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Abstract: This study proposes the design of a family of controllers based on sector non-linear functions for first-order dynamical
systems. Three new controllers that incorporate these types of functions are presented and analysed to validate the authors'
premise. The proposed nominal controllers and an augmented version with integral action are presented. Asymptotic stability is
proven under the Lyapunov theory and the controllers' performance is compared against a traditional proportional controller. An
empirically tuned relation depending on a constant bound value and an operation range is proposed; this is used to compute the
gains of each controller. Simulation results with all of the controllers under saturation bounds are presented to illustrate the
effectiveness of the method at solving the output regulation and the tracking control problems, under practical physical
assumptions. The numerical comparison utilises the ℒ2 and ℒ∞ norms over the output error, and over the control variable,
applying the same saturation bounds for each controller.

1 Introduction
This work proposes the construction of non-linear controllers
whose behaviour is comparable with that of a proportional (P)
controller for first-order dynamical systems (FO-DSs). P,
proportional–integral (PI), proportional–derivative (PD), and
proportional–integral–derivative (PID) controllers are the most
commonly used control schemes in industrial applications. Their
success can be attributed to their simplicity and efficacy in
obtaining the desired performance from a plant. A P-only control
law applies a correction which is P to the error measured between
the desired reference and the actual output of the plant. Even
though P control is in itself incapable of guaranteeing zero steady-
state error, unlike the PI and PID controllers, its simplicity makes it
a regular choice for applications where the error's effect is
negligible. Examples of such applications include inner-loop
cascade control and surge tank level control applications [1, 2].

P control can be analysed as an odd, passive function, that lies
in quadrants I and III of the Cartesian plane; its output is
continuous and monotonically increasing. Sector bounded non-
linear functions, in general, are non-linearities that reside in some
sector of the plane. This sector can be conic, described by two
straight lines, or it can be defined by less conservative bounds,
given by some non-linear expression. This is known as a
generalised sector bound [3]. In this work, we are concerned with
non-linear functions within the sector [0, ∞]; for simplicity, we
will refer to them as sector non-linear functions (SNFs), keeping in
mind the sector in which we are interested. Under this
consideration, one can say that the P controller is a sector function
that belongs to the sector [0, ∞].

This document poses the hypothesis that it is possible to design
stable non-linear controllers based on unbounded, continuous, and
monotonically increasing functions lying in sector [0, ∞]. In order
to demonstrate this hypothesis, the passive properties of these
SNFs are exploited in the construction of a Lyapunov function.
This shows that the resulting closed-loop system is globally
asymptotically stable. Then, it can be concluded that the controllers
based on SNFs within sector [0, ∞] present a stable closed-loop
behaviour, which is comparable with that of a P-only controller. To
exemplify our premise, three different SNF controllers are
proposed for regulation and tracking of a FO-DS. Moreover,

analogously to a PI controller, an integral action is added to the
proposed SNF controllers to ensure the zero steady-state error.

FO-DSs are fundamental in different research areas such as
robotics, telecommunications, chemistry, biology, sociology etc.
[4]. For instance, in robotics, they are useful during robot design,
analysis, control and simulation [5]. FO-DS can model the
kinematic motion of rigid bodies; this is the robot motion within an
operational space [6]. For example, in collaborative robotics FO-
DS models constitute the simplest mathematical model for the
description of agents (such as robots, satellites, autonomous robots
etc.) [7]. FO-DSs are used in collaborative control of multi-robot
systems during consensus and formation tasks. In [8, 9], this
problem is addressed assuming that motion constraints for an
agent, such as non-holonomic restrictions on mobile robots, are
defined in their direction and magnitude. Another example can be
found in [10], where both unbounded and bounded control laws are
considered for centroid tracking and relative formation tasks.
Group consensus between both first- and second-order discrete-
time systems is considered in [11]. Utilising the matrix and graph
theory, the authors define sufficient conditions to reach consensus
in such an heterogeneous group. FO-DSs also appear in humanoid
robotics, specifically during the modelling of motion components
to generate walking patterns. In [12], a bounded relaxed condition
to generate real-time walking patterns, called divergent component
of movement (DCM), is proposed. Later, a simple first-order model
for the DCM is presented by Hopkins et al. [13]. There, the authors
introduce a method for reference trajectory planning of the DCM
over uneven terrain, considering the trajectories of the vertical
components of the centre of mass, and the zero-moment point. The
DCM has also been extended to a three-dimensional version by
Englsberg et al. in [14] to obtain a planning and control method for
bipedal walking over uneven ground. The method takes advantage
of the linear properties of DCM when modelled by a FO-DS.

