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ABSTRACT
The application of search and learning to experimental domains,
where the objective function cannot be accurately simulated, but
rather requires a measurement in real industrial settings, lies in the
focus of this study. We consider the problem of devising treatment
protocols for fresh cucumbers, whose quality rapidly deteriorates
once being harvested, by considering the combinatorial space of
possible postharvest practices. The overall target is to prescribe a
combination of treatments, with specified activation levels, that
minimizes the cucumbers’ quality loss after 4 weeks in two storage
environments: 10◦C and 20◦C. This study engaged with a posthar-
vest laboratory with industrial settings to research and develop a
sequential experimentation procedure, in a closed feedback-loop
fashion, and subject to strict budget and timeline constraints. The
laboratory measurements comprise the assay of color, stiffness and
mass, as well as external blemishes – in both harvest and post-4-
weeks points in time. Their deviations constitute the aggregated
objective function that undergoes minimization for both tempera-
tures. After formulating the optimization problem, we outline our
approach and report on the attained results. The obtained protocols
significantly outperform the best-known human reference practice,
and their nature is visualized and analyzed. Finally, we mention the
impact and outlook for industry.
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1 INTRODUCTION
Optimization problems and machine-learning tasks are increasingly
recognized as game-changers in active research of experimental
systems within the Sciences and Engineering, in Academia and
Industry. Combinatorial Optimization (CO) is one of the most chal-
lenging problem-domains in the Computer Science field. Its ap-
plications cover a broad spectrum of everyday’s life: navigation
and scheduling, drug discovery and medical research, as well as
cutting-edge electro-optical technologies, to name only a few. The
application of CO to experimental domains, where the objective
functions cannot be calculated nor simulated, but rather require
real-world field/laboratory measurements, lies in the focus of this
study. The majority of experimental sciences share the common
basis of physical observables that may play the role of objective
functions to be optimized. Scientists aim at optimal behavior of
their systems and arriving at new discoveries while navigating
the landscape of possible experiments. This perspective reduces
any scientific discovery to solving a CO problem [18]. At the same
time, algorithms and metaheuristics have been widely applied to
global optimization of complex models, whose objective function
either possesses an explicit expression or can be represented by
a computer-based model. In contrast to computing the objective
function, there are also many applications of global optimization
which require real-world experimentations for quality evaluation
[36]. Examples include but are not limited to combinatorial drug
discovery [4], enzymes production [40], as well as recent attempts
to optimize protein expression [9]. Furthermore, statistics-based
approaches are considered to be the gold standard in the domain of
experimentation, particularly the family of Optimal Design proce-
dures and the Design-of-Experiments (DoE) methodology [2, 14].
The applicability of Evolutionary Algorithms (EAs) to experimental
optimization has already been demonstrated in the early days of
the Evolutionary Computation field [34]. In recent years, EAs have
been successfully utilized in a number of studies on experimental
optimization within the Natural Sciences [36].

The collection of practices for handling crops immediately fol-
lowing their harvest, with the explicit goal of maintaining their
agricultural quality while boosting their shelf-life, is referred to as
postharvest. Postharvest technologies [21] constitute a cornerstone
of modern sustainability, having a direct influence on food security,
with a potentially vast economical impact on the global Agro/Food
industries. Nevertheless, they impose grand scientific challenges
concerning treatment protocols of fresh fruit and vegetables. The
demand for affordable food supply is growing in order to meet the
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increase of world population as described by the Food and Agri-
culture organization of the United Nations (FAO) [11]. A recent
organized effort to meet these food security demands is the so-called
Farm-to-Fork strategy of the European Union1. It was reported that
postharvest losses within highly developed food systems (devel-
oped countries) might reach 20% and it was estimated that 30%
and even more of food losses occur in less developed systems [37].
Therefore, reduction of postharvest food losses would improve
food security by an impact on food access and utilization. Improved
postharvest practices can provide solutions to challenges identified
by the FAO that are related to food stability and availability, making
food systems more efficient [3].

