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ABSTRACT
Current approaches to program synthesis with Large Language

Models (LLMs) exhibit a “near miss syndrome”: they tend to gener-

ate programs that semantically resemble the correct answer (as

measured by text similarity metrics or human evaluation), but

achieve a low or even zero accuracy as measured by unit tests due

to small imperfections, such as the wrong input or output format.

This calls for an approach known as Synthesize, Execute, Debug

(SED), whereby a draft of the solution is generated first, followed

by a program repair phase addressing the failed tests. To effectively

apply this approach to instruction-driven LLMs, one needs to de-

termine which prompts perform best as instructions for LLMs, as

well as strike a balance between repairing unsuccessful programs

and replacing them with newly generated ones. We explore these

trade-offs empirically, comparing replace-focused, repair-focused,

and hybrid debug strategies, as well as different template-based

and model-based prompt-generation techniques. We use OpenAI

Codex as the LLM and Program Synthesis Benchmark 2 as a data-

base of problem descriptions and tests for evaluation. The resulting

framework outperforms both conventional usage of Codex without

the repair phase and traditional genetic programming approaches.

CCS CONCEPTS
• Software and its engineering → Software design engineering; •
Computing methodologies→ Neural networks; Model develop-
ment and analysis; Search methodologies.
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1 INTRODUCTION
Automatic programming has been an important goal of the Arti-

ficial Intelligence field almost since its inception [1], promising

to reduce the workload of software developers by automatically

solving some of the tasks they face. More recently, program syn-

thesis has emerged as an interpretable alternative [2] to black-box

machine learning methods that lets human experts understand,

validate and edit the algorithms generated by artificial intelligence.

In addition to the scientific benefits of such knowledge, it extends

the benefits of machine learning to domains, such as embedded

systems where it is technically challenging [3] or healthcare where

it is avoided for safety reasons [4, 5].

The predominant methodology in automatic programming has

shifted from deductive programming [6, 7] to genetic and evolution-

ary methods [8] to, more recently, large autoregressive language

models trained on corpora of source code due to their remarkable

capability for zero-shot generalization [9]. However, even state-of-

the-art models fine-tuned on a specific class of programming tasks

still require a costly filtering step where the LLM outputs that do

not compile or pass tests are discarded [10]. These outputs tend to

be superficially similar to correct solutions [11] despite failing to

produce the expected output, a phenomenon known as "near miss

syndrome" or "last mile problem" [12].

Given these challenges, research in machine learning on source

code [13] tends to focus on restricted domain-specific languages [14–

16] or automating specific parts
1
of the software development pro-

cess [19, 20] such as code search [21], code translation [22], detec-

tion of issues [23, 24], improvement [25] and repair [26] rather than

fully autonomous programming in a programming language popu-

lar with human developers [27]. However, two recent innovations

potentially make the latter task tractable.

One is Synthesize, Execute, Debug [28], a framework that attempts

to bridge the "last mile" gap by introducing program repair into

the program synthesis algorithm. A programming task is specified

using both a natural language description and a set of input/output

(I/O) pairs demonstrating what output is expected of the program,

thereby combining text to code [29] and programming by exam-

ple [30, 31] paradigms typical for competitive programming [32].

Synthesize, Execute, Debug creates a first draft program using a gen-

erative model, compiles and executes it with given input examples.

This is followed by a program repair step to fix the identified errors.

Another relevant innovation is instruction-driven large language

models [33]. Instruction-driven models use human feedback in their

training process and admit two inputs: a source text (or code) and

a textual command instructing the model to edit the source in a

particular way, i.e., "summarize" or "translate to Python". These

1
similarly to autonomous driving [17, 18]
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Figure 1: Framework for LLM-based Synthesize, Execute, Instruct, Debug, and Rank approach.

models have been shown to be highly successful in automatic pro-

gram repair [34]. However, given the free-form nature of these

instructions
2
how one should engineer instructions that maximize

repair performance is an open question.

Section 2 presents a framework that adapts Synthesize, Execute,
Debug to instruction-driven Large Language Models for solving

programming tasks in an autonomous fashion. We discuss related

work in Section 3, introduce experiments to establish optimal search

and prompting strategies for this framework in Section 4. Finally,

we demonstrate in Section 5 that our framework outperforms con-

ventional automatic programming techniques, such as genetic pro-

gramming and naive application of large language models that

generate one solution per problem without updating it iteratively.