Studies on PI, PD, PID controls and their variants have
appeared over the years in several forms. To mention some
examples, Katebi and Moradi [15] proposed the integration of
some features of MPC controllers into the PID control problem by
introducing a prediction horizon for a set of parallel PID
controllers. An adaptive version of PID controllers using
backstepping for linear second-order minimal phase processes is
presented in [16]. Given its relevance to the field of control
engineering, a great number of methods for PID tuning have been

IET Control Theory Appl.
© The Institution of Engineering and Technology 2020

1



proposed in the literature over time. Take, for instance, the
influential Ziegler–Nichols tuning rules [17] where the step and the
frequency responses are used to obtain adequate gains for the P, I
and D terms of the controller. A heuristic rule of thumb was
proposed in [18] based on the well-accepted IMC-PID tuning rules
for the industry. Some traditional widespread used model-based
techniques are presented in [19–21]. Another model-based PID
design tool for Matlab is introduced in [22] where some examples
from the process industries are evaluated. Nguyen and Nguyen
[23], for instance, present a methodology for the tuning of PID
controllers for desired overshoot and settling time parameters. The
procedure is demonstrated for first- and second-order dynamical
systems. Another tuning strategy for PID control is proposed in
[24] for a desired maximum sensitivity. The provided solution is an
optimisation of the PID response over the exponential weighted
error function. The computation of the stabilisation set for PI/PID
controllers using root-counting and signature results for
polynomials is reported in [25]. All of the above examples
illustrate the relevance of the PID within the state of the art, and
the remaining open problems that still exist, considering the
extensive attention it has received from scholars since its
conception. Thus, a comparison with a P controller is proposed in
this paper.

The present work takes its inspiration in the results of [26, 27]
to propose a family of controllers based on non-linear functions,
which are not traditionally contemplated in the design of control
laws. Some examples of these non-linear functions include a
hyperbolic sine, a hyperbolic cosine, and a third degree polynomial
(or cubic) function. The proposed controllers are compared against
a typical P controller. All four controllers (hyperbolic sine,
hyperbolic cosine, cubic, and P based) combine the inverse
dynamics of the FO-DS. A version of the controllers incorporating
the integral action is also analysed. Numerical results are given for
the regulation and tracking problems in a FO-DS under hard and
smooth saturation bounds representing the physical constraints in
practical applications. The performance of the controllers is
evaluated through the ℒ2 and ℒ∞ norms. To achieve a fair
comparison, the gains in each controller are empirically tuned via a
proposed relation that characterises each of the functions. The
gains are thus parameterised with respect to a defined saturation
bound, and a given operation range for the error between the
system output and the desired reference.

This document is organised in the following manner. The
problem statement is presented in Section 2. Section 3 describes
the design methodology for the SNF controllers and also includes
stability proofs for the proposed family of controllers. In Section 4,
the integral action is added to the controllers and the corresponding
stability proof is also presented. Section 5 contains the proposed
parameterisation relations for each controller, and numerical results
for regulation and tracking tasks. Simulation results assuming a
time-delayed system are presented in the same section. Finally, the
conclusions of this work are given in Section 6.

1.1 Contribution

This work demonstrates that the hypothesis of using unbounded,
continuous, and monotonically increasing SNFs derives in a family
of suitable controllers. These kinds of controllers are capable of
solving the output regulation and tracking control problems in FO-
DSs. The main contributions of this paper are enumerated as
follows:

i. A family of controllers, based on SNFs lying in sector [0, ∞],
is proposed. The performance of these controllers is
comparable with the traditional input saturated P controller.

ii. Examples of SNF controllers using hyperbolic and cubic
functions are given as particular cases to illustrate the design
procedure and their behaviour under saturation bounds.

iii. Global asymptotic stability is demonstrated for: (a) the closed-
loop system and (b) the closed-loop system plus integral action
(resembling a typical PI controller), both under the Lyapunov
stability criterion.

iv. The gains for each controller are chosen by introducing a
relation between the gains and two tuning parameters. These
parameters depend on the given saturation bound and a desired
operation range. The gains are, thus, empirically tuned to
achieve the desired performance.

v. Numerical comparisons using the ℒ2 and ℒ∞ norms, over the
output error and the over the control variable, are performed
for each controller, under the same scenarios and applying the
same saturation level.