Freshly harvested fruit and vegetables consist of high water con-
tent and are therefore susceptible to physiological and pathological
postharvest deterioration. The Cucumber (Cucumis sativus L.) is a
crop with a high economic value, which constitutes a good source
for antioxidants, magnesium, vitamin C and dietary fibers [35]. The
cucumber fruit typically contains 95% of water and has a limited
postharvest potential of less than 14 days of storage due to mass
loss, discoloration of the peel, softening, fungal infections, and other
visual defects.2 Cucumbers are very sensitive to chilling injuries
when stored at temperatures below 7◦C∼ 10◦C (cultivar-dependent)
[5], developing water-soaked areas, pitting and accelerated decay.
They are also highly sensitive to exogenous ethylene (low levels as
1-5 p.p.m.), which accelerates yellowing and decay during storage
and distribution [39]. Hence, extending the postharvest shelf-life of
cucumbers constitutes a significant real-world challenge. Various
postharvest treatments were previously examined to improve the
cucumbers’ quality: short hot water dipping [25], modified atmo-
sphere packaging [16, 22, 27], edible coatings [28], amino acids [13],
ozone [24], UV-A radiation [17], plant growth regulators [5, 26],
and more. The reported studies investigated the application of a sin-
gle factor on cucumbers and its impact on postharvest qualities and
potential. In order to achieve a synergistic effect of the treatments
on the postharvest fruit quality, the current study aims to examine
a consecutive application of a couple of postharvest treatments as
well as a packaging, by means of CO.

Indeed, optimization approaches have been widely applied to
food security challenges in recent years. One particular domain that
has enjoyed the benefits of optimization is food supply-chain man-
agement (see, e.g., [10, 12]). However, to the best of our knowledge,
an attempt to apply experimental CO to a collection of postharvest
treatments has never been reported in the literature. Furthermore,
beyond the scope of food security optimization, we also foresee the
development of robotics-based automation in postharvest opera-
tions. Therefore, we are particularly interested in laying foundations
for Artificial Intelligence that will guide such automation in the
long term. To this end, we target relevant real-world settings by
considering two environments: 10◦C to represent a typical stor-
age system, and 20◦C to represent the typical temperature in the
common supermarket.

Contribution and Paper Organization
The concrete contributions of this paper are the following:

1https://ec.europa.eu/food/horizontal-topics/farm-fork-strategy_en
2https://postharvest.ucdavis.edu

• We formulate the postharvest quality loss problem and in-
troduce a combinatorial optimization perspective to it.
• We describe in detail an experimental platform of cucumbers’
postharvest and present optimization results of two 4-weeks
storage systems: 10◦C and 20◦C – subject to a timeline of 7
iterations and overall ∼80 evaluations per each system.

The remainder of this paper is organized as follows. Next, Section 2
formulates the problem, followed by Section 3, which describes the
approaches that we take to address it and specifies the setup. The
experimental observations are reported and analyzed thereafter in
Section 4. Finally, Section 5 summarizes this study and discusses
generalizations and future pathways.

2 PROBLEM FORMULATION
We pose the research question that we target:

Is it possible to devise postharvest treatment protocols
for fresh products as a CO problem, when laboratory
measurements constitute the objective function?

Next, we formulate the problem and present our notation.

Search Space Definition
Given𝑛𝑡 postharvest treatments, as well as a set of postharvest pack-
ages, the generalized CO problem is defined by (𝑛𝑡 +1)-dimensional
decision variable vectors, denoted as ®𝜏 , representing candidate
postharvest protocols. These vectors encompass integer variables,
and represent permutations over combinations that subscribe to a
discrete (mixed nominal and categorical) space T :

®𝜏 ∈ 𝜋 ◦ T , 𝜋 ∈ 𝑃 (𝑛𝑡 )𝜋 , T = T1 × T2 × · · · × T𝑛𝑡 × P, (1)

where 𝑃 (𝑛𝑡 )𝜋 denotes the set of permutations of length 𝑛𝑡 .
T𝑗 lists the levels/categories of the 𝑗𝑡ℎ variable/treatment, i.e.,
∀𝑗 = 1, . . . 𝑛𝑡 𝜏 𝑗 ∈ T𝑗 , with each variable having an independent
cardinality

��T𝑗 ��. Notably, even when a variable is perceived as a con-
tinuous laboratory parameter (sometimes referred to as control), we
consider herein its discretization to be mapped by a range of inte-
gers, e.g.,

[
Tmin
𝑗

, . . . ,Tmax
𝑗

]
per 𝜏 𝑗 . We define the 0𝑡ℎ level/category

of each treatment as an indicator for inactivity, that is, 𝜏 𝑗 = 0 implies
that the 𝑗𝑡ℎ treatment is inactive within the current protocol. Fi-
nally, P denotes the packaging category, which prescribes a certain
postharvest package after the treatments’ application (i.e., hold-
ing the treated object throughout the storage period): 𝜏𝑛𝑡+1 ∈ P.
Altogether, the cardinality of this generalized search-space reads

|𝜋 ◦ T | = 𝑛𝑡 ! ·

𝑛𝑡∏
𝑗=1

(
Tmax
𝑗 − Tmin

𝑗

) · |P | . (2)

In practice, this generalized form may be constrained when a limita-
tion is posed on the number of active treatments. In such a scenario,
when considering (1), it will translate into a constraint on the num-
ber of zero values within a feasible candidate combination.