2 METHODOLOGY
The proposed framework, Synthesize, Execute, Instruct, Debug and
Rank, or SEIDR,3 is summarized in figure 1. To solve a programming

task defined as a text description and a collection of I/O examples,

we split I/O examples into prompt and validation sets and use the

prompt set in a large language model to SYNTHESIZE a popula-

tion of candidate solutions. We EXECUTE the solutions, test them

against the validation set, generate a text description of the identi-

fied problems used to INSTRUCT a large language model to produce

repaired candidate solutions similar to the way a human developer

DEBUGs a program. We RANK the candidates by correctness mea-

sured by matching I/O pairs, discard the worst candidates, and

repeat until a fully correct solution is found.

2.1 Ingredients
SEIDR makes use of 2 instruction-driven large language models for

source code: a synthesis model 𝑝
synth

(input, instr) and a debugging
model 𝑝

debug
(input, instr), as well as, optionally, a large natural

language model 𝑝text (input) that can be used for writing instruc-

tions for the code model. Each model is a highly parameterised

probability distribution over the space of (input, instruction)-tuples

with parameters estimated on a large diverse (i.e., non-task-specific)

corpus. This stochastic nature of language models is an important

prerequisite for SEIDR, since it lets us sample batches of diverse can-

didate solutions from 𝑝
synth

(input, instr), 𝑝
debug

(input, instr), and

2
Throughout this paper we avoid other definitions of instruction, such as an individual

operation in code, to prevent ambiguity.

3
seiðr also refers to a type of Norse magic [35] pertaining to predicting and controlling

the future, which we deem thematically appropriate.

𝑝text (input). We have chosen the state-of-the-art transformer mod-

els [36] for 𝑝
synth

(input, instr), 𝑝
debug

(input, instr), and 𝑝text (input)
in our experiments as described in Section 4.5. In general, SEIDR

requires a sequence-to-sequence generative model for these blocks.

2.2 Synthesize
The framework starts with the SYNTHESIZE block, which is re-

sponsible for generating initial draft solutions to programming

tasks to be repaired in the later stages of SEIDR. We start with a

basic template for a chosen programming language that contains a

number of standard library imports and an empty main function or

this language’s equivalent thereof, see figure 2. We populate this

template with a comment indicating a text description of a task

at hand and several I/O examples from the prompt training set.

We design the templates with guidelines by the authors of the lan-

guage model [37] and prior work [38] in mind. We then sample 𝑁

programs from 𝑝
synth

(input, instr), setting input to the populated

template and instruction to the problem description. We use tem-

perature sampling with a monotonically increasing temperature

schedule where 𝑖-th program is sampled with temperature 𝑡𝑖 ≈ 𝑖
𝑁

(approximate equality enables efficient implementation by means

of batching). Thus, the sampling procedure for the first programs

approximates deterministic maximum likelihood estimation. Ulti-

mately, this approach ensures that samples are diverse, but always

contain the likeliest programs.

#include <vector>
#include <iostream>
#include <string>
...

/*
Given an integer x, return "Fizz"
if x is divisible by 3, "Buzz" if x
is divisible by 5, "FizzBuzz" if x
is divisible by 3 and 5, and a
string version of x if none of
the above hold.
For example,
input: 
3
output: 
Fizz
*/
int main() {

import os
import sys
import numpy as np
...

"""
Given an integer x, return "Fizz"
if x is divisible by 3, "Buzz" if x
is divisible by 5, "FizzBuzz" if x
is divisible by 3 and 5, and a
string version of x if none of
the above hold.
For example,
input: 
3
output: 
Fizz
"""
if __name__ == '__main__':

 task
description

I/O
examples

"main"
block

standard preamble
with useful imports

Figure 2: Anatomy of SYNTHESIZE templates
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2.3 Execute
In the EXECUTE block, the programs are compiled (if necessary)

and launched using the standard tools for the programming lan-

guage. The program is run once for every I/O pair in the validation

set. Its stdin stream receives all the input lines in a given input pair,

and its stdout and stderr streams are captured and saved.We then

measure the score of the program defined as accuracy over output

lines, with O being the expected output, and 𝑛 = max{|𝑂 |, |stdout|}:

score(𝑂, stdout) =
∑𝑛
𝑖 I[stdout𝑖 = 𝑂𝑖 ]

𝑛

unless stderr is non-empty during compilation or execution, which

is considered to indicate failure and is assigned a score of 0.