2 Problem statement
Consider a FO-DS whose dynamics are described by the ordinary
differential equation:

a q̇(t) + b q(t) = c u(t), (1)

where q(t) and u(t) are the output and the control input,
respectively, and q̇(t) denotes the first time derivative of the output.
The coefficients a, b, and c are the system's physical parameters.

The control objective can be described as the design of a control
input variable u(t) containing a continuous, monotonically
increasing SNF lying in sector [0, ∞], such that the output q(t)
asymptotically converges to the desired reference qd(t), that is

lim
t → ∞ qd(t) − q(t) = 0. (2)

3 Synthesis of non-linear controllers with SNF
 

Definition 1 (Sector non-linearity): A function ϕ:ℝ → ℝ is said
to be in sector [l, m] if for all q ∈ ℝ, p = ϕ(q) lies between lq and
mq.
 

Remark 1: For a function ϕ(q) belonging to sector [0, ∞], q and
ϕ(q) always have the same sign. This is qϕ(q) > 0 for all q.
In this work, the use of SNF non-linear controllers addressing the
tracking control problem in FO-DS is proposed. Let us define the
tracking errors as

q(t) = qd(t) − q(t), q̇(t) = q̇d(t) − q̇(t), (3)

and consider for (1) a redefinition of the control input u(t)
combining the inverse dynamics of the system and an SNF term.
This is let u(t) be given as

ui(t) = a
c q̇d(t) + gSNF

i (q~(t)) + b
c qd(t) − q~(t) , (4)

where gSNF
i (q~(t)) is either

gSNF
1 = sinh(k1q~), (5)

gSNF
2 = k2 q~3 + q~ , (6)

gSNF
3 = q~ cosh(k3q~) . (7)

In addition, ki is the set of positive constant values for each control
law gSNF

i (q~(t)), for i = 1, 2, 3. As a side note, the controller using
gSNF

1 (q~(t)) is inspired in [26, 27].
 

Remark 2: The proposed non-linear sector functions are odd
functions within sector [0, ∞], as stated in Definition 1, and they
also fulfil Remark 1. That is gSNF

i (q~(t)) ∈ [0, ∞], then it holds that
q~(t)gSNF

i (q~(t)) > 0, for all t.
The stability of the controlled system is demonstrated through

the analysis of the closed-loop dynamics obtained by substituting
(4) into (1).

 

2 IET Control Theory Appl.
© The Institution of Engineering and Technology 2020



Theorem 1: The closed-loop system defined by the FO-DS (1)
and the control input (4) is globally asymptotically stable.

 
Proof: The closed-loop dynamics is given by the first-order

non-linear system

q~̇(t) + gSNF
i (q~(t)) = 0. (8)

Applying the classic quadratic Lyapunov candidate function
V(q~) = (1/2)q~2 > 0 yields V̇(q~) = − q~gSNF

i (q~(t)). It can be
straightforwardly concluded that V̇(q~) < 0 (see Remark 2), with ki
defined as a set of positive constant values. Hence, the proof of
Theorem 1 is concluded. □

4 Integral action
In order to guarantee a zero error in the steady state, the SNF
controllers are augmented with an integral term. The analysis of
such a case is presented below. Consider the errors q~(t) and q~̇(t)
defined as before and the previous set of three non-linear
controllers given by (5)–(7). The augmented control input u(t) is
thus redefined as

ui
I(t) = a

c q̇d(t) + gSNF
i (q~(t)) + ki

I∫
0

t
q~(t)dτ

+ b
c qd(t) − q~(t) ,

(9)

where ki
I, i = 1, 2, 3, is a positive constant gain value for the

integral term in each controller.
 

Remark 3: From Table 1, notice that the temporal derivatives
Dt[ gSNF

i ( q~(t))] of the proposed non-linear sector functions gSNF
i (q~(t))

have the form q~̇(t)ḡi(q~(t)), where ḡi(q~(t)) are positive definite
functions. 
 