Objective Function Definition
The primary goal is to maintain the fresh product’s qualities as
recorded at the harvest point in time (i.e., day 0), denoted as state
𝑖 , when compared to their assay after a predefined period (e.g.,
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4 weeks), denoted as state 𝑓 . Upon quantification of the assays,
the desired outcome is the minimal deviation of all quantities. In
particular, we are interested in four qualities and their scores:

(1) Color: the peel color change was objectively evaluated using
the AmilonTM (Isolcell, Italia) and the MinoltaTM (Japan)
surface color meters. Our assay measures the L*a*b* and
L*C*h* color spaces, and the color of state ℓ is calculated as
follows (the justification exceeds the scope of this paper):

𝑐ℓ := (L* + a* + b* + h*)Amilon + (L* + a* + b* +𝐶 + h*)Minolta .

Then, the deviation from the color of the initial state 𝑖 to
the recorded color at state 𝑓 is defined as the following
normalized unitless term:

Δ𝑐 (®𝜏) :=
��𝑐 𝑓 (®𝜏) − 𝑐𝑖 �� /𝑐𝑖 .

(2) Stiffness: the softening of the fruit was evaluated by mea-
suring the stiffness of the fruit with fruit texture analyzer
GS-15 (Guss, South Africa). It is measured in Newtons per
meter, [𝑠𝑖 ] = N

m , we are interested in the normalized unitless
stiffness deviation –

Δ𝑠 (®𝜏) :=
��𝑠𝑓 (®𝜏) − 𝑠𝑖 �� /𝑠𝑖 .

(3) Mass: measured in kg, [𝑚𝑖 ] = kg, we are interested in the
normalized unitless mass deviation –

Δ𝑚 (®𝜏) :=
��𝑚𝑓 (®𝜏) −𝑚𝑖

�� /𝑚𝑖 .

(4) Expert’s score: trained personnel evaluated the severity of
different external blemishes including: shriveling, peel fric-
tions and scars (in the scale of 0-5). An overall quality evalu-
ation estimated the commercial quality3 of each fruit (in the
scale of 0-10). Rotten fruit was marked and was discarded.
The overall score is normalized within [0, 1] and denoted as
scoreexp. Due to its subjectivity, this score was evaluated by
an immutable set of researchers. In the future, this score will
be replaced by an automated photography-based scoring
mechanism, which is currently under development.

Due to resources limitation, we are considering a single-objective
aggregation of the aforementioned quantitative deviations, despite
known drawbacks of this approach (see, e.g., [6]). Explicitly, we
target the following objective function:

L𝑖→𝑓 (®𝜏) := Δ𝑐 (®𝜏) + Δ𝑠 (®𝜏) + Δ𝑚 (®𝜏) + scoreexp (®𝜏) ↦→ min . (3)

Optimization Problem Synopsis
Our setup dictates the usage of only 2 treatments per protocol,
which is also pragmatic for potential commercial applications. Over-
all, the targeted optimization problemmay be formulated as follows
– given a combinatorial search-space of possible postharvest treat-
ments and packages T , obtain a protocol ®𝜏∗ of 2 treatments and a
package that minimizes the following loss function as long as the
product is not rotten (there is no observed decay):

minimize®𝜏 ∈𝜋◦T L𝑖→𝑓 (®𝜏)
subject to: #

{
𝑗 : 𝜏 𝑗 ≠ 0, 𝑗 = 1, . . . , 𝑛𝑡

}
== 2,

{decay < 𝜖}
(4)

3The quality parameters were established according to UCDAVIS quality definitions,
https://postharvest.ucdavis.edu, and the USDA parameters for cucumbers [38].

In our reported cucumbers’ case-study there are 𝑛𝑡 = 10 possible
treatments and |P | = 3 packaging types, so the overall search-space
cardinality is reduced to

10 · 9 · 3 · |T |1:𝑛𝑡 · |T |2:𝑛𝑡 ≈ 106,

(when the variables’ cardinalities are sorted in a descending order)
in comparison to ∼ 1017 of the generalized problem in light of (2).
Importantly, the current study considers 2 instantiations of (4) per
different storage environments, 10◦C and 20◦C. In essence, different
search landscapes underlie each environment/system [30], and thus
we are practically addressing 2 optimization problems.