2.4 Instruct
The goal of the INSTRUCT block is to provide an instruction that

summarizes a bug in the program candidate for 𝑝
debug

(input, instr).
The resulting instruction with the bug summary should indicate

what requirement is violated and instruct the LLM to edit the candi-

date program so that the candidate meets the violated requirements.

In SEIDR, we generate instructions using template engines. In gen-

eral, template engines replace placeholders in files or strings with

input values and return a formatted string. With template engines,

we can create a number of templates that will be adapted dynami-

cally based on the results of program candidate execution.

We consider two different designs of the instruction generation

block: INSTRUCT
static

and INSTRUCT
LLM

shown in figure 3. Both

types of blocks use failing I/O pairs from the validation set and

stderr output of the candidate execution. In both blocks, if stderr
is not empty, i.e., execution errors occur before getting the output to

compare it with the expected output, the stderr-based template en-

gine generates an instruction to fix the error mentioned in stderr.
However, the blocks differ in the way they transform failing I/O

pairs to generate instructions in case stderr is empty.

INSTRUCT
static

uses a fixed input template and substitutes place-

holders for input and output with the corresponding strings of the

first failing test case. We show the resulting instruction for an ex-

emplar template in figure 3. By contrast, INSTRUCT
LLM

uses the

failing I/O pair in the LLM for text completion, thereby prompting

the text LLM to produce the bug summary. An exemplar output

of the code behavior template engine in figure 3 describes that

the code returns output O instead of expected output O
val

for the

failing test case with input string I
val

. The LLM is then prompted

to auto-complete this description of program behavior with the

bug summary. The bug description is passed further to the next

template engine and used as the debugging instruction, such as

“Fix {bug summary}”.

2.5 Debug
The DEBUG block iterates over all programs in the population

and uses the instruction written by INSTRUCT based on the re-

sults of EXECUTE to sample from 𝑝
debug

(input, instr) 𝑁 times to

repair every candidate, setting input to the candidate solution

and instruction to the output of INSTRUCT. The population of

candidates is then replaced with the output of DEBUG.

2.6 Rank
Finally, the RANK block implements what is known in genetic

programming as parent selection [39]. It ranks all programs in the

candidate population by their score calculated in EXECUTE, keeps

the top𝑊 programs, and removes the rest from the population.

2.7 Meaning of Hyperparameters
After evaluating a given candidate solution in EXECUTE, SEIDR

supports two approaches to addressing the candidate’s flaws:

• Replace the candidate with another sample from the current

population.

• Use INSTRUCT and DEBUG to repair the candidate.

We refer to this problem as repair-replace trade-off, by analogy with

production economics [40].

How does the choice of hyperparameters 𝑁 and𝑊 influence

the flow of SEIDR? 𝑁 and𝑊 act as upper bounds on the replace
option by limiting the size of the population. In the edge cases,

𝑁 =𝑊 = 1 corresponds to a repair-only process, while𝑁 =𝑊 = ∞
corresponds to replace-only, see figure 4.

Observe that a mutation-only genetic algorithm with population

size𝑊 , such as SEIDR, is equivalent to local beam searchwith beam
width𝑊 on a 𝑁 -ary tree [41, Section 4.1.4]. This corresponds to a

known property of local beam search: it degenerates into depth-first

search when𝑊 = 1, whereas setting𝑊 = ∞ yields breadth-first

search. Hence, we refer to 𝑁 as tree arity and𝑊 as beam width.

3 RELATEDWORK
The use of large language models for a program repair step within

a program synthesis pipeline has been studied by Joshi et al. [42]

and Gupta et al. [28], while a specific case of instruction-driven

LLMs has been explored by Fan et al. [34]. The latter authors also

compare instruction-driven LLMs to other Automated Program

Repair (APR) strategies, and conclude that LLMs solve the task

effectively. However, they do not consider the entire Synthesize,
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Execute, Debug framework, as we do in this work. By contrast, LLMs

are usually set up to generate a fix from the first debug attempt and

do not update failing patches iteratively.