Theorem 2: Consider the FO-DS (1) driven by the control input
ui

I(t) as in (9), where gSNF
i (t) is a set of monotonically increasing

non-linear functions in the sector [0, ∞]. Let gSNF
i (t) be given either

as (5), (6), or (7), and each ki and ki
I are positive constants. Then,

the closed-loop system given by (1) and (9) is globally
asymptotically stable.

 
Proof: The closed-loop system is obtained as

q~̇(t) = q̇d(t) − c
aui

I(t) − b
aq(t)

= − gSNF
i (q~(t)) − ki

I∫
0

t
q~(t)dτ .

(10)

Then, differentiating once with respect to time, the closed-loop
system becomes

q~̈(t) = − Dt[gSNF
i (q~(t))] − ki

Iq~(t), (11)

where Dt[gSNF
i (q~(t))] is defined in Table 1.

Using the state-space notation, (11) can be rewritten as

d
dt

q~(t)
q~̇(t)

=
q~̇(t)

−Dt[gSNF
i (q~(t))] − ki

Iq~(t)
. (12)

Note that the closed-loop system has one unique equilibrium point
at q~e = (0, 0). Now, let a Lyapunov candidate function be given as

V(q~(t), q~̇(t)) = 1
2[ki

Iq~2(t) + q~̇2(t)] . (13)

Then, it can be shown that

V̇(q~(t), q~̇(t)) = − q~̇(t)Dt[gSNF
i (q~(t))] < 0. (14)

Furthermore, since q~e = (0, 0) is the only equilibrium point of
system (12), then it can be concluded that the closed-loop system is
globally asymptotically stable. The proof of Theorem 2 is thus
finalised. □

5 Numerical example results
Numerical simulations are presented to illustrate the performance
of the proposed SNF controllers under hard saturation constraints.
They are compared against a P controller under hard and soft
saturation bounds. The saturation constraint in the control input
appears, in practice, as a physical bound for the demanded control
achievable by the system. The saturated P controller is defined as
up (for hard saturation) and uht (for soft saturation). The control
laws up and uht in (4) are redefined using gp (as the corresponding P
controller) in place of gSNF

i . The hard saturation function over a
signal u is defined as sign(u)min( u , γ) [28], while the soft
saturation is implemented as γ tanh(u/γ) [29].

The procedure to define the gains to provide a fair comparison
can be described as follows. A region of operation for the functions
is selected in terms of the saturation bound γ and a chosen
parameter η. This produces a slope in the P controller equal to γ /η.
The rest of the controllers' gains are characterised by equating the
functions to the P slope at the limits of such a region. This way, the
functions' graphs present similar behaviour inside the region. This
can be observed in Fig. 1. 

The positive constant values are set to

k1 = η−1arsinh γ
η , (15)

k2 = γ
η (η3 + η)−1, (16)

k3 = η−1 arcosh γ
η2 , (17)

respectively. The gain for the P controller is computed as kp = γ /η.
In all cases, γ denotes the level of saturation. Notice the shape and
decay of the functions within the range q~ = [ − η, η].

Table 1 SNFs gSNF
i (t) and their respective time derivatives

gSNF
i (q~(t)) Dt[gSNF

i (q~(t))]
sinh(k1q~(t)) q~̇(t){k1cosh(k1q~(t))}
q~(t)cosh(k2q~(t)) q~̇(t){cosh(k2q~(t)) + k2q~(t)sinh(k2q~(t))}
k3 q~3(t) + q~(t) q~̇(t) k3{3q~2(t) + 1}

 

Fig. 1  Graph of sector non-linear functions gSNF
i (q~(t)), i = 1, 2, 3, and a P

function gp parameterised for η = 1 and γ = 10
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Consider the FO-DS (1) parameterised with unitary values for
a, b, and c. For the output regulation problem, let the desired
reference be a rectangular function given as

qd(t) =
2, 0 ≤ t ≤ 2.5,

−2, 2.5 < t ≤ 5,
4, 5 < t .

