
FUTURE: 6487 Model 5G pp. 1–14 (col. figs: 9)
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Highlights

Size-efficient sparse population for strictly structured
quantum genetic algorithm

Future Generation Computer Systems xxx (xxxx) xxx

Jun Suk Kim, Chang Wook Ahn∗

• This paper introduces a semi-classical quantum algorithm to achieve optimization.
• This paper then proposes a method of improvement with a modified population setup.
• The experiment results show that the proposed method is scalable and practicable.

Graphical abstract and Research highlights will be displayed in online search result lists, the online
Please cite this article as: J.S. Kim and C.W. Ahn, Size-efficient sparse population for strictly structured quantum genetic algorithm, Future Generation Computer Systems
(2022), https://doi.org/10.1016/j.future.2022.04.030.

contents list and the online article, but will not appear in the article PDF file or print unless it is
mentioned in the journal specific style requirement. They are displayed in the proof pdf for review
purpose only.

http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs

FUTURE: 6487

Future Generation Computer Systems xxx (xxxx) xxx

G

c
t
r
c
f
i
t
n
o
m
a
b
i
l

s
n

h
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Size-efficient sparse population for strictly structured quantum
genetic algorithm
Jun Suk Kim, Chang Wook Ahn ∗
wangju Institute of Science and Technology, Gwangju, Republic of Korea

a r t i c l e i n f o

Article history:
Received 13 August 2021
Received in revised form 15 April 2022
Accepted 25 April 2022
Available online xxxx

Keywords:
Quantum genetic algorithm
Evolutionary computation
Optimization
Metaheuristics
Grover’s algorithm
Population setup

a b s t r a c t

Quantum genetic algorithm is a field of research to discover a potential structure to realize an
effective heuristic, evolutionary optimization technique powered by quantum computation. Apart from
contemporary efforts to look for a novel quantum evolutionary design, some studies suggest the idea
of strictly structured quantum genetic algorithm, which rigorously imitates the classical practice via a
sparse population to sample a few individuals from the given problem’s domain, as opposed to the
conventional quantum practice that transforms the entire domain into a population itself. Albeit having
its own advantages, the algorithm requires to periodically measure and reinitialize the quantum system
over generations. It therefore leads to several computational inefficiency issues including the wasteful
population initialization, during which individuals that rather marginally contribute to the overall
optimization are iteratively generated. This paper proposes that the algorithmic inefficiency from
the mentioned problem can be alleviated by preemptively eliminating a large portion of undesirable
individuals and still maintain the tasked optimization result to an acceptable degree. The main idea is
to deliberately reduce the amount of randomness among the quantum population, thereby discarding
individuals that do not contain any fitted genes. A number of tests were conducted on continuous
optimization problems to validate the theory of the proposed method, resulting that it can effectively
reduce the size of the involved population while minimizing the loss in the original algorithm’s
performance.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Quantum computing has already become a crucial topic in
omputer science thanks to the recent events that occurred in
he span of two decades, including the successful construction of
eal quantum processor prototypes, advancement of the sophisti-
ated quantum algorithms, and overloaded needs from industries
or supremely efficient optimization technologies [1]. Though
mperative, however, effective quantum algorithms are difficult
o invent mainly because quantum computing’s counterintuitive
ature often hinders much of efforts to grasp a solid picture
f its peculiar mechanism [2]. It therefore became one of the
ost popular strategies so far to create a quantum version of
n existing classical algorithm with its overall structure inspired
y the original design. Early attempts on this strategy made an
mportant progress, resulting in the birth of quantum machine
earning and quantum genetic algorithm [3].

Quantum genetic algorithm (QGA), like its contemporary clas-
ical or conventional genetic algorithm (CGA) [4], mimics the
atural evolutionary processes to accomplish an optimization

∗ Corresponding author.
E-mail address: cwan@gist.ac.kr (C.W. Ahn).
ttps://doi.org/10.1016/j.future.2022.04.030
167-739X/© 2022 Elsevier B.V. All rights reserved.
task. One major flaw of CGA is that it is computationally expen-
sive [5] due to the repetitive access to every bit of input data,
and it is a widespread expectation that the quantum-enabled
parallel computation can help lift such a burden to a considerable
degree. In spite of several expectations that organizing a series
of genetic operators in a similar form to those in the classical
version could result an intermediately efficient quantum algo-
rithm, some intrinsic differences between quantum and classical
computing systems seem to require an introduction of unprece-
dented approaches in order to achieve further improvements [6].
For example, a process of redistributing the small number of
components in each individual data fragment, or chromosome,
is deemed an essential step that diversifies candidate solutions
in a conventional genetic algorithm, [7] and it inevitably requires
specifying the address of each target component. This could be
a tricky part to implement in a QGA, where any interaction
between a quantum system and its surroundings can cause a
physical phenomenon called quantum wave function collapse,
which destroys nearly every sort of information stored within
it [8].

Continuous efforts to overcome the quantum-oriented dis-

crepancies under the conventional evolutionary structure have

https://doi.org/10.1016/j.future.2022.04.030
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:cwan@gist.ac.kr
https://doi.org/10.1016/j.future.2022.04.030

FUTURE: 6487

J.S. Kim and C.W. Ahn Future Generation Computer Systems xxx (xxxx) xxx

l
n
r
i
s
e
e
s
R
i

p
s
r
t
c
i
t
t
w
t
w
p

d
n
t
t
h
p
o
o
a
m
o
m
t
I
t
s

2

c
f
a
e
t
w
1
b
r

2

I
i
c
h
c
a
a
g
S

i
s
m
m
t

i
s

|

a
q
c
r
p
p
β

d
a
a
e
o
q
s
t

t
m
a
e

|

ed to somewhat loose establishment of reduced quantum ge-
etic algorithm (RQGA) [9], although that specific term has been
eferred to by only a few. Concisely speaking, RQGA avoids us-
ng the classical genetic operators by adopting single modified
election operator, and such simplification is compensated by
xploiting a quantum selection algorithm that can specify target
lements about quadratically faster than any known classical
election algorithms. In spite of a number of arguments in details,
QGA provides a theoretical basis that many current researches
n QGA begin with.

In 2014, an unique approach to implement a QGA was pro-
osed [10]. Instead of introducing a comprehensive quantum
election operator, the authors went back to the older idea of
eproducing the classical genetic operators in a form that suits
he quantum rules. The most noteworthy part is the cleverly
onfigured population generator, which prepares 2c individuals
n a length of n, conditioned c ≪ n. This deliberately replicates
he population sparsity of CGA, which extracts only a portion of
he target problem’s domain to use as its initial population. This
ork independently labels their work strictly structured quan-

um genetic algorithm (SS-QGA) with regards to RQGA, since, we
ould argue, it rather strictly resembles the CGA’s algorithmic
rocedure.
SS-QGA manifests its own advantages by counting fewer in-

ividuals during selection, as opposed to RQGA that considers
early every possible combination of its chromosomes. In order
o enhance SS-QGA’s computational efficiency regarding popula-
ion sparsity even further, a feasible improvement is introduced
ere to reduce the algorithm’s cost by eliminating the redundant
art of its population that barely contributes positively to the
verall optimization convergence. In the next section, the the-
ries of RQGA and SS-QGA with emphasis on their differences
re reviewed along with the related work. The third section
athematically shows that the initial population size for the
riginal SS-QGA can be contracted dramatically, while its opti-
ization performance remains preserved. In the fourth section,

he results from the experiments, programmed and conducted via
BM Qiskit [11] and Python, to validate the proposed method on
he problems with continuous domains are introduced. The last
ections conclude the study with analyses of the result in depth.

. Quantum genetic algorithm: Overview

In this section, we briefly introduce the basics of quantum
omputing and genetic algorithm and then discuss the main
eatures of the strictly structured quantum genetic algorithm. The
bstract ideas of reduced quantum genetic algorithm are then
xplained for comparison and referencing purposes, followed by
he introduction of the related work of the field. For readers
ho want a comprehensive look, it is recommended to see [9,
0,12] that thoroughly describe them in details. The quantum
ackground equations present in this section are borrowed and
eorganized from [2,13].