Prompt generation for LLMs pre-trained on code is investigated

in prompt engineering literature on a number of tasks, such as

source code repair, type inference, code synthesis, and autocomple-

tion [43–45]. Studies on program repair automation used prompts

that contain code only, code with docstrings, and code with bug

hints with the Codex model to test the repair capabilities of the LLM

on the QuixBugs benchmark [46, 47]. The studies reported that bug

localization hints were not helpful, whereas providing buggy code

and the task summary was the most effective. ChatGPT was tested

on QuixBugs in addition to Codex models as well [48]. Kuznia et

al. [49] proposed to summarize task descriptions of competitive

programming and interview programming tasks. Following guid-

ance from these studies, we include I/O pairs and task descriptions

as docstrings in addition to the function signature in our prompts.

4 EXPERMENTAL SETUP
To explore the capabilities of SEIDR, we test the framework on the

benchmark of problems for code competitions with different types

of instructions for program candidate debugging, varied search

strategies, and two languages, Python and C++. Our experiments

use the Program Synthesis Benchmark 2 (PSB2) for problem de-

scriptions and tests to evaluate the proposed framework [50]. We

compare the performance of programs synthesized with SEIDR

to the PushGP genetic programming system with down-sampled

lexicase selection [51]. During our empirical evaluation of SEIDR

performance, we address the following research questions:

RQ1. Repair-replace trade-off exploration: What is the impact

of using different tree search strategies in the autonomous pro-

gramming setting? We experiment with four different tree arities

in the tree search and study their impact on the number of resolved

problems as well as the speed of obtaining solutions.

RQ2. Prompt engineering: What is the effect of using LLM-

produced bug summaries compared to static instructions on the

repair performance of automatically synthesized code? We test

six static debug instructions that describe bug behavior based on

violated requirements and five auto-generated debug prompts.

4.1 Data
PSB2 is a benchmark suite of 25 problems for program synthesis that

resemble small real-world tasks. PSB2 was developed as a more re-

alistic and challenging version of PSB1 [52], the latter consisting of

textbook problems and is widely used in genetic programming [53].

The problems require different data structures and control flows to

be used for effective solutions and are taken from sources, such as

competitive programming platforms and educational courses. The

problems have descriptions in English, as well as 1 million (M) tests

for training and 1M testing-stage tests, including edge or corner

cases that test the resulting program on complicated inputs. The

tests are provided as I/O pairs and are distributed together with the

problem descriptions as a PyPI package.
4

In PSB1 [52], the training set consists of the edge test cases

and is augmented by random test cases if the number of edge

tests is not enough. The test set is formed by random test cases.

This terminology is preserved in PSB2. However, we do not have

a training or fine-tuning phase in our experiments, because the

models are not made available for further training. Instead, we

validate the framework with an existing pre-trained LLM for code

and text as its parts. Therefore, we only have the validation and test

phases. We will refer to training test cases in the PSB terminology

as validation test cases in this study.

4.2 Repair-replace Trade-off Settings
As described in Section 2.7, the choice of beam width𝑊 and tree

arity 𝑁 define the repair-replace trade-off where higher𝑊 and 𝑁

prioritize to repair over replace. We evaluate four options for these

hyperparameters as shown in table 1.

Table 1: Tree search hyperparameters.
experiment 1 2 3 4

beam width𝑊 1 10 100 ∞
tree arity 𝑁 1 10 100 ∞

Because we aim to compare tree search parameters, we fix one

default debugging instruction and use the INSTRUCT
static

block.

Moreover, we set the upper limit for the total number of gener-

ated program candidates to 1000 to limit the experimentation time.

Although some solutions may not be found within the hard limit,

we assume
5
that 1000 program candidates form a sufficiently large

4
https://pypi.org/project/psb2/

5
This assumption is later confirmed in Section 5.1.

https://pypi.org/project/psb2/
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search space for our experiments.𝑊 = 𝑁 = ∞ is achieved in im-

plementation by setting𝑊 and 𝑁 equal to the upper limit on the

number of candidates, i. e. 1000. This setting ensures that a second

generation of programs does not exist.

4.3 Prompting Strategies
The prompt for the LLM model 𝑝

debug
(input, instr) consists of the

input for editing — candidate program generated so far — and a

debug instruction to repair the candidate. We test SEIDR on 11

debug instructions to explore whether the use of the LLM for text

completion 𝑝text (input) benefits the performance of our framework,

as well as what effect different prompt phrases have on the debug

process. We compare debug instructions that use neutral phrases

with those that use more confident language andmimic experienced

software developers, as well as shorter and longer instructions with

different amounts of details about code behavior. To alleviate the

effect of beam width and tree arity, we set 𝑁 =𝑊 = 1 and test the

repair-only tree search strategy shown in figure 4. This strategy is

used to gradually improve one program candidate throughout the

search with no competing programs in the same generation.

