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Abstract

Background: The demographic history of any population is imprinted in the genomes of the individuals that make up the
population. One of the most popular and convenient representations of genetic information is the allele frequency
spectrum (AFS), the distribution of allele frequencies in populations. The joint AFS is commonly used to reconstruct the
demographic history of multiple populations, and several methods based on diffusion approximation (e.g., ∂a∂i) and
ordinary differential equations (e.g., moments) have been developed and applied for demographic inference. These
methods provide an opportunity to simulate AFS under a variety of researcher-specified demographic models and to
estimate the best model and associated parameters using likelihood-based local optimizations. However, there are no
known algorithms to perform global searches of demographic models with a given AFS. Results: Here, we introduce a new
method that implements a global search using a genetic algorithm for the automatic and unsupervised inference of
demographic history from joint AFS data. Our method is implemented in the software GADMA (Genetic Algorithm for
Demographic Model Analysis, https://github.com/ctlab/GADMA). Conclusions: We demonstrate the performance of
GADMA by applying it to sequence data from humans and non-model organisms and show that it is able to automatically
infer a demographic model close to or even better than the one that was previously obtained manually. Moreover, GADMA
is able to infer multiple demographic models at different local optima close to the global one, providing a larger set of
possible scenarios to further explore demographic history.
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Introduction

To understand the evolution of species and their populations,
it is important to understand what events occurred in their

past and when. The genetic diversity and structure of species
are shaped by the combined processes of changes in effective
population size, population divergence, and/or migration (gene
flow) operating over the course of thousands of generations.
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2 GADMA: Inferring demographic history of multiple populations from allele frequency spectrum data

Figure 1: General scheme of ∂a∂i. To compare a demographic model and the real observed AFS, ∂a∂i extracts the expected AFS from the demographic model using
a numerical solution of the partial differential equation (PDE) that corresponds to that demographic model, and calculates the composite likelihood between the
expected and observed allele frequency spectrum.

Records of population history are imprinted in the genomes of
individuals within species, and this history can be inferred us-
ing a variety of algorithmic and statistical methods. With the
rise of next-generation sequencing technologies and abundant
genome data, it has become possible to explore complex and
parameter-rich demographic models that include the estima-
tion of mutation rate, changes in effective population size, non-
random mating, admixture, and selection [1, 2]. However, given
the infinitely large number of permutations at which these pro-
cesses operate over various time intervals, there is no method
that can guarantee to find the demographic model that best fits
the observed data.

One of the primary methods for inferring demographic mod-
els from genomic data is based on the allele frequency spec-
trum (AFS), also known as the site frequency spectrum [2,3]. In
essence, the AFS describes the distribution of derived allele fre-
quencies of bi-allelic loci (single-nucleotide variants [SNVs]) in
a population or sample of populations based on the number of
sequenced chromosomes [4]. An AFS can provide information
about how the populations developed based on observed ge-
netic variation sampled from current individuals of those pop-
ulations. Many studies have been devoted to testing and under-
standing the behavior of AFS under different demographic sce-
narios [5–9].

Two of the most popular methods of historical demographic
inference based on AFS are the faster continuous-time sequen-
tial Markovian coalescent approximation (fastsimcoal2, [10])
and the diffusion approximation (∂a∂i, [11]). fastsimcoal2 can
successfully handle >3 populations, but it is computationally
challenging because it simulates multiple AFS simultaneously
to estimate the most stable one. ∂a∂i simulates AFS using a nu-
merical solution of the partial diffusion equation (PDE), which
corresponds to the presented demographic model and then pro-
vides the likelihood of the model (Fig. 1). Unfortunately, PDE
leads to some computational difficulties associated with analy-
ses of complicated demographic models and large sample sizes.
As a result, ∂a∂i can only handle ≤3 populations. More recently,
2 new methods called ”moments” [12] and ”Moran Models of
Inference” (momi2 [13]) have been introduced. moments, like
∂a∂i, is based on 2 models of population genetics: the Wright-
Fisher generation model and the infinite sites mutational model,
whereas momi2 is based on another generation model—the
Moran model [14]. Because momi2 is a new method, we have not
considered it in the present study. moments uses ordinary differ-
ential equations to simulate AFS, which is faster and more sta-
ble than diffusion approximation in ∂a∂i, based on simulations
comparing the 2 methods [12]. moments presents a tradeoff be-

tween speed and accuracy in AFS-based demographic inference,
can handle ≤5 populations, and provides the same interface as
∂a∂i.

Ideally, researchers seek to find the model of demographic
history that best describes or “fits” their data. ∂a∂i and mo-
ments provide an opportunity to run multiple optimizations to
help fit parameters of a given demographic model that maxi-
mizes the value of the composite likelihood. But optimizations
based on gradient descent, e.g., the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm [15–18] or its modifications, use nu-
merical differentiation and are ineffective in practice, because
of the complex structure of the search space for demographic
models. Optimizations may also be inefficient owing to another
set of methods that offer existing solutions based on local search
algorithms without gradients, such as the Nedler and Mead
method [19] or Powell method [20]. As a result, all existing op-
timizations find local optima close to the initial values and re-
quire many runs to be performed using different initial model
parameters, most of which are unknown or lack empirical data.
Despite these drawbacks, ∂a∂i and moments are efficient instru-
ments because they can simulate an AFS from any demographic
model. In other words, the problem of finding a demographic
model from the AFS is the inverse problem, which can be solved
by solving the direct problem, i.e., simulation of the AFS from a
given demographic model, with approximate numerical meth-
ods, such as diffusion or moments approximations. The lack of
accurate and rapid differentiation and the complex structure of
the search space led us to consider the use of global optimiza-
tion methods, such as the genetic algorithm (GA).

The GA [21] is one of the most efficient heuristic algorithms
for global searching of complex and rich parameter space. Its
primary application is optimization of a fitness function, which
either is not differentiable or cannot be differentiated in a suffi-
ciently effective way, e.g., when the function is not representable
in “closed-form expression.” GA is based on the principle of
evolution and simulates natural selection using operations of
“mutation” and “crossover,” which ideally results in the most
adapted individual, the one that has the best value of the fit-
ness function. The versatility of the GA has led to its wide appli-
cation, including reconstruction of phylogenetic trees [22], an-
cestral genome composition inference [23], and evolutionary bi-
ology in general [24].

In this article we present a new method based on the GA
to automatically infer the best-fitting demographic model from
AFS data for 2 or 3 populations. Our method assumes the
ability to simulate the AFS from the demographic model, e.g.,
using either ∂a∂i or moments. The GA framework overcomes
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Figure 2: Examples of different allele frequency spectra. (A) Isolation of a popu-
lation after divergence; (B) Low symmetrical rates of migrations between popu-
lations following divergence; (C) High asymmetrical rates of migrations between

populations following divergence.

limitations of local search optimizations and is more flexible in
handling the complexity of demographic models by allowing an
increase in the number of parameters and estimation of param-
eters such as functions of population size changes that are sud-
den, linear, or exponential. We have implemented our method in
the software GADMA (Genetic Algorithm for Demographic Model
Analysis), which is written in Python and available from Github
(https://github.com/ctlab/GADMA).

Materials and Methods

This section provides definitions of the AFS and the composite
likelihood scheme that is used in existing optimizations (∂a∂i
and moments) and implemented in our method. After this back-
ground, the problem of demographic model search from ob-
served AFS data is formulated in terms of computer science.
We then introduce a developed representation of a demographic
model for a general approach to our method, including the GA
with its operations of “mutation” and “crossover.”

Basic definitions and concepts

Assume there are P populations and for each population i there
exists information about ni chromosomes. The AFS is the P-
dimensional array A, where each entry A[d1, . . . , dP ] ∈ N, di ∈ [0,
ni], ∀i ∈ [1, P] records the number of SNVs (relative to the com-
mon reference genome), which are exactly seen at d1 chromo-
somes from population 1, d2 chromosomes from population 2,
. . . and dP chromosomes from population P. For example, if we
have 2 populations, then the AFS is a 2D matrix, where A[i, j] rep-
resents the number of polymorphisms that occurred exactly in i
individuals in the first population and in j individuals in the sec-
ond population (Fig. 1). Several examples of AFS are presented in
Fig. 2.

Assume that we can simulate the AFS M from the proposed
demographic model. Assuming no linkage between derived al-
leles, each element of the AFS S[d1, . . . , dP] is an independent
Poisson value with a mean equal to M[d1, . . . , dP]. We then cal-
culate the likelihood—the probability of obtaining the observed
spectrum S, if the expectation spectrum is M, as the product of
(n1 + 1)(n2 + 1). . . (nP + 1) Poisson likelihood functions:

L(M|S) =
∏

di =0,..,ni ,
i=1..P

e−M[d1,...,dP ] M[d1, . . . , dP ]S[d1,...,dP ]

S[d1, . . . , dP ]
.

In the case of linked alleles, L(M|S) is the composite likeli-
hood. Demographic models inferred by ∂a∂i and moments can
be compared by computing the log(L(M|S)). Because L(M|S) ∈
[0, 1], then log(L(M|S)) ∈ [− inf, 0] and the greater is the log-
likelihood, the better the model fits the observed AFS. In this

article, log(L(M|S)) was chosen as the fitness function of the GA,
as discussed below.

Formulation of the problem

Consider a function f(�, A, C) that takes the parameters � =
{θk}N�

k=1, θk ∈ R, the AFS A ∈ RP×P , the set of constants C =
{ck}NC

k=1, and returns the measure of the correspondence between
the parameters � and the AFS, A.