(18)

In addition, let us propose a desired reference for the tracking
control problem, described by

qd(t) = cos 2π
5 t , (19)

q̇d(t) = − 2π
5 sin 2π

5 t . (20)

The performance of the controllers under study is evaluated
through the ℒ2-norm and the computation of the ℒ∞-norm. The
ℒ2-norm measures the RMS (root mean square) value of the
argument, it is defined as

ℒ2 = 1
tf − t0

∫
t0

tf
∥ ℐ ∥2 dt, (21)

where ℐ corresponds to the evaluated variable, and t0 and tf define
the starting and finishing times of the interval over which the
evaluation is made. The computation of the ℒ∞-norm over a
period time of each simulation is done in accordance with

ℒ∞ = inf{C ≥ 0: ℐ ≤ C} . (22)

Furthermore, the amount of time during which the control input of
each controller remains in saturated mode is also calculated. The
case when the saturated controllers are applied to a first-order time-
delayed system is also presented. All the comparison criteria are
computed over the output error q~ and over the control input u,
considering a sampling time tm = 1 × 10−4 s.

5.1 Saturated controllers

Let the system be driven by controllers ui(t) given as in (4), with
the proposed SNFs, as well as by the P controller. Let η = 1 and
γ = 10; thus, k1 = 2.9982, k2 = 5, k3 = 2.9932, and kp = 10. Notice
that γ is the level of saturation for all the controllers.

Numerical results are presented in Fig. 2 with initial condition
q(0) = − 4. Here, q~(0) > η was employed to show the output of
the FO-DS with gSNF

i (t), gp and ght greater than γ. Each considered
controller is able to solve the output regulation problem without
significant differences regarding the convergence time.

For the tracking control problem, values of η = 1 and γ = 2 are
selected; thus one has k1 = 1.4436, k2 = 1, k3 = 1.317, and kp = 2.
Fig. 3 shows the convergence of the system to the desired reference
(top), the applied control input (centre), and the tracking error
(bottom). The SNF controllers reach the reference as fast as the P
control under hard saturation with a slightly lower demand of
energy. Notice that when a soft saturation is used for the P
controller, less energy is required to reach the reference, however
the tracking error is larger in this case.

5.1.1 Performance comparison: The ℒ2 norms calculated for
the regulation problem applying all the proposed controllers under
comparison are presented in Table 2. To independently analyse the
different scenarios in the simulation, the norm is computed along
three time intervals. This is for t ∈ [0, 1.5], t ∈ [2.5, 3.5], and
t ∈ [5, 6.5] s. The ℒ∞-norm is computed for the steady-state
response of each controller and results are shown in Table 3 over
the time intervals t ∈ [2.0, 2.5], t ∈ [4.5, 5], and t ∈ [7.5, 8] s. The
time that each controller operates in the saturated mode during the
transient response is presented in Table 4 for the time intervals
t ∈ [0, 2.5], t ∈ [2.5, 5], and t ∈ [5, 8] s. 

According to our previous qualitative assessment, the proposed
controllers using the non-linear sector functions demand less
energy compared with the traditional P controller under hard
saturation. When soft saturation is used, this is with uht, the P
demands less energy than the cubic controller in all three scenarios
than the hyperbolic sine in one. However, the soft saturation P also
presents the largest error. This is true for the three SNFs
considered, except for u3 over t ∈ [0, 1.5]. Taking the average
RMS values of each controller during the transients, one can see
that the SNF controllers, and in particular, the hyperbolic cosine-
based controller, demand less energy than the P controller under
hard saturation. The P controller with soft saturation, labelled uht,
presents the greatest error overall. The RMS comparison of the

Fig. 2  Performance comparison applying the saturated controllers in the
form (4) for the output regulation problem. The subindexes indicate which
controller is used, i = 1, 2, 3, for the sector non-linear functions gSNF

i (t), gp

for the P controller under hard saturation, and ght for the P controller
under soft saturation

 

Fig. 3  Performance comparison applying the saturated controllers in the
form (4) for the tracking problem with a desired reference
qd(t) = cos (2π /5)t . Subindex i = 1, 2, 3, indicates the sector non-linear
function gSNF

i  that is being used; subindexes p and ht stand for the P
controller under hard and smooth saturation, correspondingly

 