The debug instructions are formulated as templates. The instruc-

tions describe the violated requirements in terms of the wrong

output in a failing I/O test or summarize the bug to capture issues

in code logic. We present debug instructions using the template

engine format: the brackets { } denote that the placeholder in the

brackets will be replaced with the value generated during execution,

{I
val

} and {O
val

} stand for values failing I/O pair from the validation

set. As shown in figure 3, the instruction to fix the execution errors,

which abort the program before the resulting output is obtained,

with stderr lines: Fix {stderr}. Static debug instructions that do not
use LLM for bug summarization are as follows:

S0 Make sure that {I
val

} -> {O
val

};

S1 Make sure the code returns {O
val

} for input {I
val

};

S2 Ensure that input {I
val

} yields output {O
val

};

S3 Modify code to get {O
val

} from {I
val

};

S4 Code must correspond instructions in comments and {I
val

}

must yield {O
val

};

S5 See comments in code and return {O
val

} for input {I
val

}.

The instruction S0 is the default instruction for tree arity experi-

ments. It has an intuitive symbolic notation (->) instead of the word

“return” or “yield”. In instructions S1–S3, we experiment with verbs

and the order of output and input. Alternatively, in debug instruc-

tions S4–S5, we prompt the model to consider task description in

the docstring in addition to providing the details of the failing I/O

pair. Overall, instructions S0–S5 indicate the requirements to be

met, but do not describe the current program’s behavior.

The second set of instructions use the LLM for text comple-

tion 𝑝text (input). The instructions are designed so that the LLM is

prompted to complete the sentence that should describe an error.

In addition to validation I/O pairs, the following notation is used:

{Op} denotes the program candidate output for input {I
val

}, {task} is

a placeholder for a problem description in English. Note that we

do not include the incorrect output 𝑂𝑝 of a generated candidate

program in debug instructions S0-S5, because it is recommended

to avoid asking the model what not to do.
6
We denote the text

completion LLM’s output as {bug} which should constitute the bug

summary. Input templates to use LLM for bug description followed

by debugging instruction templates (after “→”) are as follows:

M6 The code should solve the following problem: {task}. The

code must return {O
val

} for input {I
val

} but it returns {Op}.

Obviously, the error is that...

→ Fix {bug};

M7 The code should solve the following problem: {task}. The

code must return {O
val

} for input {I
val

} but it returns {Op}.

The error is that...

→ Fix {bug};

M8 Problem description: {task}. The code must return {O
val

} for

input {I
val

}, but it returns {Op}. It is clear the error is that...

→ Fix {bug};

M9 There is clearly a bug in code, because the code returns {Op}

for input {I
val

} but output {O
val

} is expected. The bug is that...

→ Fix {bug};

M10 There is clearly a bug in code, because the code returns {Op}

for input {I
val

} but output {O
val

} is expected. The bug is that...

→ Fix {bug} and modify the code to return {O
val

} for in-

put {I
val

}.

Note that the text completion LLM does not use program candidates

in its input, but only template inputs M6–M10 before the arrow.

Input M6 for the text completion LLM is used to evaluate the

effect of the “confidence” sentiment on the bug summaries and

debugging process. It is identical to input M7, except for the word

“obviously”, which should reflect or confidence of the comment.

Inputs M7 and M8 can be compared in the way the problem descrip-

tion is introduced, i.e., as a separate sentence similar to a spoken

situation in prompt M7 or as a short title in M8.

Input templates M9 and M10 for text completion LLM are iden-

tical, but the instruction templates are different. Text completion

inputs start with a “confidently” phrased statement that a bug is

present in code. We include both the LLM output {bug} and de-

scription of the failing validation test case in debug instruction

M10. Therefore, instructions M6–M9 rely mainly on the LLM out-

put to summarize the bug, whereas instruction M10 also provides

information about the expected output.