The function f(�, A, C) builds a demographic model with re-
spect to the parameters � that unambiguously determine it, cal-
culates the expected AFS M with respect to the constants C, and
then determines the degree of similarity between M and the ob-
served A by the composite likelihood. The constants can be var-
ious parameters of algorithms for calculating the expected AFS,
such as grid sizes for the numerical solution of a differential
equation in ∂a∂i, or population model parameters, including the
average number of new mutated sites per individual in a gener-
ation θ0 for the infinite-sites mutational model, or the time Tg

for 1 generation in the Wright-Fisher model. The function f can
have different implementation details. Here ∂a∂i and moments
were selected for this purpose.

The purpose of this work is to develop an algorithm to search
for the demographic model that best corresponds to the ob-
served AFS. Formally, the problem can be formulated as follows:

Input

� A ∈ RP×P —the P-dimensional array, P ∈ {2, 3}.
� C = {ck}NC

k=1—the set of constants.

Output

� The set � ∈ RN� of values that maximize the value of f:

� : f (�, A, C ) → max

There are approximate solutions of this problem with an ad-
ditional input—a demographic model with a fixed number of pa-
rameters, using various local search algorithms, but in practice,
as mentioned above, these algorithms have proven to be ineffec-
tive. We present a new algorithm for the approximate solution of
this more general problem using one of the most effective meth-
ods of global optimization—the GA.

Representation of the demographic model and its
structure

Assume a division of 1 ancestral population into 2 new isolated
subpopulations. Then the number of population-splitting events
directly depends on P, the number of considered populations.
We represent the demographic model as a sequence of “time in-
tervals” and population splits, each of which has a fixed num-
ber of parameters. Assume a fixed temporal order of the cur-
rent observed populations: from an ancient ancestral popula-
tion to the more recently formed subpopulations. This tempo-
ral order is usually known or can be imputed. If the number of
populations is ≤3, then each split will divide the last formed
population. Thus, a splitting event has only 1 parameter—the
fraction of the population, which separates to form a new
subpopulation.

The next important component of the demographic model
is the concept of the time interval. First, we define this as a
segment of time during which a certain dynamic of change of
effective size is maintained for each population. We consider
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4 GADMA: Inferring demographic history of multiple populations from allele frequency spectrum data

Figure 3: Example of a demographic model with a (2, 1, 1) structure. Time is
shown along the x-axis and population size on the y-axis. Four time intervals
are shown: T1, T2, T3, and T4, and 2 populations splits: S1 and S2. The structure

of this model is (2, 1, 1) because T1 and T2 are time intervals for 1 ancestral pop-
ulation, followed by split S1, T3 is the time interval for 2 populations, and T4 is
the time interval for 3 final populations after the second split S2. Time interval
T2 has the following parameters: time of this interval, size of the ancestral pop-

ulation at the end, and the dynamic of size change. Time intervals T3 and T4

for each population will contain the same parameters plus migrations between
populations. Split events S1 and S2 have fraction of size split as parameter. The
first interval contains the size of an ancestral population, but it can be ignored

because it could be implicitly evaluated from other parameters [11].

3 main demographic dynamics of population growth: sudden,
linear, and exponential change of the effective population size
(Fig. S1). Sudden change is very popular for its simplicity, but
exponential change is a commonly used model for population
growth as well. We include linear change because it is tradeoff
between sudden and exponential change and is more realistic
than sudden change. Second, the parameters of migration rates
between populations are constant during a given time interval.
Thus, each time interval has the following parameters:

� time,
� effective population sizes at the end of the time interval,
� demographic dynamics of effective population size change,
� migration between populations, if there is >1 population.

The sizes of the populations at the beginning of any time
interval are equal to the sizes of the populations at the end of
the previous interval. The first time interval is a special one:
we consider that it lasts from the beginning of the existence
of the species and assume a demographic dynamic of sudden
change for the effective population size of the ancestral popu-
lation [11]. Therefore, in this interval the only parameter esti-
mated is the size of the ancestral population. Note that the num-
ber of splitting events is determined by the number of popula-
tions under consideration, but the number of intervals can be
varied and thus change the number of parameters of the demo-
graphic model, its detail, and complexity.

We now can define the concept of the ”structure of the demo-
graphic model.” In the case of an ancestral population splitting
into 2 subpopulations, the structure of the model will include
a number of time intervals that occur before and after a single
splitting event. In the case of 3 populations, the structure in-
cludes a number of time intervals prior to the first split, those
between the first and second split, and the ones after the sec-
ond split. For example, assume we observe 3 populations. At the
beginning, there was an ancestral population (PA) and this popu-
lation started to grow in effective size. Then a split occurred that

divided this ancestral population into 2 daughter populations (P1

and P2) that changed in effective size during 1 interval, followed
by a split of the second population (into P2a and P2b), resulting
in 3 descendant populations that changed within 1 subsequent
time interval. The structure of such a model would be described
as (2, 1, 1) (Fig. 3). The simplest model structures would be for 2
populations—(1, 1), and for 3 populations—(1, 1, 1).

More formally, the structure of the model is a sequence of
the form S∗ = {s∗

i }P
i=1, s∗

i ∈ N, where P ∈ {2, 3} is the number of
populations. In this case, the number of parameters N�(S∗) of the
demographic model with the structure S∗ will be determined as
follows:

N�(S∗) = (P − 1) +
∑P

i=0
Ni

�(s∗
i ),

where Ni
�(s∗

i ) =

⎧⎪⎨
⎪⎩

3(s∗
1 − 1), if i = 1,

7s∗
2 , if i = 2,

13s∗
3 , if i = 3.

The term (P − 1) corresponds to the number of split parame-
ters, and

∑P
i=0 Ni

θ (s∗
i ) is the number of time interval parameters.

This number of parameters is valid for the GA that is described
below, but the number of final model parameters is different.
During the local search, which occurs after the GA, the dynam-
ics of population size change are fixed and the final number of
parameters N�(S∗) is:

N�(S∗) = (P − 1) +
∑P

i=0
N

i
θ (s∗

i ),

where N
i
�(s∗

i ) =

⎧⎪⎨
⎪⎩

2(s∗
1 − 1), if i = 1,

5s∗
2 , if i = 2,

10s∗
3 , if i = 3.

Thus, we can unambiguously interpret the demographic
model according to the list of parameters and its structure by
fixing for each time interval a certain order of parameters.

General approach

The general algorithm is a series of executions of the GA (Fig. S2).
Suppose we have the initial and final structures that define the
initial and final number of parameters (definition of the model
structure is presented in the previous section) of the demo-
graphic models, derived from considerations about the popula-
tions we are trying to model. During the GA, the structure of the
model does not change; i.e., the model’s parameters for the cur-
rent structure are optimized. This restriction makes the proce-
dure of crossover in the GA simpler. As soon as the GA stops, the
parameters of the best-fitting model are adjusted to improve the
likelihood with a local search algorithm. If the structure of the
model is not quite complex enough, i.e., some value in the model
structure (e.g., model structure (1, 1, 1)) is less than the corre-
sponding value in the final model structure (e.g., model structure
(2, 1, 1)), its complexity (in terms of parameters) is increased and
the GA is run again for the new model structure. The GA and lo-
cal search are executed until the best-fitting parameters of the
model with the final model structure are obtained.

Akaike information criterion
With an increase in the number of model parameters, we risk
overfitting the model. A model with a large number of param-
eters will be better able to find parameter values correspond-
ing to the observed data than a model with a smaller number of
parameters, but at the same time it will correspond less to re-
ality, e.g., due to data errors. The Akaike information criterion
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(AIC) [25] is commonly used to compare models with different
numbers of parameters:

AIC(M(θ ), S) = 2 · k − 2 · log(L(M(θ )|S)),

where k is number of parameters of the model and log(L(M(θ )|S))
is the value of the log-likelihood function.

The composite likelihood Akaike information criterion
(CLAIC) is a modification of the AIC for composite likelihoods,
which is important to implement when single-nucleotide poly-
morphisms (SNPs) that are used to build the AFS are linked [26,
27]. The CLAIC is defined as follows:

CLAIC(M(θ ), S) = 2 · tr(J (θ )H−1(θ )) − 2 · log(L(M(θ )|S)),

where J(θ ) and H(θ ) are the variability and Hessian matrices, re-
spectively:

J (θ ) = Eθ

{
∂L(θ |S)

∂θ

(
∂L(θ |S)

∂θ

)T
}

,

H(θ ) = Eθ

{
− ∂2

∂θ∂θT
L(θ |S)

}
.

The smaller the AIC or CLAIC score is, the better the model
fits the observed data. In practice, calculation of the CLAIC is
very challenging. Coffman et al. [26] applied bootstrapping to
adjust composite likelihoods during statistical inference of de-
mographic history using the programs ∂a∂i and TRACTS [28] and
thereby calculate the CLAIC. This implementation was included
in GADMA. Therefore, to obtain an accurate CLAIC score, one
should perform block bootstrapping over unlinked regions of the
genome.

Obviously, for AIC it is enough to compare only the final mod-
els for each model structure after the local search because the
number of parameters between the increases in model struc-
ture does not change, and therefore the value of the AIC score
depends only on the likelihood values. In the implementation of
GADMA, if the models with the best likelihood and best AIC or
CLAIC (depending on whether SNPs are linked or not) score do
not match, the user is informed about the overfitting.

There are other methods for determining the selection of the
best demographic model given an AFS dataset, e.g., likelihood
ratio tests, which were introduced by Coffman et al. [26]. How-
ever, it is not possible to use them, because they assume nested
demographic models, which is incorrect in our case because the
dynamics of population change can vary during the GA.

Genetic algorithm

The GA is one of the most effective heuristic algorithms [21].
It is based on the principles of evolution, where the aim of the
algorithm is to find an approximate solution to a problem that
has the maximum or minimum value of the fitness function. At
the beginning of the algorithm, a fixed-sized set of random so-
lutions, called individuals, is created. The set itself is called a
generation. Each individual is assigned a value of fitness, which
is determined by the value of the fitness function. After this, new
generations are iteratively produced with the help of mutations,
crossover, and selection of the fittest individuals (i.e., the mod-
els with the highest likelihood scores). All these operations can
be either deterministic or random, and their order can vary in
different implementations. In our case, individuals are demo-
graphic models of the same structure, and the fitness function

Figure 4: Diagram showing the scheme of the genetic algorithm used in GADMA.

is the log-likelihood, log(L(M|S)), as described in Materials and
Methods.