Table 2 RMS of the error variable q~ and control input u for
the regulation problem in FO-DS. The controllers are applied
using functions parameterised with γ = 10 and η = 1
Time ℒ2 up uht u1 u2 u3

period
[0, 1.5] q~ 197.1408 197.9576 197.8610 197.4619 198.8121

u 611.0703 598.5051 597.3484 603.1598 588.2772
[2.5, 3.5] q~ 140.1047 141.6689 141.5336 140.7787 140.8394

u 626.1572 607.5556 604.8654 614.1310 588.6660
[5, 6.5] q~ 215.4392 216.2485 216.0072 215.6953 214.8570

u 730.1944 716.9260 717.2607 723.4937 703.9441
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output error q~ places the performance of the SNF-based controllers
between the results obtained from the hard and soft saturated P.

Also for the regulation problem, the steady-state response of
each controller is analysed in terms of the ℒ∞-norm. From Table
3, one can see that the proposed SNF controllers exhibit larger
values for the norm calculated over the error q~ when compared
against the P. Among them, the cubic is the one with the lowest
norm value over the error. These results are reasonable since the
proposed SNF controllers have a faster decay, meaning that their
response is smoother when compared with the P controller. The
amount of energy consumed by all the controllers is comparable,
with the lowest demand obtained with the P bounded by smooth
saturation. Finally, Table 4 shows the total amount of time that
each controller stays in the saturation mode. Note that, because of
the way that the smooth saturation function is defined, the uht
controller does not reach the saturation limits, giving a total
saturated time of 0. For the rest of the considered controllers, each
of the SNF remains saturated for a slightly shorter period of time in
contrast with up. Also, the cosh-based controller u3 presents the
shortest saturation times.

A similar analysis is realised for the tracking case. The
computed ℒ2- and ℒ∞ norms for each controller are presented in

Table 5. The ℒ2-norm is computed during the transient time, this is
for t ∈ [0, 4] s, while the ℒ∞-norm is calculated over the last 2 s of
simulation. Notice that the behaviour of the system is consistent
with the results from the regulation problem. The ℒ2-norm over
the error is similar to the SNF controllers and the hard saturation P.
Conversely, uht presents the highest error. In terms of energy
consumption, the SNF controllers demand less energy than the
hard saturated P controller. Again, uht is the controller that demands
the less energy, which is natural. One could rank the considered
SNF controllers from lowest to highest demand of energy. Then,
the cosh-based controller would come in first, then the cubic
polynomial-based controller, and finally, the one using the
hyperbolic sine. Similar values are obtained from computed ℒ∞-
norm as shown in Table 5. In this case, uht presents the highest
value for the norm over the error, and consequently, the energy
consumed by uht is the lowest, as can be seen from the ℒ∞-norm
values.

As before, the total time that each controller remains in
saturated mode, during the tracking task, is calculated. Results are
presented in Table 6. As expected, the P under soft saturation does
not saturate at all. The SNF controllers, however, spend less time
on saturated mode than up. These results are consistent with those
obtained from the regulation problem.

Considering the outcomes of the regulation and tracking
problems, it can be observed that, in average, the compared
controllers offer similar behaviours since their gains were tuned
under analogous criteria. This implies that one can choose the
controllers' parameters according to the problem's particular needs,
i.e. to reduce the error or the energy consumption.

5.1.2 Comparison under input time delay: A new simulation
was implemented to evaluate the performance of the proposed
controllers for the FO-DS (1) with an input time delay τ = 0.5 s.
The controllers' parameters are manually tuned and the desired
reference is now modified to account for the increased settling time
for all of the controllers. The same level of saturation is used, i.e.
γ = 10. The gains of the P and the SNF controllers are computed
with the new value of η = 2.8, giving k1 = 0.7090, k2 = 0.1443,
k3 = 0.2594, and kp = 3.5714. The numerical results are shown in
Fig. 4. In this case, the cosh controller provides a smooth response
without overshoot and reaches the steady-state faster. Both the sinh
and the cubic controllers produce a smaller overshoot than the P
controller in the output's response. Additionally, the P control,
under hard and smooth saturation, exhibits oscillations and takes
longer time to reach the reference. Notice that the parameter η
serves as a tuning value that adjusts the velocity of the system's
response, and an increase in η results in a decreased gain for every
controller.