.1. Background

Quantum computers use qubit as a basic computation unit.
t is a quantum analog to bit in a conventional computer, but
ts unique, distinguished features allow quantum machines to
arry out tasks in a different manner. Quantum computing in-
erits several laws from quantum mechanics to shape its main
haracteristics, three of which come to a primary concern when
quantum algorithm is designed. First, any computation inside
quantum system can be written with notions of linear al-

ebra, involving complex numbers, under a Hilbert space [2].

econd, quantum computation must be performed in a physically

3

solated, uninteractive system in order to pursue a desired re-
ult, which can only be observed via an irreversible operation of
easurement . Third, any quantum operation except for measure-
ent must be reversible, i.e. the input of an algorithm must be

ractable from the output and assessed operators [13].
n qubits can be represented as their quantum state |Ψ ⟩, which

s written in the form of a 2n-dimensional vector. A single-qubit
tate, for example, can be represented as follows:

Ψ ⟩ = α|0⟩ + β|1⟩ = α
[
1
0

]
+ β

[
0
1

]
=

[
α

β

]
(1)

A ket |v⟩ is a mathematical notation of a column vector in
vector space, and in quantum computing each ket itself is a
uantum state. In other words, |ψ⟩ in (1) is a probabilistically
ombined state of the states |0⟩ and |1⟩, with α and β being the
espective state’s probability density, which dictates each state’s
robability to be observed after measurement. Since the sum of
robabilities of all states within a certain system must be 1, α and
obey

√
α+
√
β = 1 and can be complex numbers. The fact that

quantum computation is performed in a Hilbert space demands
the ket vectors to be orthonormal to each other [2]. Eq. (1) is
written based on the Z−basis, or 0–1 computational basis, which
is a conventional choice to write a quantum state with due to
its similarity to classical bits in manifesting the states under the
binary notation of 0 and 1. Under the computational basis, |0⟩
represents a vector (1, 0)T , and |1⟩ represents a vector (0, 1)T . In
addition, it is a common practice to initialize every qubit as |0⟩
at the beginning of computation.

A quantum operator, represented as a quantum gate, appli-
cable to states made from n qubits is represented by a 2n

×

2n matrix. Due to their reversibility, all the quantum gates are
unitary, and many of them are also Hermitian [13]. One of
the most important and frequently used quantum gates is the
Hadamard operator H , which places a quantum state into uniform
superposition. For example, applying the Hadamard operator to a
quantum state |0⟩ results

H|0⟩ =
1
√
2

[
1 1
1 −1

][
1
0

]
=

1
√
2

[
1
1

]
(2)

Note that now both |0⟩ and |1⟩ share a probability of (1
√
2
)
2
=

1
2 i.e. 50% chance to be measured. Under superposition, multiple
ifferent states have their corresponding probabilities to exist,
nd applying quantum operators to such states will achieve par-
llel computation [13], i.e. the identical operation is applied to
very embedded state simultaneously. It then becomes a matter
f measuring them as effectively as possible, since measuring a
uantum state causes wave function collapse, which reduces the
uperposed quantum states to only one of them accordingly with
heir probabilities.

One other notable exploitation of quantummechanics in quan-
um computing is entanglement, which mutually ties two (or
ore) states such that measurement upon one state directly
nd immediately affects the other. A theoretical example of
ntanglement is the Bell states, one of which writes

ψ+⟩ =
1
√
2
(|00⟩ + |11⟩) (3)

and can be implemented by applying a Controlled-NOT (CNOT)
gate to a 2-qubit superposed state [9]. Note that the state only
consists of two probabilistically measurable states, instead of
four. In terms of measurement, the equation indicates that if
the first qubit has been measured as 0, then the second qubit is
destined to be measured as 0 as well, and the same goes for the
case of 1. Such a state is said to be entangled, and the technique
of entanglement is frequently utilized along with superposition
to enhance the effectiveness of quantum algorithms [14].

FUTURE: 6487

J.S. Kim and C.W. Ahn Future Generation Computer Systems xxx (xxxx) xxx

a
f
n
o
l
r
n
m
m
c
t
w
s
i
s

q
s
p
f
c
t

|

M
p

|

s
v
a

2

g
t
b
e
t
e
s
m

a
t
s
t
f
p
h
o
r
i
s
O

The potential of the quantum parallel computation discussed
bove has raised the anticipation of vast applications to diverse
ields of optimization strategy, including genetic algorithms. Ge-
etic algorithm (GA), also referred to as CGA in this paper, is
ne of the most prominent meta-heuristic approaches to solving
arge-scale optimization problems, by implementing the abstract
eplication of the evolutionary steps inspired by the actual phe-
omenon in nature [7]. It starts with creating a set of population,
apping a fragment of the given problem’s search space (do-
ain), that consists of multiple individuals, which are then pro-
essed with genetic operators, such as crossover and mutation,
o perform the necessary perturbation of genetic values stored
ithin them. Throughout multiple generations, individuals with
ufficiently high fitness values are repetitively selected, result-
ng in the heuristic discovery of the optimal or nearly optimal
olutions at the end of the algorithm.
The field of quantum genetic algorithm, along with its variant

uantum-inspired genetic algorithm, started with a notion that
uperposition of multiple quantum states can be exploited for
roducing a quantum version of genetic population. Suppose that
or an arbitrary optimization problem, its domain has been en-
oded with n-bit binary chromosomes. For a quantum processor,
he algorithm begins with initializing n qubits in 0:

Ψ1⟩ = |0⟩1 ⊗ |0⟩2 ⊗ |0⟩3 ⊗ · · · ⊗ |0⟩n = |010203...0n⟩ (4)

ultiple qubits can be represented as single state with tensor
roducts ⊗ such that

0⟩ ⊗ |1⟩ =
[
1
0

]
⊗

[
0
1

]
=

⎡⎢⎢⎣1
[
0
1

]
0
[
0
1

]
⎤⎥⎥⎦ =

⎡⎢⎣0
1
0
0

⎤⎥⎦ (5)

Applying a Hadamard gate to the state in (4) results

|Ψ2⟩ = H|000...0⟩ =
1
√
2n

2n∑
t=1

|x0x1...xn−2xn−1⟩, x ∈ {0, 1} (6)

which is equal to

|Ψ2⟩ =
1
√
2n

⎡⎢⎣ 0
0
...

0

⎤⎥⎦
n

+
1
√
2n

⎡⎢⎣ 1
0
...

0

⎤⎥⎦
n

+ · · · +
1
√
2n

⎡⎢⎣ 1
1
...

1

⎤⎥⎦
n

(7)

There are now 2n states in superposition configured from n
qubits, each having a different combination of 0s and 1s. This
is essentially a quantum binary population with 2n chromo-
somes, and the task now is to find a state with the highest
fitness value with respect to the given problem function. Most
quantum genetic algorithm studies choose to use Grover’s search
algorithm [15] and its variant Grover-BBHT [16] to reproduce a
election operator. Effective ways to implement the quantum
ersion of crossover and mutation operators remain disputed,
lthough a few studies claim their robustness over others.

.2. Reduced quantum genetic algorithm

Reduced quantum genetic algorithm (RQGA), as its name sug-
ests, pursues a quantum counterpart for the classical evolu-
ionary process in a simplified configuration. The idea is driven
y two main causes. First, researchers highly anticipate that the
xotic quantum computing is capable of providing novel means
o achieve efficient heuristic optimization [17]. Second, allegedly,
ffective quantum analogs for some classical genetic operators,
uch as crossover, have not been developed yet [18]. RQGA is

eant to overcome those problems by exploiting quantum al-

4

gorithms that can work as a proxy for the classical operators.
Algorithm 1 below shows the overall structure adopted by most
studies on RQGA.

One of the important advantages of RQGA is that it generates
the entire population possible, as a set of quantum states, out
of single chromosome. Putting a n-dimensional state into super-
position, it creates a population of 2n superposed individuals,
all sharing the same length n and initial probability amplitude,
as described in the Eqs. (6) and (7). Desired solutions should
already exist amongst the generated population, so the whole
problem is reduced to specifying them via an effective selection
method.

The selection operator in RQGA is entirely composed from a
variant of Grover’s selection algorithm [15], Grover-BBHT [16].
It marks the desired solution states with the Grover’s oracle
nd amplifies their probability amplitudes to a degree at which
hey can be observed with a sufficiently high probability. Each
tep of marking and amplification is done by the rotation of
he Grover’s statevector, often referred to as the Grover’s dif-
user [11]. Grover-BBHT bypasses one of the original algorithm’s
rerequisites to know the number of solutions beforehand, by
euristically searching for them with a hyperparameter thresh-
ld. Although it requires measurement at the end of each diffuser
otation, Grover-BBHT sustains the same time complexity with
ts original design; given an unsorted table T [0...N − 1] with t
olutions, the algorithm is expected to find them in queries of
(
√

N
t), which is regarded quadratically faster than any known

classical search algorithms that would take O(Nt) in average [19].
The fact that Grover-BBHT can safely find solutions, even if their
quantity is unknown, makes it a successful applicator to mini-
mum or maximum search problems, where searching process is
frequently done by iteratively raising a threshold bar above which
candidate solutions in an unpredicted number are to be specified.
Undoubtedly, its discovery was quickly followed by the introduc-
tion of the quantum minimum [20] and maximum [21] search
algorithms that majorly exploit it. The procedure of Grover-BBHT
is briefly described in Algorithm 2.