In the first step of GADMA, a set of demographic models are
randomly generated, if they have not been already specified. To
form a new generation of demographic models, we select the
most adapted models among a set of mutated, crossed, and ran-
dom models in the previous generation. The value of the fitness
function is used to select the most adapted models. The choice
of models to be mutated or have crossover is random, but the
probability of choice is directly proportional to the value of fit-
ness: the better the fitness of the model is, the more likely it is
to be selected. The GA stops when it can no longer obtain a bet-
ter demographic model by the value of the fitness function for
several iterations (Fig. 4).

Mutation of the demographic model
The mutation of the demographic model (Fig. 5) is equal to the
process of changing the values of several parameters. There are
2 constants associated with mutation of the model: the rate
and the strength of mutation. The number of parameters to be
mutated is sampled from a binomial distribution with a mean
equal to the mutation strength. Parameters that are mutated
are chosen with the probability that is directly proportional to
their weights, which at the beginning are equal (i.e., the choice is
equally probable), and then each weight can be increased when
a mutation of the corresponding parameter has occurred, which
leads to an improvement in the model. The measure of how
much the value of each parameter is mutated is determined by
the sign (+1 or −1, which are equally probable) and the rate of
the mutation that is randomly sampled from the normal distri-
bution, with the mean equal to the mutation rate and a vari-
ance equal to half of the mean. Among the parameters that can
be mutated during estimation of the demographic model is the
mode of population size change (sudden, growth, and exponen-
tial). If this parameter is chosen to be mutated, then the value
(mode) will change to 1 of the other 2 population size change
dynamics with equal probability.

Adaptive mutation rate and mutation strength
In the initial iterations of the GA, strong mutations of a large
number of parameters are much more effective than weaker
mutations of a small number of parameters, whereas when ap-
proaching the optimal solution the opposite is true. Therefore,
the rate and strength of mutation can be adaptive; i.e., it changes
during the operation of the algorithm. There are several ways to
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6 GADMA: Inferring demographic history of multiple populations from allele frequency spectrum data

Figure 5: Diagram showing how mutation is used to change parameters of the
demographic model in GADMA. In this example, ancestral population size is mu-
tated at the second time interval prior to a population-splitting event.

Figure 6: Diagram showing how crossover of 2 demographic models is performed
in GADMA.

make an adaptive value, one of the most popular being the one-
fifth algorithm [29]. First, we apply it to the mutation rate: at
each iteration, if we have a “successful” solution, i.e., it becomes
better after mutation, then we multiply the mutation rate by the
constant C ∈ [1, 2]. If the solution is not “successful,” then we di-
vide by a fourth-degree root of C, decreasing the mutation rate.
In the case of the mutation strength for the “successful” solu-
tion, it is necessary to additionally check whether the decision
has become the best solution during the entire course of the al-
gorithm’s run.

Thus, often getting a new best solution with a mutation
that occurs at the beginning of the GA, we increase the num-
ber of parameters that are changed during the mutation op-
eration and the degree to which they are changed. As we ap-
proach the optimum solution and decrease in frequency, the
number of parameters will also decrease and lead to a more
accurate search. An increase in the number of parameters be-
ing mutated leads to a more efficient crossover. At the same
time, the mutation rate is changed more frequently than the
mutation strength, which makes the mutation procedure more
effective.

Crossover of 2 demographic models
In order to have crossover of 2 demographic models, the mod-
els are represented as sequences of parameters. Each parame-
ter of their descendant is chosen randomly with equal probabil-
ity from one or the second parent (Fig. 6). Because the structure
of models does not change during the operation of the GA, the
number of parameters for all models will be the same. Conse-
quently, the parameters can be unambiguously interpreted and
easily crossed according to these criteria.

Local search algorithms

Local optimizations are effective in cases when the initial so-
lution is close to optimal. They are more accurate in adjusting
parameters than the GA and can significantly improve its result.

∂a∂i and moments provide the following choice of algorithms for
local optimization:

� The BFGS algorithm.
� L-BFGS-B—a modification of the BFGS algorithm, which is

more efficient when the optimal parameters are close to the
bounds.

� The Nelder-Mead method or simplex method.
� The Powell method.

The first 2 methods are gradient descent optimization algo-
rithms [30], and the last 2 do not use a gradient. The Powell
method was proposed by the authors of moments and was noted
as the most effective, so it was adapted for use with ∂a∂i, and for
our experimental studies (see below) it was chosen as the local
search algorithm.

Increasing the complexity of the structure of the
demographic models

We need to be able to increase the complexity of the structure of
the demographic model in order to find an optimal solution. To
do this, a time interval is selected and then divided into 2 equal
intervals (i.e., the division based on the median). The time in-
terval is chosen randomly on the basis that the new structure
S∗ should not become greater than the final SF according to 1
of its values: s∗

k ≤ sF
K , ∀k ∈ [1, P ]. The values of the parameters

of the newly formed time intervals are calculated for the par-
ent: the size of the population of the first time interval is equal
to the size in the middle of the parental time interval, and the
parameters of the second time interval are equal to the popu-
lation size at the end, with the time of both intervals equal to
half of the parental time, while migration between populations
and the demographic dynamics of population size change re-
main the same. In essence, the demographic model has more
parameters after its structure is increased; however, the history
and likelihood remain the same.

Results

We implemented the method described above in the program
GADMA, written in the Python programming language. We ex-
plored the efficiency of our method using simulated data and
several previously published datasets. It is important to note
that tests using simulated AFS data should be interpreted with
caution; these analyses and their associated demographic mod-
els are simplified for the sake of computational efficiency, and
additional tests must be performed. For previously published
datasets, GADMA was used to first infer demographic models
for 2 and 3 modern human populations using the dataset an-
alyzed by Gutenkunst et al. [11]. For these analyses, different
parameter values within GADMA were examined, including the
initial structure of the demographic models and using either ∂a∂i
or moments to infer the optimal model of demographic history.
The case of 2 human populations when initial structure and the
final structure are not equal corresponds to the use of the in-
crease of the model complexity feature that improves the result
by finding simple models first and detailing them later. We then
inferred demographic models for the history of 2 populations of
the Gillette’s checkerspot butterfly, Euphydryas gillettii, and these
were compared to the previous models reported by McCoy et al.
[31]. Last, we used GADMA to reconstruct the demographic his-
tory of the Gaboon forest frog, Scotobleps gabonicus, which occurs
in central and western African rainforests, based on a dataset
generated and originally reported by Portik et al. [32].

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/9/3/giaa005/5768731 by guest on 28 M

ay 2020



Noskova et al. 7

Figure 7: (a) Demographic model of 2 human populations (YRI and CEU) inferred using ∂a∂i, as originally reported by Gutenkunst et al. [11]. This model has 6 parameters.

The size of the African population after its growth 169,000 years ago is constant and migration rates between African and European populations are symmetric. (b)
The demographic model from the same allele frequency spectrum inferred using GADMA with 12 parameters. Note that the differences between the inferred models
are the slightly later age of the split between the YRI and CEU populations and the linear population growth (as opposed to exponential growth) in the CEU population
in the model obtained with GADMA.

Tests on the simulated AFS data

In order to demonstrate that GADMA is computationally and sta-
tistically efficient, 3 datasets were simulated with moments us-
ing the following sudden population size dynamics (all parame-
ter values are presented in Tables S6–S8):

i. Bottleneck model for 1 population (4 parameters),
ii. Simple ancestral population division with asymmetric mi-

gration between 2 descendant populations (5 parameters),
iii. Secondary contact with symmetrical migration for 3 popu-

lations following split of 1 of the 2 descendant populations
(8 parameters).

All simulated AFS were unfolded with a size of 20 chromo-
somes per population. The Powell method was chosen as local
search algorithm. All runs were repeated 50 times for 1 and 2
populations and 10 times for 3 populations.

GADMA was compared with 2 methods: (i) local searches
starting from different initial values and (ii) using the ∂a∂i
pipeline, which was readjusted for moments use. The number
of initial parameters for the first method and the number of
replicates in the ∂a∂i pipeline were selected so that the mean
number of fitness function evaluations was almost the same
as in GADMA. For example, in case of 1 population: 40 initial
points for the local search and 5 rounds of 10, 10, 10, 10, and 20
replicates for the ∂a∂i pipeline. For the comparison, GADMA was
launched for the same demographic models as the local search
approaches. But 2 additional GADMA variations were included: 1
with all parameters, but with fixed dynamics of population sizes
(sudden), and a second with variation of these dynamics. There-
fore, 5 different optimizations were compared and the results
including parameter values, maximum, mean, and standard de-
viation of log-likelihood are provided in Tables S6–S8.

For 1 population, 50 runs of the ∂a∂i pipeline showed the best
demographic model compared to the other methods. Although
the best model obtained using GADMA had slightly worse likeli-
hood score, GADMA was better on average. During demographic
inferences without limitations on the population dynamics, the
known problem about the uncertainties of the AFS appeared: the
model with an early exponential bottleneck has almost the same
likelihood as the model with sudden population size changes.
All 3 versions of GADMA showed nearly identical results with
the better mean and standard deviation of the likelihood score
compared to local search and ∂a∂i pipeline.

For 2 populations, all methods were comparable in terms of
the best model inferred after 50 replicate runs. All optimizations
except the GADMA without limitation on size dynamics were
comparable in terms of mean and variation of likelihood. The
local search from different initial points and GADMA with prior
knowledge about model were both able to infer the true model.
Two additional simulations with GADMA also showed close to
the optimum demographic models and the optimization with-
out limitation on size dynamics inferred sudden changes as ex-
pected.