4.4 Performance Indicators
In our experiments, we compare the number of fully solved

programs obtained using SEIDR with different values of hyper-

parameters. For a more detailed analysis of results, we use test pass
rate (TPR) and Excess Programs Generated (EPG). TPR reflects the

percentage of fully passed test cases based on the exact match of

program output and test output. The TPR metric is used for the

final evaluation of generated programs and does not reflect partial

passing of the I/O test as opposed to score in the RANK block.

DEBUG and EXECUTE blocks generate a number of programs

that are replaced or repaired during the search for solution program.

The number of programs generated before the first occurrence of

the program that passes all validation test cases is referred to as EPG.

EPG is indicative of the computational cost of solving a problem

6
https://help.openai.com/en/articles/6654000-best-practices-for-prompt-engineering-

with-openai-api

https://help.openai.com/en/articles/6654000-best-practices-for-prompt-engineering-with-openai-api
https://help.openai.com/en/articles/6654000-best-practices-for-prompt-engineering-with-openai-api
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Figure 5: Number of solved PSB2 problems depending on the
tree arity in tree search for the fixed prompt type S0.

distributed in terms of LLM inferences and program compilations

and executions.

4.5 Implementation Details
We use GPT-3 models pre-trained on code

7
and text

8
as LLMs in

our framework. Specifically, we use Codex-edit (code-davinci-edit-

001) as the LLM for draft programs 𝑝
synth

and LLM for debugging

𝑝
debug

and GPT-3 (text-davinci-003) for bug summarization via

text completion with 𝑝text. We ensure that the program candidates

generated from the same parent program are different from each

other by changing the temperature parameter of Codex-edit.

We use 2000 I/O pairs from the test split of PSB2 to evaluate

the candidate program that has passed all the validation test cases

during debugging. Due to repetitive calls to the EXECUTE block,

we have to resolve the speed of testing versus precision trade-off

while choosing the number of validation test pairs. We resolve the

trade-off by fixing the validation set size at 100.

In the experiments with tree arity values, we set the limit to

generate a maximum of 1000 program candidates during the search

of the candidate that passes all validation tests. If we reach 1000

candidates and none of them passes all validation tests, we report

the test pass rate for the last generated candidate. In the experiments

with prompts, we set the limit of maximum generated programs to 5,

because we search for the prompt that yields the fastest solution to

exclude long searches and comply with the request rate limits.

5 RESULTS AND DISCUSSION
5.1 RQ1. Repair-replace Trade-off Exploration
We compare the number of solved problems in the experiments

with tree arity of 1, 10, 100, and∞ and fixed debug instruction S0

in Python and C++ in figure 5. The results of SEIDR are compared

to the baseline performance of PushGP on the PSB2 benchmark,

which solves 17 out of 25 problems. Note that experiments with

𝑁 = 1 and 𝑁 = ∞ can be considered as ablation studies, where the

replace option and repair option is turned off, correspondingly.

The results highlight the benefit of compromise strategies with

tree arity of 10 and 100 over repair-only (𝑁 = 1) and replace-only

(𝑁 = ∞) strategies. The repair-only scheme is outperformed by

other strategies. We explain the poor performance of repair-only

strategy by the fact that the search space is under-explored. Specif-

ically, replace scenario ensures the LLM for debugging represented

by Codex-edit in our experiments generates different updates of

program candidates using variable temperature. The probability of

7
https://platform.openai.com/docs/guides/code/editing-code

8
https://platform.openai.com/docs/models/gpt-3
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Figure 6: Distribution of the number of generated programs
during each problem-solving attempt in the experiments
with different tree arities where a problem solution is found.

finding a better fix is higher when more alternatives are generated

to update the draft program at 𝑁 > 1 compared to 𝑁 = 1. The

search strategy with 𝑁 = 10 yields the best results: it performs

on par with PushGP for C++ and outperforms the baseline during

Python program synthesis by +2 problems resulting in a total of 19

programs that pass all test cases. The results imply that generating

a moderate number of programs in parallel during the DEBUG step

works better than the policies in which more updates are generated

for each program (100 or 1000) or only one program is updated

iteratively.

We present the analogy of the solution speed for all four arities

and fixed default debug instruction in figure 6. In detail, we show

the distribution of EPG values in all experiments to explore how

many candidate updates are generated before the solution is found.

We zoom in to the cases with solutions found with up to the first

10 program candidates in figure 6a and show the EPG distribution

with the step of 100 candidates in figure 6b.

