generalize, defeating opponents it has never seen,
such as OBProtossDefensive or OBProtossTemplarRush.

Looking into the generated decision rules, the Victory-
based bot has 9 different rules, while the Report-based only has
3. This can explain the different behavior of the two generated
bots, being the first one more adaptive to different situations.
In fact, analyzing the triggered rules of these bots, from the
Victory-based fitness only 6 of the 9 rules have been triggered
during the championship (in different proportions), while in
the Report-based version 2 of the 3 rules are used, being these

TABLE IV. NUMBER OF VICTORIES OF THE GENERATED BOTS
AGAINST HAND-CODED BOTS.

Bot Victory-based Report-based
OBTerranDefensiveFB 7 1
OBProtossTemplarRush 4 8
OBZergHydraMuta 10 1
OBZergLurkerRush 8 0
OBProtossDefensive 8 5
OBProtossReaverDrop1B 5 1
OBTerranDefensive 5 1
OBProtossReaverDrop 3 6
OBTerranMarineRush 7 0
OBTerranWraithHarass 5 0
OBTerranPush 6 3
OBTerranDummy 10 10
Victory-Based * 8
Report-Based 2 *
OpprimoBot 6 1
TOTAL 86 of 140 45 of 140

rules triggered almost the same amount of times.

The activated Victory-based rules basically generate an
exploratory squad with zerlglings, hydralisks and mutalisks,
and an offensive one with scourges, overlords and queens.
Sometimes one of these types of squads are duplicated (rules
2 and 8) in the unit construction queue, and updated with
scourges (rule 5), lurkers (rule 9) or hydralisks (rule 3) or
evolving units to devourers and lurkers (rule 6) or guardians
(rule 3). Rule 7 only adds buildings to the building plan to be
constructed when possible (defiler, extractor and dark swarm).
In the case of the Report-based, 6 different types of squads
(offensive, rush and exploratory) are queued at first, and the
two rules executed add hydralisks to existent squads, but no
more squads are generated. Percentages of the rules are shown
in Table V.

TABLE V. PERCENTAGE OF ACTIVATED RULES OF THE TWO
APPROACHES IN THE CHAMPIONSHIP.

Rule # Percentage when winning Percentage when losing
Victory-based

2 10.20 7.662
3 21.58 23.05
6 13.22 13.23
7 21.86 23.49
8 20.17 19.76
9 12.94 12.79

Report-based
1 51.53 50.98
3 49.01 49.01

V. CONCLUSIONS

StarCraft has become a de facto test-bed for research on
RTS games, as it provides different strategic levels for agent
generation and optimization, well balanced types of races, and
a huge community of players and researchers.

This paper proposes a preliminary study on the usage
of Genetic Programming to automatically generate high-level
strategies for StarCraft, using the StarcraftGP framework.
Two different methods for evaluation of the bots during the
evolution have been compared: a victory-based fitness and a
report-based fitness, both using different number of enemies
for evaluation. The first run for each method has been able
to automatically generate strategies that can defeat bots hand-
coded by human experts. Results show that the victory-based
fitness can generate better bots than the report-based method,



winning more than half of the battles against hard-coded
strategies, and even considering a complete bot.

Future work will address several improvements of the pro-
posed methodology, for example using more fitness functions,
more runs per method to validate their results, or the usage of
different maps in evaluation and testing. Also new experiments
will be performed using more game information, or other
methods, such as co-evolution. The optimization of the other
two races of the game (Protoss and Terran) will be also studied.
Other aspects of the game will be also optimized using our
framework, such as the low-level squad behavior, or even
the micro-management of each unit. Finally, other techniques
can be used in conjunction with our method, for example,
optimizing the learning and map analysis modules available in
the literature.
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