For 3 populations GADMA with presized model received the
best maximum, mean, and variation of likelihood among all ob-
served methods. Both additional optimizations without prior
demographic model knowledge showed symmetric migrations
and all extra parameters close to true values. GADMA without
limitation on size change dynamics inferred non-zero migration
after split of ancestral population; however, we assume that this
could be because not enough runs were performed. All inferred
dynamics—in spite of the fact that not all of them are sudden—
showed the constancy of size change during time intervals. Thus
we could argue that GADMA could infer the true demographic
history without any knowledge of its model.

Testing the human Out of Africa model with GADMA

One of the most popular demographic history models for hu-
man populations is the so-called “Out of Africa” model, which
consists of 3 populations [11, 12, 33, 34]:

� YRI — Yoruba individuals from Ibadan,
� CEU — Utah residents with ancestry from northern and west-

ern Europe,
� CHB — Han Chinese individuals from Beijing.

To demonstrate the effectiveness of our method, we choose
to use the AFS from Gutenkunst et al. [11], in which the ∂a∂i
method is introduced and the demographic history models for
2 (YRI, CEU) and 3 (YRI, CEU, CHB) populations are inferred from
this spectrum. These models (Fig. 7a and 8a) were obtained from
a large number of local optimization launches and also have a
number of restrictions on the number of population parame-
ters: the size of the YRI population does not change after the
first expansion of the ancestral population, migrations are sym-
metrical, and the dynamics of population size change are fixed
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8 GADMA: Inferring demographic history of multiple populations from allele frequency spectrum data

Figure 8: (a) Demographic model of 3 human populations (YRI, CEU, CHB) inferred using ∂a∂i, as originally reported by Gutenkunst et al. [11], which included 13

parameters. (b) The demographic model from the same allele frequency spectrum inferred using GADMA with 20 parameters.

as sudden, except for the last time interval for CEU and CHB,
where exponential growth occurs. The model for 2 populations
has a total of 6 parameters whereas the model for 3 populations
has a total of 13.

The 21 × 21 × 21 AFS was constructed by Gutenkunst et al.
[11] on the basis of the Environmental Genome Project [35]. All
biallelic SNVs from non-coding regions of 219 genes (totaling
5.01 Mb) were considered and the effective length of the used
sequence was equal to L = 4.04 × 106. We used the same neu-
tral mutation rate equal to μ = 2.35 × 10−8 per site per genera-
tion and the same generation time equal to Tg = 25 years as in
Gutenkunst et al. [11]. Thus, the average frequency of mutation
in 1 individual per generation is equal to θ0 = 4μL = 0.37976.

The following parameters of the GA were used: the size of the
generation of the demographic models was chosen to be equal
to 10, the strength and mutation rate was equal to 0.2, and the
proportions of the best, mutated, crossed, and random models
in the new generation were 0.2: 0.3: 0.3: 0.2. The strength and
rate of mutation were adaptive with the constants of 1.05 and
1.02, respectively. The AFS was simulated using ∂a∂i with a G =
{40, 50, 60} grid size, the value of the likelihood was considered
significant to the second decimal point, and the GA stopped after
100 iterations without improvement. As for the local optimiza-
tion search, the Powell method was chosen.

For the human population data, we used the block boot-
strapped dataset from Gutenkunst et al. [11], where it was per-
formed over 219 sequenced loci under the assumption that the
loci are well separated and can be treated as independent. The
confidence intervals (CIs) reported in Tables 1 and 3 were cal-
culated as θ∗ ± σ (θ∗), where θ∗ denotes the maximum likelihood
values of parameters, and θ∗ and σ (θ∗), the mean and standard
deviation of the bootstrap results. All our model parameters are
positive by definition, so their logarithms were used to calculate
CIs. In the case of 3 human populations, CIs are different to those
from the original paper by Gutenkunst et al. [11]. However this
fact popped out in our analysis and we argue that is because of
the different optimization method: for each bootstrapped data
point, only 1 local optimization with wider search intervals for
parameter values was launched from the found optimum point.

The YRI, CEU 2-population example
Three demographic models were inferred from the same AFS: 1
model using the same parameters as in Gutenkunst et al. [11]
(model 1) and 2 with all possible 9 parameters (models 2, 3)
but with different initial demographic model structures. Model
2 had a structure (1, 1), which then expanded to (2, 1) during the

GADMA run, whereas model 3 had an initial structure of (2, 1).
We ran GADMA 10 times for each of the 3 models (Table 1, Fig. 7).
All 3 models resulted in likelihoods better than the final demo-
graphic model originally inferred in Gutenkunst et al. [11]. The
parameters of models 1 and 2 are not significantly different, and
model 3 has the best likelihood value and CLAIC score. Model 3
shows a lower population size of Europeans, a larger rate in their
growth (from 25 individuals to 9,000), and a shorter separation
time than the best model found in Gutenkunst et al. [11], as well
as models 1 and 2. Migration rates between the populations were
chosen to be asymmetric, but they are largely equal to each other
and coincide with values among the 3 models.

To demonstrate the inefficiency of the methods of local op-
timization for the model from Gutenkunst et al. [11], 1 of the
methods proposed by ∂a∂i, BFGS, was launched 100 times. In
each run, the initial parameter values were chosen randomly.
The best value of the log-likelihood was −1,629.24, which is quite
far from the optimal value of −1,066.35 reported in Gutenkunst
et al. [11]. The average time of 1 optimization run was ∼21 min-
utes. We then used a more efficient local optimization method
implemented in the dadi-pipeline developed by Portik et al. [32].
It implements a scheme of sequential runs using the Nelder-
Mead local optimization with initial random parameter values
and perturbation of values between runs. We used the following
settings of the dadi-pipeline tool: 3 rounds with 10, 20, 50 replica-
tions with 3-, 2-, and 1-fold perturbations, respectively, for each
round. The dadi-pipeline was launched 50 times and the best
resulting model had a log-likelihood equal to −1,073.98. The av-
erage run time for 1 launch of optimization was ∼10 minutes.

To compare the runs with different initial demographic
model structures (models 2 and 3), characteristics such as time
for 1 iteration of the GA, number of iterations, and mean and
standard deviation of the log-likelihood value were calculated
(Table 2). Launches with a simple initial model structure show a
more stable result in terms of the likelihood value, but they have
a longer average run time for 1 iteration. Furthermore, all the
models obtained for simple-structure launches have the same
demographic dynamics of population size change and similar
parameters as the final model reported in Gutenkunst et al.
[11], which is incorrect in cases involving launches of complex-
structure models, as the best model shows a linear growth of the
European (CEU) population as opposed to exponential growth in
other cases. At the same time, although the launches of models
with complex model structures result in a final model with a bet-
ter log-likelihood score, it differs from the other models in terms
of parameter values, which may indicate that it is inaccurate.
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Table 1: Maximum likelihood parameters for different demographic models for 2 human populations (YRI and CEU) inferred using either ∂a∂i
or GADMA (the latter under 3 different parameter settings)

Model from ∂a∂i example Model from GADMA (1) Model from GADMA (2) Model from GADMA (3)

No. of parameters 6 6 8 8
Log-likelihood −1,066.35 −1,066.28 −1,065.87 −1,065.15
CLAIC (ε = 10−5) 35,059.26 33,702.64 28,389.58 53,101.50
Population size (95% CI)

N A 7,240 (6,841−9,166) 7,230 (6,840−9,167) 7,200 (6,920−7,519) 7,210 (6,561−8,914)
N AF0 13,620 (11,575−16,177) 13,580 (11,574−16,180) 13,400 (11,331−18,032) 14,000 (10,682−25,283)
N EU0 515 (383−809) 530 (383−810) 560 (415−673) 25 (14−170)
N EU 13,360e (7,320−18,892) 12,400e (7,314−18,906) 12,100e (9,171−18,576) 8,950l (5,985−10,623)
N AF (=N AF0) (=N AF) 13,500 (11,698−14,834) 13,300 (10,221−15,611)

Migration rate per
generation (95% CI)

m AF−EU(×10−5) 6.3 (4.5−9.6) 6.3 (4.5−9.6) 7.1 (1.1−1.9) 5.8 (4.0−11.3)
m EU−AF(×10−5) (=m AF−EU) (=m AF−EU) 6.1 (9.5−14.8) 6.1 (4.1−9.7)
T AF (kya) 168.5 (87.3−165.8) 171.5 (87.3−165.9) 176.5 (122.1−230.6) 171.1 (75.1−224.2)
T AF−EU (kya) 40.0 (30.8−58.5) 40.8 (30.8−58.6) 42.3 (35.3−46.7) 34.8 (29.1−47.6)

eExponential growth.
lLinear growth.
kya: thousand years; N A : size of ancestral population; N AF0: size of ancestral population after growth; N EU0: size of European population after divergence of
ancestral population; N EU: current size of European population (after growth); N AF: current size of African population; m AF − EU: migration rate from European to

African population; m EU−AF: migration rate from African to European population; T AF: time of ancestral population size growth; T AF−EU: time of divergence. Best
log likeliood value and CLAIC score are marked in bold.

Table 2: Comparison of runs using GADMA with different ini-
tial demographic model structures: simple (10 times) and complex
(10 times) for the case of searching for the optimum demographic
models for 2 human populations, YRI and CEU

Model
Initial

structure

Mean time
per iteration

(sec)
Mean No. of

iterations
Mean ± SD

log LL

2 (1, 1) 4.06 2,938 −1,066.39
± 0.22

3 (2, 1) 3.77 1,400 −1071.16
± 14.35

log LL: log likelihood.