Out of 100 experiments for each language, in 21–24% of runs in

Python and C++, the draft program is already the solution (EPG=0).

For 19-32% of experiments, the solution is found after discarding

5 candidates. Around half of experiments do not generate more

than 100 programs. However, 5 problems are solved with more than

500 generated programs in Python and 1 problem in C++ (with

𝑁 = 10). The results imply that the first steps in the update of the

draft program are crucial for solving the problem. The chances

of solving the problem on the later stages of the search, such as

after 100 programs have been generated, are low. This confirms our

initial assumption in Section 4.2 that 1000 programs are sufficient.

Answer to RQ1. SEIDR outperforms the PushGP baseline on

PSB2 in Python and performs on par with it in C++ experiments

with tree arity of 10. Search strategies with tree arity larger than

https://platform.openai.com/docs/guides/code/editing-code
https://platform.openai.com/docs/models/gpt-3
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Figure 7: Number of solved PSB2 problems depending on the
instruction choice for the fixed tree arity of 1.

one benefit from the replace possibility of the SEIDR framework

as a consequence of using variable temperature for Codex-edit.

The repair component is also crucial for the framework because

the replace-only search policy (with tree arity of∞) performs

worse than the policies that alternate between replace and repair

during program update (with tree arity of 10 or 100).

5.2 RQ2. Prompt Engineering
We report the number of solved problems for different static and

GPT-assisted debug instructions in figure 7. Because debug instruc-

tions are parts of prompts for LLMs and the program candidate

format does not change, we will use the term prompt during the

analysis of experiment results with different instructions. Overall,

the performance of the framework is robust to the debug prompt

choice, both with LLM-generated and static templates. The number

of solved problems differs for Python and C++ in our experiments.

For C++, all debug prompts except S2 result in the same or higher

performance than the instruction S0 which is used in the repair-

replace trade-off experiments. The debug instruction S2 contains

the verbs “yield” and “ensure” which are probably rarely used in

code documentation. The best debug instruction for C++ is the

LLM-assisted template M6 containing the word “obviously”, which

should indicate the confidence of the author of bug summary whom

GPT-3 should mimic during autocompletion.

Python programs do not show the same effect during experi-

ments with different prompts. The overall performance drops in

comparison with using the prompt S0. By limiting the total number

of generated programs from 1000 to 5 in the current set of experi-

ments, we lose 2 problem solutions in Python with S0. The prompt

that results in the best performance in C++ for the EPG limit of 5

corresponds to the worst performance in Python. This result can

occur due to the small tree arity and low variability of debugging

updates of the initial draft. Another reason is that the GPT-3 sum-

mary of bugs may not point to logical errors. The model for text

autocompletion frequently outputs bug summaries that mention

“the code is not accepting the input correctly.” Note that such bug

summary appears in other debug prompts, too.

To analyze the effect of using different prompts on a problem

level, we present a heatmap of EPG for all 25 problems in figure 8.

We add the values of test pass rate in numbers or signs and show

EPG in color. Empty cells denote that the search halts due to OpenAI

exceptions, such as APIError.9 In addition, if the framework halts

before max programs attempts (light-blue cells with a “-”), it is due

9
https://platform.openai.com/docs/guides/error-codes/python-library-error-types

to the input length limit of the underlying LLM 𝑝
debug

, i.e., the

generated code is too long and does not fit as input to the LLM.

Some problems are solvedwith all prompts, while other problems

are solved with only a subset of prompts, solved partially, or not

solved at all. A number of problems are solved with all or the

majority of prompts in both languages, such as basement, fizz-buzz,

paired-digits, and twitter. Other problems pass all tests in only

one of the languages, such as luhn, vector-distance, fuel-cost, or

substitution-cipher. Most of the solved problems are generated as

the first draft or within 1–2 debug steps. However, some problems

pass 90% of test cases at the fifth step, such as substitution-cipher

in Python with prompts S4 and M8 or shopping-list in C++ with

prompts S0, S1, S5 and M7. These runs are likely to be updated with

the fully correct programs in the following several steps, according

to the results in section 5.1, but the experiments are stopped for the

fairness of inter-prompt comparison. Alternatively, conducting the

prompt engineering experiment with 1000 max programs would

have shown what prompts are beneficial for solving the problems

in the long run and can be interesting for future work.