Algorithm 1 Reduced Quantum Genetic Algorithm
1: Initialize a population by superposition
2: Evaluate the fitness value for each chromosome
3: for iteration = 1, 2, . . . , n do
4: Make a query to the Grover-BBHT oracle O
5: Rotate the Grover-BBHT diffuser G
6: end for
7: Measure the state

Algorithm 2 Grover-BBHT Algorithm

Set m = 1 and λ such that 1 < λ < 4
3

2: for iteration = 1, 2, . . . do
Randomly choose j such that 0 < j < m

4: Initialize the items into equal superposition
Apply Grover’s algorithm for j times

6: Measure the state
if the outcome matches the desired feature then

8: Exit the loop and terminate
else

10: Set m← min(λm,
√
N)

end if
12: end for

FUTURE: 6487

J.S. Kim and C.W. Ahn Future Generation Computer Systems xxx (xxxx) xxx

n
r
p
2
y
w
i
g
t
s
c
e
t
a

1

1

1

Fig. 1. An example of a SS-QGA pseudo-randomizer circuit with c = 2 and
n = 8. Drawn via Qiskit.

2.3. Strictly structured quantum genetic algorithm

Strictly structured quantum genetic algorithm (SS-QGA) is a
semi-classical quantum genetic algorithm, which keeps the struc-
ture of CGA but adopts quantum parallelism to alleviate the
heavy cost from massive evolutionary computations. It is dis-
tinguished from quantum–classical hybrid algorithms because
every sequence of data processing, once its encoding is done,
is conducted under a quantum system. SS-QGA creates a sparse
population that represents only a portion of the given problem’s
domain, unlike RQGA that takes the whole of it. The individuals
are then rearranged via crossover and mutation until their fitness
values are measured at the selection step, as summarized in
Algorithm 3.

SS-QGA starts with initializing two copies of a population |Ψ ⟩
of 2c individuals each comprising n genes.

|Ψ ⟩ =
1
√
2c

2c∑
n=1

|x0...xc−1⟩|x0...xn−1⟩, x ∈ {0, 1} (8)

This procedure is done by preparing two registers containing
2c qubits and 2n qubits respectively, constructing a pseudo-
randomizer circuit (Fig. 1) which randomly connects the c and

qubits via CNOT gates after superposition, and running the
andomizer twice. Under a condition c ≪ n, the overall size of the
opulation is much smaller than one in RQGA, which would be
n. This necessitates multiple iterations of the selection operator
et dramatically reduces the required number of Grover iterations
ithin each operation [10]. Notice that although the population

s described conceptually as two distinct sets, they are actually
enerated by superposition in single circuit. Therefore, a state of
he whole circuit can be written as a probabilistic sum of 22c sub-
tates, each having 2c + 2n digits. This automatically completes
rossover, since each individual state in one set is conjoined with
very individual state in another due to the applied superposi-
ion [13]. One can relabel these states for convenience, but it is
n extra step after all.
5

Algorithm 3 Strictly Structured Quantum Genetic Algorithm
Set integers c and n such that c ≪ n
Set a sufficiently large fitness threshold T with respect to the
target function f

3: for generation = 1, 2, . . . do
if generation = 1 then

set z = 0
6: end if

Build a pseudo-randomizer circuit R accordingly with the
genetic configuration of z

Call R twice to generate two population sets of random 2c

individual states each in a length of n
9: Perform crossover, which is basically relabeling the states

previously created
Perform mutation
Apply Grover-BBHT algorithm upon the states and mea-

sure the highest fitted individual u
2: if f (u) > f (z) then

Set u = z
end if

5: if f (z) > T then
break

end if
8: end for

SS-QGA runs the same selection process Usel as RQGA does,
except for two changes. First, SS-QGA selects candidate solutions
from a tailored population with a size of 22c , much smaller than
22n. Second, unlike in RQGA that requires only superposition, in
SS-QGA the population initializer Uinit (and the mutation operator
Umut) must be initiated once for each iteration of Grover-BBHT,
i.e.

Usel = UmutUinit |Ψ
′
⟩U†

initU
†
mut (9)

where |Ψ ′⟩ indicates the population after applying the Grover’s
oracle. Note that each operator is applied again as its conjugate
transpose in order to deconstruct, or decouple, the interrelation
among the qubits so that proper measurement can be made [10].
Because Grover-BBHT ends every iteration with measurement
that breaks the whole population into single individual state,
repetitively applying the operators is mandatory so that the pop-
ulation can be reinstated for subsequent runs. This slightly com-
plexifies the circuit in terms of its size because every Grover
iteration now includes Uinit and Umut .

A population in SS-QGA consists of nonconsecutive, sparse
binary string chromosomes, which raise the issue of ambiguous
indexing. Suppose that out of N possible individuals in total, Ñ
individuals form a population for one arbitrary generation such
that Ñ ∼= N . It is likely here that any index can well approximate
the individual it corresponds to, since Ñ and N are nearly equal
in size. Therefore, each individual state |x⟩ can approximately
represent its own index x, so any extra steps to convert the
state to its index are not needed during the process of fitness
evaluation. In the case of SS-QGA, on the other hand, it is hardly
convincing that individuals can represent their indices because,
now with Ñ ≪ N , some individuals can only be represented with
numbers that are larger than the maximum available index. The
algorithm then needs either an extra step to convert each index
to its individual or somehow making each individual represent
its own index. SS-QGA chooses the second path and resolves the

issue by creating the pseudo-randomizer.

FUTURE: 6487

J.S. Kim and C.W. Ahn Future Generation Computer Systems xxx (xxxx) xxx

t

2

a
s
t
i
m
u
d
l
i
c

i
a
p
w
p
a
e
i
s
a
d

a
l
o
i
i

3

c
i

Fig. 2. A total population formed with two identical population sets. The blue chromosomes marked with the letter F are the inherited, high fitness individuals, and
he yellow chromosomes are the randomly generated individuals. The red dotted bar lines mark the location of single crossover points.
w
p
p
i
o
t

f
t

.4. Related work

GA is still an active field of research and discussions, and its
pplications are extensively made in various areas of computer
cience. Recently, for example, Akimoto proposed a GA technique
hat can effectively replace generative adversarial network (GAN)
n solving the problem of min–max optimization by exploiting a
inimization oracle [22]. In addition, Chiesa et al. introduced the
tilization of GA for identifying and selecting features from high-
imensional datasets, which are a crucial step in general machine
earning [23]. Overall, there are many reasons to make use of GA
n various areas of research, as Katoch et al. in their review paper
onclude [24].
In terms of the amount of published studies, RQGA has dom-

nated the field of QGA. In fact, the first study to attentively
nalyze the concept of QGA by Han et al. in 2002 describes the
otential algorithmic structure to resemble RQGA [3]. The idea
as expended by Udrescu et al. who provided a more specific
rocedural description of implementing RQGA via Grover’s search
lgorithm [12], which was soon polished further by Malossini
t al. in 2008 [6]. The history of SS-QGA is relatively short. While
ts idea has existed, though rather obscurely, since the beginning
tage of QGA, it was in 2014 when Saitoh et al. first proposed
n algorithmic structure that is rigorous enough to provide the
etailed procedure and to enable its simulation [10].
Despite its short history, the field of QGA overall has also seen

couple of review studies for it. For example, Laboudi et al. pub-
ished a study that thoroughly compares CGA and QGA in terms
f optimization [5]. In 2016, Lahoz-Beltra published a general
ntroduction to QGA in the perspective of computer science and
nformation technology [9].