6 Conclusions
The present document studies the design of new control schemes
based on SNFs for FO-DSs. Given the properties of continuous
monotonically increasing SNFs lying in sector [0, ∞], it is possible
to prove the global asymptotic stability of the closed-loop system.

The proposed controllers differ from those found in the
literature in that they are classified as unbounded, continuous,
monotonically increasing, and non-linear. To exemplify the
proposed methodology, three controllers are built based on sector
non-linear functions satisfying the above properties. The chosen
functions are a hyperbolic sine, a hyperbolic cosine, and a cubic
polynomial. Furthermore, the global asymptotic stability of the
SNF controllers augmented with integral action is demonstrated as
well.

The performance evaluation and validity of the proposed
controllers is realised through numerical simulation and via
computation of the ℒ2 and ℒ∞ norms over the output errors and
the control signals. The SNF controllers are compared against the
traditional P controller under hard and soft saturation bounds. The
P controller is classical and well studied within the control theory
framework. The obtained numerical results show that all the
controllers offer a similar behaviour. The total amount of time

Table 3 ℒ∞-norm of the error variable q~ and control input u
for the regulation problem in FO-DS. The controllers are
applied using functions parameterised with γ = 10 and η = 1
Time ℒ∞ up uht u1 u2 u3

period
[2, 2.5] q~ 1.7056e−07 0.0027 0.0056 2.9203e−04 0.0855

u 2.0000 1.9973 2.0113 2.0012 2.0028
[4.5, 5] q~ 3.6520e−08 0.0027 0.0036 1.3516e−04 0.0727

u 2.0000 1.9973 2.0071 2.0005 2.0017
[7.5, 8] q~ 3.2700e−09 0.0232 0.0017 3.9722e−05 0.0566

u 4.0000 3.9768 4.0034 4.0020 4.0008
 

Table 4 Elapsed time of the control input u operating in
saturated mode for the regulation problem in FO-DS. The
controllers are applied using functions parameterised with
γ = 10 and η = 1
Time up uht u1 u2 u3

period
[0, 2.5] 0.4543 0.0000 0.4459 0.4480 0.4449
[2.5, 5] 0.3001 0.0000 0.2917 0.2938 0.2865
[5, 8] 0.5878 0.0000 0.5568 0.5655 0.5486
 

Table 5 Performance evaluation for the tracking control of
reference (19) in FO-DS. The controllers are applied using
functions parameterised with γ = 2 and η = 1
Time ℒ2 up uht u1 u2 u3

period
[0, 4] q~ 267.6464 269.6740 267.7508 267.9398 267.9576

u 161.4933 147.7589 159.2578 156.8765 156.6727
Time ℒ∞ up uht u1 u2 u3

period
[8, 10] q~ 3.0745e−05 0.1206 3.5322e−05 0.0010 0.0011

u 1.6060 1.3823 1.6060 1.6060 1.6060
 

Table 6 Time in saturated mode for the tracking control
problem. The controllers are applied using functions
parameterised with γ = 2 and η = 1
Time up uht u1 u2 u3

period
[0, 10] 1.9862 0.0000 1.8054 1.6891 1.6741
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during which the controllers stay in saturated mode is also
computed; the SNF controllers present shorter amount of times
under saturation than the P controller with hard saturation. As an
illustrative example, the case of the saturated FO-DS with time
delay is also considered. It is shown that the proposed SNF
controllers satisfy the regulation objective comparatively better
than the traditional P controller. The controllers were tuned to
obtain a fair comparison among them, rather than to satisfy specific
performance criteria. As such, the selection of the gains presented
here should not be considered an optimal tuning method. Further
research is needed to determine a methodology to tune the
controllers for specific behaviour objectives (damping, settling
time etc.).

The unbounded growth featured in the proposed functions
would normally be considered a disadvantage in control theory;
however, it should be indicated that these functions are passive and
their global stability is demonstrable by Lyapunov. Moreover, their
decay can aid in rapidly decreasing the control input, thus reducing
their consumption of energy. This is an important fact since, in
practice, control systems operate under saturation bounds due to
physical restrictions inherent to the system.
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Fig. 4  Performance comparison of the tuned controllers applied to the FO-DS with input time delay, with τ = 0.5 s, using η = 2.8 and γ = 10
 

6 IET Control Theory Appl.
© The Institution of Engineering and Technology 2020