The most interesting cases concern the problems that are solved

only with LLM bug summaries or only with static prompts. For

example, the gcd problem is solved only with prompts M6–M10

in C++ and is not solved with either of S0–S5. A similar result

is obtained for spin-words and coin-sums in C++. In Python, we

observe only the cases where solutions are obtained with static

prompts and are not obtained with GPT-assisted prompts, e.g., for

find-pair, camel-case. In addition, several prompts work well from

both S and M categories as for gcd in Python.

Answer to RQ2. Program synthesis in C++ with SEIDR

achieves better performance in the repair-only setting with both

GPT-assisted prompts that summarize bugs in code and static

templates which describe failing I/O cases. The best-performing

C++ instruction is obtained with GPT-3 for text completion that

contains the word “obviously”. Results differ for PSB2 solutions

in Python: the static prompt template S0 results in the best per-

formance. Overall, SEIDR performance is stable with different

debugging prompts submitted to Codex-edit.

5.3 Threats to Validity
External threats to validity concern SEIDR performance on different

benchmarks and the use of other language models than the tested

ones. Specifically, PSB2 contains competitive programming tasks

which require smaller functions to be generated than production-

scale software. We plan to extend our experiments in future work

to explore the generalizability of results to other benchmarks.

Internal threats relate to the implementation. We use PSB2,

which has corner case tests in the training set and test regular

cases in the test set. To ensure a fair comparison with other studies

on PSB2, we evaluate and report results on the provided test set

of PSB2 which risks that the synthesized programs do not pass

some of the training cases. Large models for code editing and text

completion used in this study are nondeterministic, which impacts

results. Due to prohibitive model inference costs, each experiment

was only run once. However, our temperature sampling procedure

described in section 2.2 reduces this stochasticity significantly, es-

pecially for low-EPG results. As with other language models, Codex

https://platform.openai.com/docs/guides/error-codes/python-library-error-types
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Figure 8: Number of excess programs generated (in color) and test pass rate (as numbers) depending on the type of debug
prompt. Higher EPG values are shown in darker shades than low EPG. We denote solved problems with “+” (test pass rate = 1),
unsolved problems with “-” (test pass rate = 0), and show the test pass rate for partially solved problems.

is a black-box model and may generate malicious code [54]. The

Codex model was pre-trained on an unbalanced dataset across pro-

gramming languages [9]. Thus, the results can be skewed towards

high performance in popular programming languages.

6 CONCLUSION
In this study, we propose the SEIDR framework to solve the chal-

lenge of fully autonomous programming. We augment the program

synthesis procedure based on the large language models for code

generation from templates and textual instructions with the repair

block. The repair block consists of the tree search across the pro-

gram candidates generated by a large language model for code. The

LLM used for code repair takes imperfect program candidates and

instructions for their improvement as prompts. The instructions are

obtained from both static templates with failing test case descrip-

tions and templates with auto-generated bug summaries by a text

completion language model. We explore 11 prompting strategies

and the repair-replace trade-off of updating the draft program.

Contributions: We test SEIDR with the Codex-edit as the model

for draft program synthesis and debugging in Python and C++ on

the PSB2 benchmark. In our experiments, SEIDR outperforms the

PushGP baseline and achieves the state-of-the-art result with 19

solved problems out of 25. It requires under 1000 program execu-

tions to solve them, in stark contrast to billions
10

of executions in

10
A problem is considered "solved" by PushGP if at least 1 of 100 runs, each with a

limit of 60 million programs, was successful.

PushGP, making it feasible in the areas with costly testing, such as

robotics. Investigation of the repair-replace trade-off shows that

SEIDR with tree arity of 10 outperforms both the replace-only strat-

egy and the repair-only approach. Our prompt engineering study

shows that bug summaries generated with “confidence indicators”,

such as “obviously”, improve the performance of SEIDR during C++

code synthesis. Overall, our framework shows low performance

variability with different prompts, which indicates its robustness.

Future work: To study the generalizability of the SEIDR frame-

work, we plan to expand the experiments to the competitive pro-

gramming dataset of AlphaCode [10] and QuixBugs [46], as well as

experimenting with ranking strategies, such as lexicase selection.

DATA AVAILABILITY
The code and results are made available via Zenodo.

11
Note that

OpenAI discontinued the Codex API on March 23, 2023, and sug-

gests using the GPT-3.5-Turbo API instead.
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