The YRI, CEU, CHB 3-population example
We also applied GADMA to infer demographic models for the
case of 3 human populations based on same the AFS used
in Gutenkunst et al. [11]. The first model (model 1) used the
same parameters as in Gutenkunst et al. [11], and their corre-
sponding values were inferred (Table 3). GADMA yielded bet-
ter log-likelihood values for parameters than those reported in
Gutenkunst et al. [11]. However, the timing of the split between
the YRI population and the CEU+CHB populations was dated
to 400,000 years ago, which is 250,000 years older than that in-
ferred in any previous studies. To correct this, we restricted the
age of this splitting event to 150,000 years ago based on previ-
ously published estimates [36–38]. A demographic model (model
2) was inferred with this age restriction, which yielded a better
log-likelihood value than that in Gutenkunst et al. [11]. Next, we
inferred the demographic model (model 3) that included all 20
parameters. Here we also observed an unrealistic earlier age for
the divergence between YRI and CEU+CHB (results not shown).
When we applied the 150,000 year age constraint as in model
2, we inferred a demographic model (model 3) that not only
showed the highest log-likelihood value, but also the best CLAIC
value.

As in the case of the 2 human population example, we also
tested the 3-population case with the BFGS local optimization
used in ∂a∂i. We launched the optimization 100 times from ran-
domly selected initial parameters, and the best log-likelihood
value obtained was −6,323.99, which slightly differs from the
optimal log-likelihood −6,316.89, which is much less than that
from the comparison for 2 populations.

With the exception of the earlier age of divergence between
the YRI and CEU+CHB populations in model 1, demographic
models 1 and 2 and the one inferred by Gutenkunst et al. [11]
have similar log-likelihood values and parameter estimates. In
model 3, which has 20 parameters and the best CLAIC value,
some parameters are also quite similar to the values in the other
2 models. The major exceptions, however, are the inferred mi-
gration rates and population size of the Eurasian population,
which exponentially grows from 200 to 1,500 individuals after
the split of the ancestral population. For comparison, in other
models this number is a constant equal to 2,000 individuals,
which seems less realistic than exponential growth. Migration
rates vary considerably: they are higher in model 3 compared
to models 1 and 2 or the one found by Gutenkunst et al. [11].
Model 3 shows that the largest migration occurred between the
YRI and CEU populations, and following the ancestral division,
between the CEU and CHB populations. Moreover, the more ge-
ographically distant the populations are, the smaller is the ob-
served migration rate.

GADMA was launched 10 times for each of the 3 models us-
ing ∂a∂i, and the best solutions were observed (Table 1, Figure 8).
We also launched GADMA using moments 10 times to compare
its effectiveness with ∂a∂i. The authors of moments conducted
similar comparisons on simulated data [12]. Various character-
istics of run time and stability of the log-likelihood value based
on the results of 20 GADMA runs (10 using ∂a∂i, 10 using mo-
ments) are presented in Table 4. Log-likelihood values of models
inferred using moments were recalculated using ∂a∂i with the
G = {40, 50, 60} grid size simulated AFS so that log-likelihoods
obtained with the 2 methods were comparable. Analyses using
moments were 7.5 times faster than ∂a∂i, whereas those using
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10 GADMA: Inferring demographic history of multiple populations from allele frequency spectrum data

Table 3: Maximum likelihood parameters inferred from the demographic models for the YRI, CEU, and CHB human populations

Model from Gutenkunst et al. [11] Model from GADMA (1) Model from GADMA (2) Model from GADMA (3)

No. of parameters 13 13 13 20
Log-likelihood −6,316.89 −6,314.40 −6,315.86 −6,288.36
CLAIC (ε = 10−4) 43,865.22 45,182.80 46,161.50 42,761.68
Population size (95% CI)

N A 7,300 (6,065−8,185) 6,000 (4,841−11,781) 7,300 (6,084−11,227) 7,300 (6,713−10,696)
N AF0 12,300 (10,177−13,668) 11,840 (10,126−13,750) 12,200 (10,152−13,862) 9,900 (3,837−17,433)
N B0 2,100 (1,667−2,299) 2,050 (1,651−2,276) 2,070 (1,652−2,308) 280 (16−528)
N B (=N B0) (=N B0) (=N B0) 1,450e (1,127−1,798)
N AF1 (=N AF0) (=N AF0) (=N AF0) 14,000 (10,812−18,451)
N AF (=N AF0) (=N AF0) (=N AF0) 11,000l (4,629−20,567)
N EU0 938 (598−1,496) 930 (556−1,686) 950 (543−1,721) 890 (613−1,164)
N EU 27,300e (16,844−38,704) 24,700e (12,232−48,543) 23,700e (12,310−48,914) 19,600e (13,745−35,578)
N AS0 510 (326−788) 500 (302−876) 510 (299−867) 560 (361−877)
N AS 53,200e (26,001−91,501) 50,000e (14,211−159,816) 46,200e (14,205−167,491) 42,200e (18,188−100,754)

Migration rate per
generation (95% CI)

m AF−B(×10−5) 25.0 (22.3−33.8) 26.2 (22.7−33.9) 25.4 (20.9−35.4) 17.0 (11.8−29.3)
m B−AF(×10−5) (=m AF−B) (=m AF−B) (=m AF−B) 57.4 (44.0−74.4)
m AF−EU(×10−5) 3.0 (1.47−5.7) 3.1 (1.45−5.84) 3.1 (1.58−5.52) 4.5 (1.98−8.26)
m EU−AF(×10−5) (=m AF−EU) (=m AF−EU) (=m AF−EU) 2.8 (1.34−5.91)
m AF−AS(×10−5) 1.9 (0.02−77.3) 1.9 (0.11−20.5) 2.0 (0.35−8.37) 0.9 (0.01−16.2)
m AS−AF(×10−5) (=m AF−AS) (=m AF−AS) (=m AF−AS) 2.1 (0.58−6.35)
m EU−AS(×10−5) 9.6 (0.39−164.6) 10.2 (3.43−25.9) 10.2 (2.60−31.2) 18.8 (11.5−29.7)
m AS−EU(×10−5) (=m AS−EU) (=m AS−EU) (=m AS−EU) 6.8 (1.09−28.35)
T AF (kya) 220.8 (249.4−5,201.3) 570 (297.6−2,827.9) 232 (193.3−2,211.2) 274.8 (198.2−804.7)
T B (kya) 144.0 (246.4−2,503.7) 400 (234.2−2,309.9) 150 (152.1−2,218.3) 149.8 (98.9−666.9)
T EU−AS (kya) 21.1 (17.6−25.1) 21.0 (17.2−26.4) 21.1 (17.1−26.4) 22.4 (18.2−26.9)

eExponential growth.
lLinear growth.
kya: thousand years; N A: size of ancestral population; N AF0: size of ancestral population after growth; N B0: size of CEU+CHB population after divergence of ancestral
population; N B: size of CEU+CHB population before its split; N AF1: size of YRI population at the time of CEU+CHB population divergence; N AF: current size of YRI
population; N EU0: size of CEU population after divergence; N EU: current size of CEU population; N AS0: size of CHB population after divergence; N AS: current size
of CHB population; m 1−2: migration rate from population 2 to population 1; T AF: time of growth of size of ancestral population; T B: time of divergence of ancestral
population to YRI population and CEU+CHB population; T EU−AS: time of divergence of CEU+CHB population to CEU population and CHB population. Best log likeliood
value and CLAIC score are marked in bold.

Table 4: Comparison of outputs from different GADMA runs using
either ∂a∂i or moments for inferring demographic models for the YRI,
CEU, CHB human populations with 20 parameters.

Mean time per
iteration (sec)

Mean No. of
iterations

Mean ± SD log
LL

∂a∂i 136.81 5,531 −6,293.56
± 7.26

moments 18.44 4,700 −6,305.21
± 12.72

For the runs performed with ∂a∂i, the log-likelihood (log LL) value was calculated
using a G = {40, 50, 60} grid size.

∂a∂i were more accurate: the average and variance of the likeli-
hood values of the inferred models were better than the values
inferred using moments.

Estimation of the CLAIC for human population data
To compare demographic models of the human dataset with dif-
ferent numbers of parameters, we estimated the CLAIC scores
for each model. As the implementation from Coffman et al. [26]
uses numerical methods for Hessian and gradient estimations,
the gradient descent depends on the step size, denoted by ep-
silon (ε). Very small values of ε causes numerical issues, and
the analysis should be done with different ε values to ensure
that the results are stable (R. Gutenkunst, personal communi-
cation). We performed experiments to show how the value of
CLAIC depends on the value of ε and on the choice of using ei-
ther ∂a∂i or moments. The results of CLAIC calculation for all
models (8 models for modern human data and 15 models for
Gillette’s checkerspot butterfly population; see below) are pre-

sented in Table S5. The value of ε was taken to equal to 1 of 7
values: 10−8, 10−7, ... up to 10−2. Using ∂a∂i, the most stable result
was for ε values between 10−5 and 10−3 (for all models). The in-
terval over which models were stable using moments was wider:
[10−6, 10−2]. Values 10−8, 10−7 do turn out to cause numerical is-
sues resulting in the CLAIC to be ∼2 · logLL due to the small value
of trace. Thus, moments showed very stable and reliable results
for all values of ε except for those with small values. For ∂a∂i the
results were not as reliable, and we recommend checking the
CLAIC for different values of ε when ∂a∂i is used.

Demographic history of Gillette’s checkerspot butterfly

We next tested GADMA using data from McCoy et al. [31], who
examined the demographic history of Gillette’s checkerspot but-
terfly (Euphydryas gillettii). We used the same AFS as that used
in the original article, which consisted of 8 individuals from a
population in Colorado (CO) and 8 individuals from the native
population in Wyoming (WY). For our analyses, we used 2 AFSs
of size 13 × 13, 1 for synonymous SNVs only and 1 including all
SNVs.