. Proposed improvement

In this section, we first point out the lurking problem of the
urrent SS-QGA and then suggest a theory to solve it and to
mprove the overall performance of the algorithm.
6

3.1. Excess in population

In the previous section it is mentioned that SS-QGA prepares
two copies of an identical population |P⟩ as |P1⟩ and |P2⟩, mainly
for the purpose of performing crossover. The whole system’s state
|Ψ ⟩ can be written as

|Ψ ⟩ = |P1⟩ ⊗ |P2⟩

=
1
2c

2c∑
n=1

2c∑
n=1

|a1a2⟩|x1x2⟩
(10)

here a is the address to its corresponding individual x. SS-QGA
erforms single-point crossover, in which an individual is re-
laced with a concatenation of two shorter chromosomes, inher-
ted from different population sets. Recall that the configuration
f each individual as a binary string is represented by qubits from
he n − qubit registers, but they are connected by CNOT gates
with superposed qubits in the c − qubit registers in order to
orm a population. Therefore, the total number of individuals in
he circuit is 22c , with every individual state formed as a part
of an individual from one set added by a part of an individual
from another (Fig. 2). To reveal its genetic features more clearly
Equation (10) can be rewritten as

1
2c

2c∑
n=1

2c∑
n=1

|a1a2⟩|x
left
1 xright2 ⟩ind|x

left
2 xright1 ⟩rest (11)

The state |xleft1 xright2 ⟩ind, in the length of n, represents a group
of individuals to be processed. With a hyperparameter crossover
point placed between the chromosome’s indices h−1 and h, each
individual is formed with a left-hand part of an individual in the
length of h and a right-hand part of the other in the length of
n − h, while the remnant |x1x2⟩rest is disregarded for the later
processing. Note that it is only the expression that has changed
from Eqs.(10) to (11); the actual quantum state expressed by
them remains unaltered.

As described in Algorithm 3, SS-QGA reserves precisely one
individual with a considerable fitness value from each genera-
tion, due to the required measurement during the Grover-BBHT

FUTURE: 6487

J.S. Kim and C.W. Ahn Future Generation Computer Systems xxx (xxxx) xxx

s
n
p
W
p
r
h
h
a
i
m
b
s
t
l
c
a

c
i
o
s

t
i
w
a
t
u
t
u
o
m

3

d
Q
t
a
f
i
c
t
g
s
c
f

o
g
v
d
2
t
i
t
t
u

s
G
t
|

f
h
t
r
d

g
t
e
a
e
t
r
e
o

election. At the initializing stage of a subsequent generation, a
ew population is formed with this single particular individual
lus fully random individuals generated by a pseudo-randomizer.
ithin two identical population sets, some individuals contain
artial genetic features from the reserved individual, and as a
esult these partially fitted individuals are more susceptible of
igher fitness values. Individuals purely filled with random genes,
owever, lose their relative proclivity to higher fitness values
long a series of continuing generations as the partially fitted
ndividuals gradually become more sophisticated, i.e. resembling
ore closely to the potential maximum, which is hard to imitate
y trivially generating random genes successively. Alternatively
peaking, the degree of contribution by the random individuals to
he evolutionary effort to search for the maximum remains highly
imited, especially when a given problem is sufficiently compli-
ated and requires a long series of generations to accomplish an
cceptable solution.
In a SS-QGA circuit with two sets of a 2c sized population that

ontain 22c individuals in total, the single high fitness individual
n each set is superposed and joined with every individual on the
ther set, forming 2 × 2c

= 2c+1 partially fitted individual sub-
tates. The rest, 22c

−2c+1 individuals are then entirely filled with
randomly generated genes. Let N = 2c . It is not hard to find p(N)
and q(N) that satisfy

p(N) ≤
N2
− N = 22c

− 2c

N = 2c ≤ q(N) (12)

Therefore, the population contains a polynomially larger por-
ion of the random individuals than the partially fitted individuals
n terms of N , and such difference is exponentially commensurate
ith the number of exploited qubits c. Judging by their low
dequacy to the optimization task, it is reasonable to argue that
he presence of the mentioned randomly generated individuals
nnecessarily and severely increases the amount of computa-
ional cost needed for the selection process. Removing the rather
nimportant chunk of population would be likely to speed up the
verall algorithm, with loss in its optimizing capability kept at the
inimum.

.2. Removing trivial individuals

Now that the problem to concern has been explained, it is
escribed here how it can be resolved, with more details on SS-
GA’s quantum circuit and its logic. The goal is to remove all
he fully randomly generated individuals, which do not share
ny genetic features with the high fitness individuals inherited
rom previous generations. The size of a population in SS-QGA
s directly and solely related to the number of qubits in the
− qubit register, c , and superposition applied to every qubit in
he c−qubit register inevitably generates the chunk of randomly
enerated individual chromosomes. Therefore, the primary goal
hould be to properly diminish the size of the population that the
ircuit exploits while guaranteeing that the high fitness genetic
eatures remain preserved among the survivors.

We have shown in the previous section that the total number
f individuals to either partially or entirely share the high fitness
enetic features is 2c+1

+1 ≈ 2c+1, which is still dependent on the
ariable c . A modified SS-QGA circuit thus should start with the
ifferent number of the c − register qubits, this time being c , not
c. With every c qubit under superposition, iterating the circuit
wice with different pseudo-randomizer circuits counts up to 2c+1

ndividuals in total into selection. Unlike the original algorithm
hat randomly chooses among n qubits to connect with c qubits,
he circuit now divides the n− qubit register into preserved and
npreserved qubits. Preserved qubits are applied with X gates to

adjust their initially all-0 gene values to those of the inherited
7

Fig. 3. An example of a modified SS-QGA pseudo-randomizer circuit with c = 2
and n = 8. Note that the c qubits do not interact with the n qubits marked as
preserved. Drawn via Qiskit.

individual, representing its preserved genetic features. They are
not applied with Hadamard operators or connected with c qubits
because their binary gene values must be the same for every state
of each population set so that multiple individuals to share the
identical partial high fitness genetic features can be created. The
rest of the genes are connected with c qubits to be initialized
randomly (Fig. 3). Refer to Algorithm 4 below for the modified
procedure.

Each n − qubit register now contains a different portion of
the preserved genes, indicating that the two registers cannot be
processed concurrently for selection. Suppose that, like in the
original algorithm, the n − qubit registers are placed in parallel
and processed with two Grover iterators independently. One
Grover iterator for the first register will amplify the probability
amplitude of an individual state in that register with the highest
fitness value, but it will also raise the probability amplitudes of
the states in the second register that are bound with the selected
state in the first register. For example, let two n− qubit registers
start selection with a hypothetical state

|ψhyp⟩ =
1
2
(|0010⟩ + |0111⟩ + |1000⟩ + |0101⟩). (13)

The first n− qubit register owns the first two qubits, and the
econd the rest. For simplicity, let the oracle of the first register’s
rover iterator marks the state |01⟩. The selection process will
hen also amplify the probability amplitude of the states |11⟩ and
01⟩ from the second register, since they are entangled with |01⟩
rom the first register. This amplification will be canceled out,
owever, if the Grover iterator on the second register happens
o choose neither of those two. Therefore, the two n − qubit
egisters must be processed separately, either with physically
istant pseudo-randomizers, or in series.
Fig. 4 shows the overflow graphic of the modified SS-QGA per

eneration. Note that, in order to secure population diversity in
he early stage, the algorithm runs the first generation with the
xactly same steps of the original SS-QGA, creating 22c individuals
nd preserving single locally highest fitted individual z at the
nd. From the second generation on, the algorithm then follows
he proposed modification, creating 2c+1 individuals, none purely
andom. The selection process is proceeded in two parts in series,
ach searching for the locally highest fitted individual from either
f the two n − qubit registers. At the end of a generation, those

FUTURE: 6487

J.S. Kim and C.W. Ahn Future Generation Computer Systems xxx (xxxx) xxx

1

2

2

2

c
w
b
i

s
t

t
o
c
Q
η
t
2
n
i
p
r

2
Q

Algorithm 4 Modified Strictly Structured Quantum Genetic
Algorithm

Set integers c and n such that c ≪ n
Set a sufficiently large fitness threshold T with respect to the
target function f

3: for generation = 1, 2, . . . do
if generation = 1 then

set z = 0
6: Build a pseudo-randomizer circuit R accordingly with

the genetic configuration of z
Call R twice to generate two population sets of random

2c individual states each in a length of n
Perform crossover, which is basically relabeling the

states previously created
9: Perform mutation

Apply Grover-BBHT algorithm upon the states and
measure the highest fitted individual u

if f (u) > f (z) then
12: Set u = z

end if
else

15: Build two modified pseudo-randomizer circuits R
′

1 and
R
′

2, each connecting c − qubits with only a part of n − qubits
and applying X gates to the rest, accordingly with the genetic
configuration of z

Call R
′

1 to generate single population set of partially
random, partially fit c individual states each in a length of n

Perform mutation to R
′

1
8: Apply Grover-BBHT algorithm upon the states and

measure the highest fitted individual u1

Call R
′

2 to generate single population set of partially
random, partially fit c individual states each in a length of n

Perform mutation to R
′

2
1: Apply Grover-BBHT algorithm upon the states and

measure the highest fitted individual u2
Compare f (u1), f (u2), and f (z), and set the individual

with the highest fitness value as z
end if

4: if f (z) > T then
break

end if
7: end for

two locally highest fitted individuals and the highest individual
from the last generation z are compared, returning a new z that
ontains the highest fitness value among them. This process alone
ould not cause any decrease in the best fitness value threshold
ecause z is always accounted for in each generation, although
ts value could still be hindered by mutation.