McCoy et al. [31] tested 3 types of demographic models:
(i) type A—models without migration between populations, (ii)
type B1—models with unidirectional migration from CO to WY,
and (iii) type B2—models with bidirectional migration between
CO and WY. In the original article, the 3 demographic models
were tested using the AFS based on synonymous SNVs only.
Model A had the best CLAIC value, so the type A demographic
model was inferred from the AFS using all SNVs. We used mod-
els A and B2 to infer the demographic models from both AFSs
(synonymous SNVs and all SNVs) with GADMA.

Without considering migration, the models used by McCoy
et al. [31] had the following structure: there was 1 population of
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Table 5: Demographic models and their associated parameters inferred in GADMA using an allele frequency spectrum based on all SNVs for
Gillette’s checkerspot butterfly populations

Model A McCoy et al. [31] Model A Model B2 (1) Model B2 (2) Model B2 (3)

log LL −283.53 −277.82 −267.49 −278.57 −282.74
CLAIC (ε = 10−4) 1,620.85 1,619.03 −354.00 −185.48 51.85
Population size (95% CI)

η WY0 NA 0.584 (0.359−0.738) 0.028 (0.0−0.254) 0.566 (0.463−0.660) (=η WY)
η WY 1.320 (1.085−1.594) 1.358 (1.152−1.650) 1.225 (1.052−1.494) 1.773l (1.383−2.379) 1.261 (1.053−1.559)
η CO 0.173 (0.151−0.209) 0.089l (0.058−0.127) 0.074l (0.050−0.105) 0.105l (0.078−0.144) 0.183 (0.162−0.217)

Migration rate per
generation (95% CI)

m WY−CO NA NA 1.244 (0.515−1.637) 0.801 (0.170−1.231) 0.316 (0.0−0.677)
m CO−WY NA NA 0.171 (0.0−0.362) 0.056 (0.0−0.266) 0.091 (0.0−0.273)

τ SPLIT 0.117 (0.103−0.141) 0.138 (0.120−0.172) 0.259 (0.190−0.312) 0.162 (0.129−0.206) 0.129 (0.108−0.162)
Time of split in generations (95% CI)
t SPLIT 45 (44−48) 37 (28−45) 33 (28−41) 40 (35−49) 47 (44−54)

lLinear growth.
log LL: log-likelihood; η WY0: relative (to N A) size of WY population after divergence of ancestral population; η WY: current relative (to N A) size of WY population;
η CO: current relative (to N A) size of CO population; m WY−CO: scaled (by 2N A) migration rate from CO population to WY population; m CO−WY: scaled (by 2N A)
migration rate from WY population to CO population; NA: not applicable; τ SPLIT: scaled (by 1/(2N A)) time of divergence of ancestral population. Best log likeliood
value and CLAIC score are marked in bold.

N A size, which at some point in time divided into 2 subpopula-
tions, the size of which did not change further (sudden change
of population size). All parameters were calculated with respect
to N A and had the following notation: η WY, η CO — relative
population sizes at the current time; τ SPLIT — time/age of the
population-splitting event; and M WY−CO, M CO−WY — scaled
migration rates. For the models we inferred using GADMA, we
also included the parameter η WY0 ∈ [0, 1] — the size of the WY
population immediately after the splitting event or the fraction
of the size of the ancestral population that forms the WY pop-
ulation. The size of CO population immediately following the
splitting event is equal to 1 − η WY0, because N A = 1 before
the ancestral population splits. However, in the case when the
population size change is sudden, the size of the populations
following the splitting event is equal to the size at the present
time.

We ran 4 executions of GADMA with different data inputs: (i)
the AFS using synonymous SNVs only without migration, (ii) the
AFS using synonymous SNVs only with migration, (iii) the AFS
using all SNVs without migration, and (iv) the AFS using all SNVs
with migration. For each execution, the analysis was repeated
50 times. moments was used to simulate the AFS owing to its
faster computational speed. However, of the final log-likelihood
scores that are presented in Table S1, 5 were calculated using
∂a∂i with a G = {32, 42, 52} grid size in order to compare our
results with the original findings reported by McCoy et al. [31].

The length of 1 generation of the demographic models was
selected to be 10; the strength and mutation rate were set to 0.2,
with constants 1.0 and 1.02, respectively; and the proportions
of the best, mutated, crossed, and random models in the new
generation equal to 0.2: 0.3: 0.3: 0.2. The likelihood was consid-
ered significant to 2 significant digits and the GA stopped after
100 iterations without improvement. As for the local search, the
Powell method was chosen. Because the structure of the demo-
graphic model from McCoy et al. [31] corresponds to the simplest
structure (1, 1), it was chosen as both the initial and final struc-
ture of the demographic model.

The CIs were calculated for all resulting models (Table S1 and
Table 5) the same way as was done for the human population
data. In the case of the demographic models for the Gillette’s
checkerspot butterfly, all our parameters are positive. McCoy et
al. [31] did not use logarithms to calculate CIls; they just as-
sumed the lower bound of the intervals to be positive. How-

ever, when we used logarithms to calculate CIs, we found them
to be extremely wide for migration between the 2 populations.
Another problem we encountered was the performance associ-
ated with bootstrapping the data for the Gillette’s checkerspot
butterfly. The data were derived from RNA sequencing data, in
which different alleles are likely linked. Bootstraping should be
performed over unlinked regions of the genome. McCoy et al. [31]
provide the assembly of the transcriptome, so it became possible
for us to perform bootstrapping over the contigs of the assembly.
This was applied to generate CIs and CLAIC scores.

Several runs of GADMA produced different local minima, and
the resulting alternative models and their inferred parameters
are presented in Fig. 9 and Table 5, respectively. We note that 1
of the models selected by GADMA, Model 26 (Fig. 12d), was the
same model as was inferred by McCoy et al. [31], which includes
a sudden increase in population size following the splitting of
the ancestral population. For the AFS-based synonymous SNVs,
only models of type B2 had better likelihood values than models
of type A, in contrast to the models inferred by McCoy et al. [31].

For all models, the CLAIC values were calculated and are
presented in Table S5. The scores were calculated on the boot-
strapped data to generate CIs by sampling over the contigs of
the transcriptome assembly to avoid linkage (see above). For the
AFS generated from synonymous SNPs, the model without mi-
grations showed the best CLAIC score. However, the model with
migration, which had the best likelihood, had the best CLAIC
score for the AFS generated from all SNPs.

One of the findings reported by McCoy et al. [31] was that the
demographic models that included migration may not be appli-
cable when the real population history shows no evidence for
migration. This conclusion was based on 2 factors: (i) the type A
demographic model, inferred from the AFS using synonymous
SNVs, had the best AIC score; and (ii) the estimate of the split-
ting time of the ancestral population in models that included
migration had wide 95% CIs, such that the parameter bound-
aries included zero (see McCoy et al. [31]). However, during our
regeneration of these authors’ results, we found errors associ-
ated with some of the parameters of the demographic models:
the split time of the ancestral population and migrations were
mixed up with each other, resulting in migrations, but not split
times, having wide CIs that included zero. Moreover, our anal-
yses using GADMA showed that the 95% Cl for the split time of
the ancestral population is rather good (e.g., 0.189−0.323 for the
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12 GADMA: Inferring demographic history of multiple populations from allele frequency spectrum data

Figure 9: Alternative demographic models based on an AFS for Gillette’s checkerspot butterflies from Colorado (CO) and Wyoming (WY), inferred with GADMA. Models
of type B2 have negligible migration rates. (a) Type A model: without migration; (b) Type B2 model with migration; (c) Type B2 model with migration; (d) Type B2 model

with migration.

case of the best B2 model) and that the migration rates are so
small that they can be considered as zero. Therefore, the best-
fitting model that includes migration suggests a demographic
history without migrations. The demographic models inferred
by GADMA also have negligible migration values, and demo-
graphic models of type B2 (those with bidirectional migration),
inferred as the best-fitting models, had better CLAIC values than
type A models.

The average population size of butterflies from CO was es-
timated as N CO = 34 individuals by McCoy et al. [31]. If we
scale the parameters of the best-fitting model so that the av-
erage size of the CO population is equal to this value (x · [η CO +
(1 − η WY0)]/2 = N CO), then for best model we get 33.6 genera-
tions ( t SPLIT = 2 · x · τ SPLIT) after the division of the ancestral
population, which corresponds to the actual 33 generations ob-
served (1977–2010). Such estimates were made for all resulting
models (Table 5). However, the best-fitting model had the best
estimated value of split time of the ancestral population (33.6
generations).

Demographic history of the Gaboon forest frog

For our third evaluation of performance, we compared the de-
mographic models inferred using GADMA with those inferred
with the recently developed optimization method implemented
in the dadi pipeline [32]. This pipeline uses ∂a∂i to simulate an
AFS and infers parameters of the researcher-specified demo-
graphic model by several rounds of consistent runs using the

Nelder-Mead local optimization method. During the first round,
random parameter values are estimated, and during each suc-
cessive round, the best parameters from the previous rounds
are used. Prior to each Nelder-Mead local optimization, current
parameter values are perturbed. Portik et al. [32] demonstrated
the dadi pipeline using AFSs generated from the Gaboon forest
frog (Scotobleps gabonicus), and these same data were used to per-
form the analyses using GADMA. Sampling included 84 samples
from 33 localities of Lower Guinea, West Africa, which were di-
vided into Northern and Southern populations according to hi-
erarchical Bayesian clustering analysis of 7,633 unlinked SNPs
generated using RADseq. Each Northern and Southern group
was further divided into 3 clusters: Cameroon Volcanic Line
North (CVLN), Cameroon Volcanic Line South (CVLS), and Cross
River (CrossRiver) populations for the Northern group; and North
Coast, South Coast, and East Gabon populations for the South-
ern group.