The particular study on the Grover-BBHT-based minimum
earch algorithm proves mathematically that it at most takes the
otal time of 45

4

√
N + 7

10 lg2 N , given a list of N items, to find
the minimum with probability at least 1

2 [20]. To guarantee that
he algorithm almost certainly picks the minimum, the number
f Grover iterations Giter can be multiplied with an arbitrary
onstant integer. For example, the authors of the original SS-
GA claims its required number of iterations to be Giter =

⌈∗⌉
45
4 Ñ + 28

5 (log2 Ñ)2 with a constant integer η ≥ 1. Note that
he total number of individuals for each generation in SS-QGA is
2c
= Ñ2, so the expression is a polynomial of Ñ and an expo-

ential function of c . The modified SS-QGA we have introduced
nstead takes 2c+1 individuals for each generation. Because each
opulation set is processed for selection in series, the number of
equired Grover iterations for the proposed modification is G′ =
iter

8

Fig. 4. An abstract procedure of single generation for modified SS-QGA. Two
selected individuals from separately constructed population sets, along with
z from the previous generation, compete for the current generation’s best
individual to spare.

η⌈∗⌉ 454 (2
√
Ñ)+ 28

5 (log2(2
√
Ñ))2, which is now a polynomial of√

Ñ and an exponential function of c
2 . The classical comparison

made at the very end of each generation is negligible, since it
only requires a small constant time complexity. We argue that
this is quadratically faster than the original SS-QGA in terms of
the number of each generation’s individuals Ñ to be processed
with the Grover selection procedure.

4. Experiment

This section explains the experiment conducted via a series
of simulations with several optimization tasks to validate the
effectiveness of the proposed method as opposed to the original
SS-QGA, in terms of the optimizing performance. A part of the
experiment was programmed with Qiskit [11], a Python quantum
simulator released by IBM, to simulate a quantum system with a
classical computer. The experiment was divided into two parts,
quantum and classical, for practical reasons. First, the current
version of Qiskit does not technically support configuring the
Grover’s oracle that enables Grover’s minimum and maximum
search algorithms [11]. It for now only supports the oracles with
the static boolean logic, which is unsuitable for the dynamic
computations needed to do practical searching. Second, Qiskit’s
internal Statevector Simulator package only replicates up to 24
qubits, which are inadequate in quantity to simulate with for
reproducing sufficiently complex problems.

Along with a quantum simulation that constructs a theoret-
ically accurate quantum circuit under a pseudo-quantum envi-
ronment restricted by the aforementioned limitations, a classical
simulation was separately conducted, at the cost of mathemati-
cally rigorous quantum processing, in order to create and solve
the scalable problems to verify the algorithms’ general prac-
ticality. For both simulations, the setup prepared a group of
continuous optimization problems with the corresponding sizes
of domain, through which it is feasible to observe how the modi-
fied algorithm competes with the original SS-QGA in the abstract
and comparatively real-world environments.

4.1. Quantum and classical simulations

The quantum simulation sets c = 2 and n = 10, reproducing
c
= 4 individuals for each generation. This setting respects SS-

GA’s presupposition c ≪ n because 2 is quadratically smaller

FUTURE: 6487

J.S. Kim and C.W. Ahn Future Generation Computer Systems xxx (xxxx) xxx

s
a
p
f
i
o
l
c
o
t

v
a
o
i
s
d
i
e
v
s
g
M
p
t
w
a
i

t
p
s
1

Fig. 5. The best fitness results for the quantum simulation of SS-QGA vs. Modified SS-QGA on the problem functions of (a) Himmelblau, (b) Matyas, (c) Rastrigin,
and (d) sphere. The blue curve is the fitness optimization progress of the original SS-QGA, and the black curve is the fitness optimization progress of the modified
SS-QGA, over 20 iterations each running 20 generations.
than 10, i.e. 2 <
√
10. Simulating 24 qubits in total, it also

atisfies Qiskit’s 24-qubit limit. Since the number of individu-
ls is highly limited, only simple, continuous toy optimization
roblems were considered in order to clearly observe changes in
itness values over time. The algorithmic section for population
nitialization, crossover, and mutation was constructed as a set
f appended quantum-simulated circuits via Qiskit, and the se-
ection, measurement, and comparison processes were run classi-
ally. For the target optimization problems, the problem functions
f Himmelblau, Matyas, Rastrigin, and Sphere were chosen, since
hey are suitable for short and simple validation [25].

Table 1 shows the important parameters with the allocated
alues for the quantum simulation. cr and mut indicate the prob-
bilities for crossover and mutation, and gen and iter the number
f generations and iterations, respectively. Each iteration, hav-
ng a different starting point to respect the genetic algorithmic
tochasticity, is a set of multiple generations and evaluates their
egree of optimization in average at each generational step. cr
s 1, since the algorithm unavoidably performs crossover in ev-
ry generation, and mut is set to 0.05, which is a conventional
alue many GA-based optimization studies choose to use. Fig. 5
hows the plots of the best function-evaluated fitness values per
eneration, each averaged via 20 iterations, for the Himmelblau,
atyas, Rastrigin, and Sphere functions, comparing the relative
erformances of the original and modified SS-QGAs, in the quan-
um simulation. For simplicity, the fitness and objective functions
ere set to be equal. Therefore, since all the tested functions
re minimization problems, the lowering curves indicate that the
ntended optimization has been achieved.

For the classical simulation, use of Qiskit was abandoned while
he experiment was classically configured by the regular Python
rogramming. Free from the 24 qubit limit, the experiment was
et up with c = 7 and n = 60 as listed in Table 2, generating
28 individuals each with 60 genes. Note that c and n here still
9

Table 1
Important parameter values for the quantum
simulation.
Parameter Value

c 2
n 10
cr 1
mut 0.05
gen 20
iter 20

satisfy the presupposition c ≪ n. Now with the binarily longer
individuals due to the higher n, the decimal value of each individ-
ual’s degree of fitness comprises more digits, making the search
space larger. Fig. 6 shows the results of the classical simulation
on the Himmelblau, Matyas, Rastrigin, and Sphere, comparing
the original and modified SS-QGAs. Again, plotted are the best
fitness values in each generation, averaged via 20 iterations.
Table 3 lays out the mean difference between the best fitness
values averaged via 20 iterations with the corresponding standard
deviations, rounded to two decimal places, of the original and
modified SS-QGAs along 20 generations for the quantum and
classical simulations upon each tested function. In addition to
plotting the best fitness values, we also tracked the optimization
flow of the average fitness values per generation for the classical
simulation, as shown in Fig. 7, and their mean value over the
generations for each target function is listed in Table 4.

In order to help acknowledge the fitness differences observed
in the plots of Figs. 5 and 6 further, Fig. 8 is prepared to show
the plots of the absolute gaps of the best fitness differences
per generation, averaged via 20 iterations, in the quantum and
classical simulations for the target functions. Their mean and
standard deviation values are presented in Table 5, in the same
manner as Tables 3 and 4. The fitness differences in Table 3 are

FUTURE: 6487

J.S. Kim and C.W. Ahn Future Generation Computer Systems xxx (xxxx) xxx

Fig. 6. The best fitness results for the classical simulation of SS-QGA vs. Modified SS-QGA on the problem functions of (a) Himmelblau, (b) Matyas, (c) Rastrigin,
and (d) sphere. The blue curve is the fitness optimization progress of the original SS-QGA, and the black curve is the fitness optimization progress of the modified
SS-QGA, over 20 iterations each running 20 generations.