To perform our analyses using GADMA, 3 2Dl folded AFSs
were chosen from Portik et al. [32]: (i) a 41 × 19 spectrum for
Northern and Southern populations, (ii) a 31 × 19 spectrum for
CVLN and CVLS, and (iii) a 15 × 31 spectrum for the CrossRiver
and CVLN populations. In generating the AFSs, only a single SNP
per RAD locus was kept, so loci are assumed to be independent.
For each spectrum, we estimated best-fitting log-likelihood
values, AIC scores, Akaike weights (ωi) [39], and parameters for
14 demographic models. Two demographic models assumed
no divergence between populations, while the remaining
12 models assumed a split of the ancestral population and
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Noskova et al. 13

Figure 10: Demographic models with the highest log-likelihoods obtained from allele frequency spectra for different populations of the Gaboon forest frog, inferred
using GADMA. (a) Demographic model inferred for the Northern and Southern populations; (b) demographic model inferred for the CVLN and CVLS populations; and

(c) demographic model inferred for the CrossRiver and CVLN populations. The plots to the right of the demographic models show the AFS data (upper left), AFS of the
demographic model (upper right), Anscombe residuals between model and data (lower left), and the histogram of the Anscombe residuals (lower right).

different assumptions related to migration rates, isolation, and
population size changes. All population size changes were con-
sidered to have sudden change dynamics, which we included
in our analyses as well. For all models, we provide inferred
parameter values in Tables S2–S4, including the value of θ =
4NAμL, where μ is the mutation rate per generation per site and
L is effective sequence length.

The best-fitting demographic model inferred using the dadi
pipeline for the Northern and Southern populations only sug-
gests a population expansion, followed by secondary contact
and symmetrical migration between populations (
AIC = 13.6,
ωi = 0.99). For the CVLN and CVLS populations, the best demo-
graphic model included population expansion, secondary con-
tact, and asymmetrical gene flow from CVLN to CVLS (
AIC
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14 GADMA: Inferring demographic history of multiple populations from allele frequency spectrum data

= 94.2, ωi = 0.99). Finally, 2 demographic models explain the
AFS data equally well for the CrossRiver and CVLN populations:
1 with secondary contact but no population size change and
asymmetrical migration from CVLN to Cross River (ωi = 0.53) and
another that included an ancestral population division with con-
tinuous asymmetric gene flow (ωi = 0.43).

We inferred all 12 demographic models with divergence as in
Portik et al. [32] for each of the 3 AFSs with GADMA. Each of 36
runs was repeated 10 times as opposed to the 50 runs launched
with the dadi pipeline. We originally had planned to conduct the
analyses with ∂a∂i to simulate the AFSs with the same grid size
as that used by Portik et al. [32]: G = {40, 50, 60} for the Cross-
River, CVLN, and CVLS populations; and G = {50, 60, 70} for the
Northern and Southern populations. However, we found that
the optimization with ∂a∂i was unstable and therefore, we set
upper bounds on population size (12N A) and generation time
(5N A). Under these parameters, ∂a∂i was found to be stable, but
some parameters were equal to the upper bounds and in such
cases GADMA was launched 10 times for each model using mo-
ments with larger upper bounds (100N A for population size and
10N A for generation time). The inferred demographic models
and their estimated parameters are presented in Tables S2–S4.
We report demographic models estimated with moments, and
if a similar model was inferred by both ∂a∂i and moments, we
only report the result with the best log-likelihood value.

For almost all 12 demographic scenarios, GADMA was able to
infer better models in terms of both log-likelihood scores and pa-
rameters than were previously inferred using the dadi pipeline
in Portik et al. [32]. Moreover, we obtained better alternative
models for the CrossRiver, CVLN, Northern, and Southern pop-
ulations. These models included an initial split of the ancestral
population with ancestral asymmetric migration and a popula-
tion size change (
AIC = 3.24, ωi = 0.82) for the CrossRiver and
CVLN populations, and secondary contact with asymmetric mi-
gration and population size change (
AIC = 6.82, ωi = 0.97) for
the Northern and Southern populations. For the third AFS of the
CVLN and CVLS populations, the model that includes secondary
contact with asymmetric migration and population size change
was found to be superior on the basis of comparison of the AIC
(
AIC = 87.98, ωi > 0.99), similar to the findings by Portik et al.,
but received a higher log-likelihood value: −455.17 using GADMA
versus −463.3 in Portik et al. [32].

We next inferred the demographic model with a structure
equal to (1, 2) with GADMA (Table 6, Fig. 10). For all 3 AFSs, such
a model had the best log-likelihood among previously inferred
models (Tables S2–S4). For the Northern and Southern popula-
tions, the demographic model with the (1, 2) structure also had
the best AIC score. This model showed similar features for all ob-
served data: an interval of time after the splitting of the ancestral
population with unidirectional migration, followed by a time in-
terval with bidirectional migration and population size change.
The direction of the unidirectional migration was as follows:
from CVLN to CrossRiver, from CVLN to CVLS, and from South-
ern to Northern. We also constructed 2 additional demographic
models based on observed features and inferred their param-
eters: splitting of the ancestral population with unidirectional
migration followed by either symmetric or asymmetric migra-
tions with population size change. The demographic model with
unidirectional migration followed by asymmetric migration and
population size change was found to be the best for all 3 AFSs
(Table 6): Northern and Southern populations: 
AIC = 4.41, ωi

= 0.89; CVLN and CVLS populations: 
AIC = 1.04, ωi = 0.58;
and CrossRiver and CVLN populations: 
AIC = 0.04, ωi = 0.44.
But there were several additional demographic models that ex-

plained the data equally well: the same demographic model as
just described but that also included symmetric migration for
CrossRiver, CVLN (ωi = 0.43), and secondary contact with asym-
metric migration and population size change for CVLN and CVLS
(ωi = 0.34).

Discussion

We report the development and mathematical justification of
GADMA and demonstrate its effectiveness using several previ-
ously published datasets. Our method is based on the GA and
uses existing solutions from either ∂a∂i or moments to simu-
late the AFS from the proposed demographic model. GADMA
is the first program that allows the automatic inference of de-
mographic history of up to 3 populations from an AFS. Existing
optimizations, implemented in either ∂a∂i or moments, require
prior specification of demographic models to be tested and are
thus inefficient in practice, given the large number of possible
demographic scenarios that can be constructed for 1 or more
populations. Our method is implemented in the GADMA soft-
ware, which is openly accessible (see Availability of Source Code
and Requirements).

GADMA was shown to be efficient in performance: it was
applied to both simulated data and to 3 empirical datasets,
representing different organismal systems and associated de-
mographic histories. The inferred demographic models had bet-
ter log-likelihood scores than those reported in the original pa-
pers, which were derived from optimizations using either ∂a∂i or
moments alone. Moreover, the demographic histories inferred
with GADMA were consistent with the known history of the 3
taxa [11, 31, 37]. We also demonstrated the stability of the search,
starting with demographic models with simpler structures
rather than more complex ones, which reflects the profitabil-
ity of using a search scheme that includes an increase in model
structure complexity. Additionally, we compared pipelines using
moments or ∂a∂i and showed that the computational speed of
moments was much greater than for ∂a∂i. Thus, GADMA is the
first software that effectively infers a demographic model from
an AFS with nothing required from the user, except the struc-
ture of the demographic model, which determines the extent of
the model complexity and associated details.

Despite the increasing use of AFSs for inferring demographic
history, there are some limitations of the informativeness of
AFS with regards to historical demographic inference that
have been noted (see Beichman et al. [3]). For example, pre-
vious studies have shown that the AFS of a single panmictic
population can be matched to different demographic scenar-
ios [9]. We also observed this issue in our simulated data for
the demographic model that included a bottleneck event of
a panmictic population. The inferred model with an earlier
exponential bottleneck had almost the same likelihood score as
the model with the sudden population size dynamic. We should
expect the same behavior in the case of multiple populations,
which requires estimating the joint AFS. Moreover Rosen et
al. [40] showed the limitation of AFS-based methods and their
pathological behavior. They also proved that expected AFS
data from n samples under any demographic model could be
generated by a piecewise-constant model with ≥2n − 1 time
intervals. This research is a complement to the paper Terhorst
and Song [41], who showed the minimax error of the inference
of population size history to be ≥ O(1/ log (s)), where s is the
number of segregating sites. This result means that the accuracy
of demographic inference does not depend on the size of AFS
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Table 6: Demographic models and associated parameters inferred in GADMA for 3 pairs of populations of the Gaboon forest frog: Northern and
Southern, CVLN and CVLS, and CrossRiver and CVLN

Northern, Southern CVLN, CVLS CrossRiver, CVLN

Best from
dadi

pipeline1

Model
structure

(1, 2)
Best from
GADMA2

Best from
dadi

pipeline3

Model
structure

(1, 2)
Best from
GADMA2

Best from
dadi

pipeline4

Model
structure

(1, 2)
Best from
GADMA2

No. of parametirs 7 11 9 8 11 9 6 11 9
Log-likelihood −439.91 −402.20 −402.00 −463.33 −453.67 −453.65 −377.99 −365.26 −365.29
AIC score 893.81 826.40 821.99 942.67 929.34 925.30 769.98 752.52 748.58
Parameters

θ 573.9 134.7 107.0 572.18 134.17 145.5 287.96 250.58 251.88
η 1a 0.259 1.894 2.515 0.338 2.010 1.893 0.350 0.149 0.139
η 2a 0.247 2.634 3.339 1.331 0.840 0.880 6.746 7.034 6.899
m 12a NA 0.046 0.033 NA 0.0 NA NA 2.510 2.639
m 21a NA 0.0 NA NA 0.400 0.399 NA 0.001 NA
η 1b 3.121 13.544 17.139 4.528 13.220 12.266 = νa

1 0.974 0.889
η 2b 1.291 5.584 7.057 1.193 3.620 3.349 = νa

2 8.707 8.873
m 12b 0.049 0.008 0.006 0.108 0.0419 0.046 1.272 0.507 0.556
m 21b = mb

12 0.017 0.014 1.084 0.365 0.395 0.221 0.328 0.312
T a 0.302 4.335 5.779 0.325 5.000 4.148 0.495 1.110 1.089
T b 0.556 2.162 2.692 0.870 1.970 1.808 0.402 0.101 0.109

1 Divergence, secondary contact with population size change and symmetric migration.
2 Divergence, unidirectional migration, followed by population size growth and bidirectional asymmetric migrations.
3 Divergence, secondary contact with no population change and asymmetric migration.
4 Divergence, secondary contact with no population change and asymmetric migration.