Fig. 7. The average fitness results for the classical simulation of SS-QGA vs. Modified SS-QGA on the problem functions of (a) Himmelblau, (b) Matyas, (c) Rastrigin,
and (d) sphere. The blue curve is the fitness optimization progress of the original SS-QGA, and the black curve is the fitness optimization progress of the modified
SS-QGA, over 20 iterations each running 20 generations.

10

FUTURE: 6487

J.S. Kim and C.W. Ahn Future Generation Computer Systems xxx (xxxx) xxx

(

i
f
a
n

Fig. 8. The absolute gaps of the best fitness differences per generation between the original and modified SS-QGAs in the quantum (the purple curve) and classical
the green curve) simulations on the problem functions of (a) Himmelblau, (b) Matyas, (c) Rastrigin, and (d) sphere.
.

Table 2
Important parameter values for the classical
simulation.
Parameter Value

c 7
n 60
cr 1
mut 0.05
gen 20
iter 20

Table 3
Compared mean difference between the original and modified SS-QGAs’ best
fitness values throughout 20 generations for each problem function, quantum
vs. classical.
Function Quantum Classical

Himmelblau −1.48 ± 1.15 −9.09× 10−4 ± 1.21× 10−3

Matyas −2.54× 10−2 ± 1.62× 10−2 −2.93× 10−6 ± 5.72× 10−6

Rastrigin −3.94× 10−1 ± 6.81× 10−1 −4.92× 10−3 ± 1.79× 10−2

Sphere −2.03× 10−1 ± 3.22× 10−1 −1.69× 10−5 ± 8.16× 10−5

gained by subtracting the fitness values of the original from those
of the modified. Since every tested function is of a minimization
problem, minus signs indicate that the original has achieved
better optimization. On the other hand, the gaps in Table 5 merely
demonstrate the numerical differences in the fitness.

4.2. Comparison on amount of computation

In order to support another claim that the modified SS-QGA
s more time-efficient than the original SS-QGA, the number of
itness evaluations per generation for each algorithm was counted
nd plotted cumulatively, as seen in Fig. 9. Table 6 lists the
umber of total fitness evaluations made in the original and
11
Table 4
The means of the original and modified SS-QGAs’ average fitness values
throughout 20 generations for each problem function in the classical simulation
Function Original Average Fitness Modified Average Fitness

Himmelblau 7.71× 102
± 9.05 4.57× 102

± 7.49× 10
Matyas 1.08± 1.87× 10−2 6.88× 10−1 ± 9.67× 10−2

Rastrigin 2.40× 10± 1.32× 10−1 1.69× 10± 1.71
Sphere 4.14± 4.45× 10−2 2.69± 3.73× 10−1

Table 5
The absolute gap of the mean difference between the original and modified SS-
QGAs’ best fitness values throughout 20 generations for each problem function,
quantum vs. classical.
Function Quantum vs. Classical Gap

Himmelblau 1.48 ± 1.14
Matyas 2.58× 10−2 ± 1.55× 10−2

Rastrigin 6.37× 10−1 ± 4.46× 10−1

Sphere 3.12× 10−1 ± 2.12× 10−1

modified SS-QGAS in the quantum classical simulations, along
with the corresponding ratios between the two algorithms. The
hyperparameter η, introduced in Section 3.2, is set to 1, with
which the probability that the chosen individual is the fittest
is 1/2. Setting η > 1 could be a plausible choice in terms of
ensuring a higher probability to secure the fittest individuals, but
since η is multiplied as a constant for both algorithms, the overall
outcome would not lead to drawing a different conclusion. Note
that the Qiskit’s quantum simulation assumes an ideal quantum
machine, in which quantum-oriented errors such as decoherence
do not occur [11]. In a real-life experiment, the number of fitness
evaluations performed by the Grover’s diffuser could fluctuate
due to the machine’s physical incompleteness.

FUTURE: 6487

J.S. Kim and C.W. Ahn Future Generation Computer Systems xxx (xxxx) xxx

m
I
w
g
o
h
l
f
s
w
p
S
i
a

o
a
c
c
Q
d
t
t
o
t
s
o
h
T
d
t
S

r
e
b

Fig. 9. The flows of cumulative evaluations for the original (the blue curve) and modified (the red curve) SS-QGAs, in (a) the quantum and (b) the classical simulations.
Since the number of conducted evaluations is irrelevant to the types of the target problem functions but to the number of the involved individuals, all the problem
functions in each simulation share the same result.
Table 6
The numbers of total evaluations in the original and modified SS-QGAs for the
quantum and classical simulations, along with their ratios between the two
algorithms.
Experiment (c, n) Original Modified Ratio

Quantum (2, 10) 80 61 1.31
Classical (7, 60) 2560 432 5.93

5. Analysis

Figs. 5 and 6, side by side, manifest the comparative opti-
ization performances of the original and modified SS-QGAs.

n Fig. 5, note that the modified algorithm generally performs
orse than the original in all cases. Particularly, the modified
enerally failed to reach the degree of optimization that the
riginal achieved at the end. Such relatively poor performance
as been expected, since the original algorithm can secure a
arge pool of random individuals, while any possible configuration
or chromosomes remains extremely simple under the quantum
imulated environment, forming a narrow search space. In other
ords, due to the short length of chromosomes, the number of
ossible combinations of genes is highly limited, and the original
S-QGA can thus relatively frequently discover the highly fitted
ndividual from the pool of the randomly created individuals via
series of stochastic tryouts.
It was anticipated that the aforementioned positive effect

f the random individuals would be minimized if the number
nd the length of chromosomes increased accordingly with the
omplexity of a target problem, which was the very case for the
lassical simulation. Refer to Fig. 6. Although the modified SS-
GA still performs slightly worse than the original SS-QGA, the
egrees of discrepancy are noticeably minimized with respect to
he cases of the quantum simulation. For every target function,
he modified achieved the same degree of convergence to the
riginal roughly at the midpoint of the generation series. While
he classical simulation maintains the same target functions to
olve, it maps a larger search space due to the increased number
f genes within each chromosome, implying that a dramatically
igher number of possible combinations of the gene values exists.
he enlarged search space reduces the probability of acquiring
esirable solutions by blind exploration with random individuals,
hus invalidating the advantage of stochasticity for the original
S-QGA that prevailed in the quantum simulation.
It is worth noticing that the absolute value of the ‘Quantum’

esults in Table 3 and the gaps in Table 5 are roughly similar. For
xample, the absolute fitness difference of the quantum Himmel-
lau, 1.48 ± 1.15, is nearly identical to the function’s quantum
12
vs. classical gap, 1.48 ± 1.14. Such outcome implies that the
fitness differences in the classical simulation is virtually negli-
gible compared to the differences in the quantum simulation,
supporting the presumption of this paper that the performance
gap between the two algorithms would shrink with respect to the
increase in the dimension and complexity of the target problem
function’s search space and domain. The graphical comparison in
Fig. 8 particularly displays the relative significance of the fitness
differences generated in the quantum simulation as opposed to
the differences in the classical simulation, which can be said to
be barely existent in comparison.

In Fig. 7, both quantum and classical average fitness flows
stay moderately horizontal until the end of the generational
series, reflecting the low ratio of the highly fitted individuals
to the partially or fully random individuals in the population. It
can also be observed that the classical flows drop considerably
at the second generation, where the proposed method of the
population configuration is applied for the first time. Such a
discrepancy displayed in all the cases suggests that getting rid
of randomly generated individuals positively contributes to the
overall population fitness. In other words, in spite of the removal
of the significant portion of the population, the modified SS-QGA
performs better than the original in terms of the average fitness
of the overall population and only slightly worse in terms of the
best fitness individuals, implying that the eliminated individuals
indeed hardly help the optimization task. The differences in the
average fitness values of the two algorithms can be seen more
clearly in Table 4 where the values in the third column are
substantially lower than those in the second column. Correlating
such results with those represented in Tables 3 and 5 and the
plots in Figs. 5, 6, and 8, we claim that the modified SS-QGA
is identical to the original SS-QGA in terms of the optimization
performance when they are utilized to handle sufficiently large
and complex problems, which are mostly the case in practical
usage.

Refer to Table 6 for the numerical details about the difference
in time complexity between the original and modified SS-QGAs.
For the classical simulation especially, the number of evaluations
made in the original is nearly six times higher than the number
of evaluations made in the modified. Such a result well suits our
anticipation, since the increase step of evaluation per generation
in the modified is quadratically less than that of the original in
terms of Ñ = 2c , i.e. each step of the modified costs O(

√
2c+1)

as opposed to O(2c) evaluations in the original. The difference
is significantly more obvious in the classical simulation where c
is higher. It must be noted that the number of generations set
for the experiment in this study is remarkably low due to the
simplicity of the target functions and the limited availability of

FUTURE: 6487

J.S. Kim and C.W. Ahn Future Generation Computer Systems xxx (xxxx) xxx

q
f
r
n
Q
h

t
s
N

b
a
o
q

d

c
u
q
p
f
c
P
u
p
o
B
f
s
t

g
v
t
e
f
s
p
e
t
s
n
n

6

t
o
t
s
e
t
o
t
a
e
c
c
s
w
o

c

ubits for the quantum simulation. The number of generations set
or practical or real-world applications of genetic algorithms often
ange from 100 to 10000, for which the difference in the total
umber of evaluations between the original and modified SS-
GAs would vary much more severely than the result presented
ere.
As discussed in Section 3, the modified SS-QGA maintains

he overall circuit configuration of the original SS-QGA and thus
hares the same space complexity. The original requires poly(log
) qubits and O(logN) classical bits, with N = 2n and n as the

number of qubits in the n − qubit register [10]. The classical
its are needed merely in order to store the measured individual
fter the quantum computation. Since the same process from the
riginal takes place in the first generation, the same number of
ubits is needed, resulting the same requirement of poly(logN)

qubits. Because in any case c ≪ n, with c as the number of qubits
in the c − qubit register, the reduced size of c for the modified
oes not affect its space complexity analysis.
Note that the labels ‘quantum’ and ‘classical’ are merely for

onvenient distinction; both experiments are intended to sim-
late an algorithm to be run on a strict quantum device. The
uantum simulation here, strictly speaking, is not fully quantum-
rocessed. Due to the lack of the type of the oracle needed
or Grover’s minimum and maximum search algorithms in the
urrent version of Qiskit, the selection process was run classically.
reparing and initializing the populations are done with the logic
nder quantum circuits, however, and with regards to this pa-
er’s main focus on changing the population layout and size, the
verall experiment design well serves the purpose of this study.
ecause of the limited number of simulated qubits, every problem
unction was chosen to be continuous, for which, with only the
hort chromosomes available, the performance difference is set
o be more clearly observable.

The classical experiment, as previously stated, has been or-
anized with classical programming from the beginning to the
ery end. It is coded to generate and initialize population sets in
he same way as a quantum circuit would, but it is programmed
ntirely with the classical Python functions in order to break free
rom the computational restrictions of Qiskit. The aim was to
how the validity of the proposed method, though classically, via
roblems with sufficiently large search domains. As mentioned
arlier, both algorithms perform more similarly to each other as
he problems become larger and more complicated. The conclu-
ive analysis is that the original and modified SS-QGAs will mark
early the same level of performance in optimization for most if
ot all large, practical problems.

. Conclusion

The main purpose of this paper, in summary, is to prove
hat the suggested size of each generation’s population for the
riginal SS-QGA can be effectively reduced to the degree where
he optimizing performance still remains nearly undamaged. Two
ets of experiments, quantum and classical, were prepared to
vidently show the comparative performance improvement of
he proposed method with regards to the original SS-QGA. The
verall outcome reveals the tendency that the gap between the
wo algorithms’ performance levels shrinks as more complicated
nd domain-wise larger problems are targeted to solve; it is an
xpected result, since individuals with strong randomness in their
onfiguration possess little chances to imitate the delicate genetic
onfiguration of highly fitted individuals in a dimensionally and
patially complex environment [24]. The main contribution of this
ork is to have proved the validity of considering a smaller size
f population when one implements QGA.
Strictly Structured Quantum Genetic Algorithm, as mainly dis-

ussed in this paper, is one sort of semi-classical quantum genetic
13
algorithms that follow the general procedure of conventional,
classical genetic algorithms. Although they are seemingly more
practical, it is a common belief among researchers that a fully
quantum-oriented genetic algorithm, if there is any, would be
likely to outperform them in terms of handling multidimen-
sional optimization problems [26]. It is still seemingly desirable,
however, to continue developing new ideas on semi-classical
quantum genetic algorithms, since doing so can hopefully lead
to discovering a crucial cornerstone of a rigid structure for a fully
quantum-oriented algorithm, which has not been solidly defined
by any related literature.

Quantum genetic algorithm as an optimization theory, in the
current stage, is by all means in its infancy. One can validate
its expected performances via simulated environments, but how
it would actually perform under a real quantum environment
remains questionable. It will be only after a fully functional quan-
tum machine has been developed that an actual validation of
quantum genetic algorithm as a practical and reliable optimiza-
tion tool becomes available. The main objective of researching
quantum genetic algorithm should then be to have its well-
defined procedure ready to be committed just as a quantum
machine comes in our hands. Hopefully the recent rapid advance-
ments of physical quantum machines can help let those days
come faster. Only time will certainly tell.

7. Future work

More advanced methods to process the final comparison step
can be introduced in future studies. For the modification intro-
duced in this work, the comparison between the best individuals
from the two population subsets must be done in series in order
to avoid nullifying the magnified probability amplitudes of the
individual states. While such a modification does not severely
hinder the overall computational effectiveness of the algorithm,
it is anticipated that there should be a more elegant way to fulfill
this process, perhaps in parallel. Such design might also involve
a simpler circuit configuration, which is clearly an advantage in
terms of building an effective quantum algorithm.

With regards to the fact that there are only few quantum ge-
netic algorithms or quantum meta-heuristic methodologies that
have been developed so far, one would be encouraged to make
a comparison between his/her own proposed quantum genetic
algorithm with existing, state-of-the-art classical genetic algo-
rithms in order to observe in which aspects the adaptation of
quantum computing could affect the optimization progress. Such
an effort should be an important step, since there is a series of
predictions that the NP-equivalent problems exist in quantum
computing [2], implying that the meta-heuristic approach could
still be a valuable process to achieve optimality within quantum
computers.

Future work on this topic can also contribute to discovering
possible applications of the proposed method. The intrinsic pur-
pose of SS-QGA is to replicate the process of classical genetic
algorithms for quantum processors with the enhanced perfor-
mance in terms of time and space complexities, and the proposed
modification in this paper further improves it with the reduced
size of population. As such, we expect that the original and
modified SS-QGAs are applicable to virtually every optimization
task that exploits a genetic algorithmic approach.

The toy optimization problems examined here aside, there are
many real-world tasks, either single or multi-objective, where
the proposed improvement can be effectively applied. For ex-
ample, the traveling salesman is a type of NP-hard optimization
problems, which is frequently exploited in studies of optimiza-
tion theory as a benchmark [27], while its objective is closely
correlated to the real-world problems such as optimized vehicle

FUTURE: 6487

J.S. Kim and C.W. Ahn Future Generation Computer Systems xxx (xxxx) xxx

r
o
i
q
g
c
t
i

C

A

D

c
t

A

o
N

R

outing, delivery schedule arrangement, and efficient placement
f pin in an integrated circuit. The mentioned problems often
nclude the massive number of possible combinations that re-
uires the sufficiently large size of population in terms of the
enetic algorithmic approach, and the proposed improvement can
ertainly contribute positively to maintaining the population size
o an acceptable degree when an attempt to solve it via SS-QGA
s made.

RediT authorship contribution statement

Jun Suk Kim: Conceptualization, Methodology, Software, Writ-
ing – original draft, Visualization, Investigation. Chang Wook
hn: Validation, Writing – review and editing, Supervision.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

This work was supported by the National Research Foundation
f Korea (NRF) grant funded by the Korea Government (MSIT) (No.
RF-2021R1A2C3013687, No. NRF-2021R1A6A3A13046634).

eferences

[1] F. Arute, K. Arya, R. Babbush, et al., Quantum supremacy using a
programmable superconducting processor, Nature 574 (2019) 505–510.

[2] N.S. Yanofsky, M.A. Mannucci, Quantum Computing for Computer
Scientists, first ed., Cambridge University Press, 2008.

[3] K.-H. Han, J.-H. Kim, Quantum-inspired evolutionary algorithm for a class
of combinatorial optimization, IEEE Trans. Evol. Comput. 6 (6) (2002)
580–593, http://dx.doi.org/10.1109/TEVC.2002.804320.

[4] S. Shirazi, M. Menhaj, A new genetic based algorithm for channel assign-
ment problems, in: B. Reusch (Ed.), Computational Intelligence, Theory and
Applications, Springer, 2006, pp. 85–91, http://dx.doi.org/10.1007/3-540-
34783-6_10.