θ = 4N AμL, μ — mutation rate per generation per site, L — the effective sequence length; η px—relative (to N A) size of population p (1 for Northern/CVLN/CrossRiver,
2 for Southern/CVLS/CVLN) during time interval x after divergence (a—first time interval, b—second time interval); m pkx—scaled (by 2N A) migration rate from
population k to population p during time interval x; T x—scaled (by 1/(2N A)) time of time interval x. NA: not applicable. Expected AFS was simulated using ∂a∂i with G

= {50, 60, 70} for Northern, Southern populations and with G = {40, 50, 60} for other cases. See text for more details. Best log likeliood value and AIC score are marked

in bold.

but on the number of considered segregating sites. Although it
was provided only for the populations that have experienced
a bottleneck, the authors argue that this behavior should be
expected for the real data. We should consider described limita-
tions of AFS, and because of such behavior, the structure of the
demographic model should not be very complex. We suggest
using structures no more than (2, 1) and (2, 1, 1). This limitation
can be solved by using additional information about observed
populations, e.g., 2-locus statistics [42] or focus on inverse
instantaneous coalescence rate summary [43]. Incorporating
genetic linkage information with AFS data could also improve
the accuracy of inference of demographic history [42]. Including
such information in the GADMA pipeline will allow the use of
more complex demographic model structures in the future.

In our analyses using the AFS from 3 human populations
(YRI, CEU, and CHB), we inferred a best-fitting demographic
model that showed an expansion out of Africa ∼400,000 years
ago, which is not supported by previous studiess [11, 44, 45].
This can be caused by the fact that tree-based models often
do not take into account processes such as admixture and in-
trogression that can under- or overestimate population diver-
gence times (e.g., Kamm et al. [13]). Alternatively, these differ-
ences could result from the limitation of the informativeness
of the AFS or by noise in the spectrum as a result of includ-
ing low-quality variant calls because AFS-based methods should
be highly sensitive to noise [40]. However, Gutenkunst et al.
[11] noted the high quality of this dataset. The demographic
model inferred with GADMA using the same parameters as in
Gutenkunst et al. [11], under the assumption that expansion
took place not earlier than 150,000 years ago, resulted in param-
eter values similar to those reported in Gutenkunst et al. [11]. We
also inferred all possible parameters, including asymmetric mi-

gration rates and different dynamics of population size changes,
and obtained a demographic model with the best CLAIC score.
With GADMA, we observed higher asymmetric migration rates
and the growth of the CEU+CHB population after its split from
the African population.

AFSs of 2 isolated populations of Gillette’s checkerspot but-
terfly from Wyoming and Colorado showed several alternative
models with values very close to the best value of the composite
likelihood found by McCoy et al. [31]. All migrations that were
inferred are negligible, which confirmed the isolation of the 2
populations. One of the inferred models is consistent with the
demographic history that was estimated previously by McCoy
et al. [31]. The demographic model inferred using GADMA with
the best likelihood value seems to be a better model overall be-
cause, in addition to the best CLAIC score (for the AFS using all
SNPs), it correctly inferred the timing of the population split to
the actual known value of 33 years. However, the model without
migration showed the best CLAIC score for the AFS using all syn-
onymous SNPs and could be the right choice too, so we suggest
that further research is necessary to identify alternative models
that may better fit the demographic history of these checkerspot
butterfly populations.

We conducted a series of experiments for selecting demo-
graphic models for the Gaboon forest frog, also repeating the
analyses performed by Portik et al. [32]. Nearly all of the 12 mod-
els inferred previously were found to be suboptimal. For 2 of
the 3 population sets analyzed with GADMA, demographic mod-
els with higher log-likelihoods were chosen compared to those
previously inferred. For the comparison that included the CVLN
and CVLS populations, the demographic model with the highest
log-likelihood was consistent with the model inferred by Portik
et al. [31], but new values of parameters with better likelihood
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values were found. Demographic model optimization using ∂a∂i
proved to be unstable, and we were consequently forced to ei-
ther specify lower limits on specific parameter values or instead
use moments for model optimization. moments proved to be in-
deed more stable in simulating the expected AFS from the demo-
graphic model. We then inferred the full parameters of the de-
mographic model with a structure equal to (1, 2) for each of 3 AFS
datasets. For Northern and Southern populations, models using
this structure resulted in higher log-likelihood scores. However,
we noticed some peculiar properties in parameter values and
generated new demographic models based on these properties
and inferred their parameters using the 3 AFSs. These analyses
resulted in a model with improved AIC scores for each of the
3 AFSs. This model contains divergence of the ancestral pop-
ulation, a time interval with unidirectional migration followed
by a time interval with population size change and bidirectional
asymmetric gene flow.

In this work, we focused on benchmarking the effectiveness
of the GA for demographic model inference on real data. We
found that GADMA managed to infer better demographic mod-
els than those that were found in the original analyses for all
tested datasets. However, we highlight 2 caveats that warrant
further research. First, our method only used AFS data. Other
data, such as those based on haplotypes or SNP data may prove
to be more informative about demographic history, but current
methods using such data are restricted to simple population size
change dynamics (e.g., identical by state [IBS] tract method [34],
DIYABC [46], MSMC [47]) whereas ∂a∂i and moments, which are
implemented in GADMA, are less restricted in these dynam-
ics. Second, it is possible to add other solutions like fastsim-
coal2 or momi2 for simulating the expected AFS from demo-
graphic models and make comparisons between all methods.
Also, even though we performed some analyses on simulated
data that included models with known global optima, we sug-
gest our method could be further verified through the use of ad-
ditional simulated datasets.

While the optimization search implemented in GADMA is
able to find demographic models with the best likelihood score
and their associated parameters, it is important to minimize the
number of parameters so as to avoid the possibility of overfit-
ting the model to the AFS data. Fortunately, such a strategy is
included in GADMA using AIC and CLAIC scores: it informs the
user about overfitting when the demographic model with the
best likelihood score and best AIC (or CLAIC) score do not match.
Additionally, GADMA can infer demographic models with all
possible parameters, allowing researchers to explore additional
models based on the inferred model, as we demonstrated in the
case of the Gaboon forest frog. However, we note that GADMA
does not sort out all possible numbers of parameters, so it is
not guaranteed to find the model(s) with best AIC (or CLAIC)
score(s). Moreover, we recommend performing block bootstrap-
ping of datasets over unlinked regions of the genome for accu-
rate estimation of the CLAIC score. We note, however, that de-
tection of such regions can be difficult.

Another direction in the further development of our work
is increasing the number of considered populations. Currently,
GADMA can analyze up to 3 populations, similar to ∂a∂i. In con-
trast, moments can simulate AFS for up to 5 populations. Be-
cause the limitations of AFS-based methods that were presented
above are the important restrictions in increasing the number of
populations and complexity of demographic models (we again
propose the simplest structures then), we expect that this mod-
ification should be done in parallel with the incorporation of ad-
ditional summaries of genetic data. Moreover, including the esti-

mation of selection coefficients (e.g., Gutenkunst et al. [11]) and
the development of a user-friendly interface for various types
of datasets (e.g., all SNPs, synonymous SNPs only), will help to
further expand the capabilities of GADMA. In this work we fo-
cused on the application of the GA as global optimization on
the demographic inference. We have shown that effective global
search is possible, and we assume the existence of a more pow-
erful optimization method. Thus, it is also possible to improve
the proposed method, using another optimizations or various
modifications of the GA, e.g., one that infers deliberately differ-
ent demographic models [48].

Availability of Source Code and Requirements
� Project name: GADMA
� Version: 1.0.0
� Project home page: https://github.com/ctlab/GADMA
� RRID:SCR 017680
� biotoolsID: biotools:GADMA
� Operating system(s): Platform independent
� Programming language: Python
� Other requirements: Python (2.5, 2.6, 2.7), NumPy (≥1.2.0),

Scipy (≥0.6.0), ∂a∂i (≥1.7.0) or moments (≥1.0.0)
� License: GNU GPL v3.

Availability of Supporting Data and Materials

All data, parameters for GADMA runs, and results are available
in the Bitbucket repository [49]. The supplementary materials
and the archival snapshot of code are published as a GigaDB
dataset [50]. Supplementary tables are presented in both PDF
and tabular formats.

Additional Files

Supplementary Figure S1. Diagrams of three primary demo-
graphic dynamics of population size change.
Supplementary Figure S2. Diagram showing the general algo-
rithm used in GADMA.
Supplementary Table S1. Demographic models for the allele fre-
quency spectrum using synonymous SNP’s only of the Gillette’s
checkerspot butterfly.
Supplementary Table S2. Demographic models for Northern and
Southern populations of Gaboon forest frog.
Supplementary Table S3. Demographic models for CVLN and
CVLS populations of Gaboon forest frog.
Supplementary Table S4. Demographic models for CrossRiver
and CVLN populations of Gaboon forest frog.
Supplementary Table S5. CLAIC values, calculated with different
ε values of step size.
Supplementary Table S6. Results of 50 runs of optimizations on
the simulated data for one population.
Supplementary Table S7. Results of 50 runs of optimizations on
the simulated data for two populations.
Supplementary Table S8. Results of 10 runs of optimizations on
the simulated data for three populations.
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AFS: allele frequency spectrum; AIC: Akaike information cri-
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posite likelihood Akaike information criterion; CVLN: Cameroon
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