[5] Z. Laboudi, S. Chikhi, Comparison of genetic algorithm and quantum
genetic algorithm, Int. Arab J. Inf. Technol. 9 (2012).

[6] A. Malossini, E. Blanzieri, T. Calarco, Quantum genetic optimization,
IEEE Trans. Evol. Comput. 12 (2008) http://dx.doi.org/10.1109/TEVC.2007.
905006.

[7] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning, thirteenth ed., Addison-Wesley Professional, 1988.

[8] C.C. Moran, Mastering Quantum Computing with IBM QX, first ed., Packt
Publishing, 2019.

[9] R. Lahoz-Beltra, Quantum genetic algorithms for computer scientists,
Computers 5 (4) (2016) http://dx.doi.org/10.3390/computers5040024, URL
https://www.mdpi.com/2073-431X/5/4/24.

[10] A. SaiToh, R. Rahimi, M. Nakahara, A quantum genetic algorithm with
quantum crossover and mutation operations, Quantum Inf. Process. 13
(2014) 737–755.

[11] H. Abraham, A. Offei, R. Agarwal, et al., Qiskit: An open-source framework
for quantum computing, 2019, http://dx.doi.org/10.5281/zenodo.2562110.

[12] M. Udrescu, L. Prodan, M. Vlăduţiu, Implementing quantum genetic algo-
rithms: A solution based on Grover’s Algorithm, in: Proceedings of the 3rd
Conference on Computing Frontiers, in: CF ’06, Association for Computing
Machinery, New York, NY, USA, 2006, pp. 71–82, http://dx.doi.org/10.1145/
1128022.1128034.

[13] M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Infor-
mation: 10th Anniversary Edition, first ed., Cambridge University Press,
2004.
14
[14] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, S. Lloyd,
Quantum machine learning, Nature 549 (7671) (2017) 195–202, http:
//dx.doi.org/10.1038/nature23474.

[15] L.K. Grover, A fast quantum mechanical algorithm for database search, in:
Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of
Computing, in: STOC ’96, Association for Computing Machinery, New York,
NY, USA, 1996, pp. 212–219, http://dx.doi.org/10.1145/237814.237866.

[16] M. Boyer, G. Brassard, P. Høyer, A. Tapp, Tight bounds on quantum
searching, Fortschr. Phys. 46 (4–5) (1998) 493–505, http://dx.doi.org/10.
1002/(sici)1521-3978(199806)46:4/5<493::aid-prop493>3.0.co;2-p.

[17] H. Wang, J. Liu, J. Zhi, C. Fu, The improvement of quantum genetic
algorithm and its application on function optimization, Math. Probl. Eng.
2013 (2013) http://dx.doi.org/10.1155/2013/730749.

[18] D. Sofge, Prospective algorithms for quantum evolutionary computation,
in: Proceedings of the Second Quantum Interaction Symposium, QI-2008,
College Publications, Oxford, UK, 2008, pp. 26–28.

[19] P.R. Giri, V.E. Korepin, A review on quantum search algorithms, Quantum
Inf. Process. 16 (12) (2017) 1–36, http://dx.doi.org/10.1007/s11128-017-
1768-7.

[20] C. Dürr, P. Hoyer, A quantum algorithm for finding the minimum, 1996,
CoRR quant-ph/9607014.

[21] A. Ahuja, S. Kapoor, A quantum algorithm for finding the maximum, 1999,
arXiv:arXiv:quant-ph/9911082.

[22] Y. Akimoto, Saddle point optimization with approximate minimization
oracle, in: Proceedings of the Genetic and Evolutionary Computation
Conference, Association for Computing Machinery, New York, NY, USA,
2021, pp. 493–501.

[23] M. Chiesa, G. Maioli, G.I. Colombo, L. Piacentini, GARS: Genetic algorithm
for the identification of a robust subset of features in high-dimensional
datasets, BMC Bioinformatics 21 (2020) http://dx.doi.org/10.1186/s12859-
020-3400-6.

[24] S. Katoch, V. Chahar, S. Chauhan, A review on genetic algorithm: Past,
present, and future, Multimedia Tools Appl. 80 (2021) http://dx.doi.org/
10.1007/s11042-020-10139-6.

[25] D.M. Himmelblau, Applied Nonlinear Programming, first ed., McGraw-Hill,
1972.

[26] W. He, Y. Shi, Multiobjective construction optimization model based on
quantum genetic algorithm, Adv. Civ. Eng. 2019 (2019) 1–8, http://dx.doi.
org/10.1155/2019/5153082.

[27] S. Conforto, A. Hussain, Y.S. Muhammad, et al., Genetic algorithm for trav-
eling salesman problem with modified cycle crossover operator, Comput.
Intell. Neurosci. 2017 (2017).

Jun Suk Kim – was born in South Korea, in August
1989. He received his Bachelor’s degree in Physics
from University of Illinois in Urbana-Champaign, USA
in 2016 and received his Master’s degree in Computer
Science from Gwangju Institute of Science and Tech-
nology, South Korea in 2019. He is currently working
for his degree of Ph.D. in Gwangju Institute of Science
and Technology. His focused area of research is Rein-
forcement Learning, Quantum AI and Quantum Genetic
Algorithm.

Chang Wook Ahn is working as a Professor in the
AI Graduate School, Gwangju Institute of Science and
Technology (GIST), Republic of Korea. He received
a Ph.D. degree from the Department of Information
and Communications at GIST in 2005. From 2005 to
2007, he worked in Samsung Advanced Institute of
Technology, Korea. From 2007 to 2008, he was a
Research Professor at GIST. From 2008 to 2016, he
was an Assistant/Associate Professor at the Department
of Computer Engineering, Sungkyunkwan University
(SKKU), Republic of Korea. His research interests in-

clude genetic algorithms/programming, multi-objective optimization, neural
networks, and quantum machine learning.

http://dx.doi.org/10.1109/TEVC.2002.804320
http://dx.doi.org/10.1007/3-540-34783-6_10
http://dx.doi.org/10.1007/3-540-34783-6_10
http://dx.doi.org/10.1007/3-540-34783-6_10
http://dx.doi.org/10.1109/TEVC.2007.905006
http://dx.doi.org/10.1109/TEVC.2007.905006
http://dx.doi.org/10.1109/TEVC.2007.905006
http://dx.doi.org/10.3390/computers5040024
https://www.mdpi.com/2073-431X/5/4/24
http://dx.doi.org/10.5281/zenodo.2562110
http://dx.doi.org/10.1145/1128022.1128034
http://dx.doi.org/10.1145/1128022.1128034
http://dx.doi.org/10.1145/1128022.1128034
http://dx.doi.org/10.1038/nature23474
http://dx.doi.org/10.1038/nature23474
http://dx.doi.org/10.1038/nature23474
http://dx.doi.org/10.1145/237814.237866
http://dx.doi.org/10.1002/(sici)1521-3978(199806)46:4/5<493::aid-prop493>3.0.co;2-p
http://dx.doi.org/10.1002/(sici)1521-3978(199806)46:4/5<493::aid-prop493>3.0.co;2-p
http://dx.doi.org/10.1002/(sici)1521-3978(199806)46:4/5<493::aid-prop493>3.0.co;2-p
http://dx.doi.org/10.1155/2013/730749
http://dx.doi.org/10.1007/s11128-017-1768-7
http://dx.doi.org/10.1007/s11128-017-1768-7
http://dx.doi.org/10.1007/s11128-017-1768-7
http://arxiv.org/abs/arXiv:quant-ph/9911082
http://dx.doi.org/10.1186/s12859-020-3400-6
http://dx.doi.org/10.1186/s12859-020-3400-6
http://dx.doi.org/10.1186/s12859-020-3400-6
http://dx.doi.org/10.1007/s11042-020-10139-6
http://dx.doi.org/10.1007/s11042-020-10139-6
http://dx.doi.org/10.1007/s11042-020-10139-6
http://dx.doi.org/10.1155/2019/5153082
http://dx.doi.org/10.1155/2019/5153082
http://dx.doi.org/10.1155/2019/5153082

	Size-efficient sparse population for strictly structured quantum genetic algorithm
	Introduction
	Quantum genetic algorithm: Overview
	Background
	Reduced quantum genetic algorithm
	Strictly structured quantum genetic algorithm
	Related work

	Proposed improvement
	Excess in population
	Removing trivial individuals

	Experiment
	Quantum and classical simulations
	Comparison on amount of computation

	Analysis
	Conclusion
	Future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