3 APPROACH AND SETUP
3.1 Compact Representation
Given the hard constraint to devise only 2 treatments, i.e.,
#
{
𝑗 : 𝜏 𝑗 ≠ 0, 𝑗 = 1, . . . , 𝑛𝑡

}
== 2, we choose to allocate 3 decision

variables for indicating the treatments and the packaging, alongside
2 additional decision variables for indicating the activation levels of
the treatments. Given the fact that all the levels in our experimental
setup are nominal, we altogether represent a candidate solution
using 3 categorical variables and 2 integers. We denote a candidate
protocol subscribing to this representation as ®𝜑 :

®𝜑 :=

©«
®𝑑 : categorical︷                                             ︸︸                                             ︷

1𝑠𝑡 treatment, 2𝑛𝑑 treatment, package,

®𝑧: integers︷                 ︸︸                 ︷
1𝑠𝑡 level, 2𝑛𝑑 level

ª®®®®®¬

𝑇

.

(5)
In practice, this consideration induces a 5-dimensional search-space,
rather than the original 11-dimensional space with the excessive
number of equality-to-zero constraints.

3.2 Strategy: Discrete ES
Due to the limited population size, we capitalize on Mixed-Integer
Evolution Strategies (MIES) [33], which are known to excel under
such conditions. We employ a self-adaptive mutation operator that
relies on strategy parameters carried by each individual. The appli-
cation to the categorical variables ®𝑑 utilizes a strategy parameter
𝑝𝑑 ∈ [0, 1], initialized uniformly randomly, whereas the applica-
tion to the integers ®𝑧 utilizes a strategy vector ®𝑞 that is initialized

by ®𝑞 :=
(
𝑞 𝑗 =

(
Tmax
𝑗
− Tmin

𝑗

)
/
√
2
)𝑇
. The details concerning the

mutation operator, entitled DiscreteESmutate, are provided in
Algorithm 1, which is specifically prescribed according to our com-
pact representation of ®𝜑 (5) (i.e., size( ®𝑑) = 3). Importantly, all visited
search-points are recorded in an archive, and the mutation operator
is called in a while loop until a new point is reached (i.e., revisit-
ing is prohibited, similarly to Tabu search, when considering the
5-dimensional ®𝜑).

Furthermore, the recombination operator is applied only with
a probability 𝑝𝑐 = 0.1 – discrete recombination is applied to the
decision variables, whilst intermediate recombination is applied
to the strategy parameter. Altogether, our implementation and
parameter settings mostly followed [32], except for handling the
specific constraints (e.g., treatments’ duplicates), and for setting the
population size according to the experimental setup.
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DiscreteESmutate( ®𝑑, 𝑝𝑑 , ®𝑧, ®𝑞)
/* categorical decision variables */

𝜏 (𝑑) ← 1√
6

𝑝 ′
𝑑
←− 1/

[
1 + 1−𝑝𝑑

𝑝𝑑
· exp

{
−𝜏 (𝑑) · N (0, 1)

}]
𝑝 ′
𝑑
←− enforce value within

[
𝑝min,

1
2
]

for 𝑗 = [1, 2, 3] do
if U (0, 1) < 𝑝 ′

𝑑
then

do
𝑑 ′
𝑗
←{
uniformly randomly from |T | , if 𝑗 < 3
uniformly randomly from |P | , otherwise.

while 𝑑 ′
𝑗
== 𝑑 𝑗

end
end
while 𝑑 ′1 == 𝑑 ′2 do

𝑑 ′2 ← uniformly randomly from |T |
end

/* integer decision variables */
N𝑔 ← N (0, 1) , 𝜏 (𝑧)𝑔 ← 1

2 , 𝜏
(𝑧)
ℓ
← 1√

2·
√
2

for 𝑗 = [1, 2] do
𝑞′
𝑗
←− 𝑞 𝑗 · exp

{
𝜏
(𝑧)
𝑔 · N𝑔 + 𝜏 (𝑧)ℓ

· N (0, 1)
}

if 𝑑 ′
𝑗
≠ 𝑑 𝑗 then

𝑧′
𝑗
←− uniformly randomly from T𝑗

else
𝑧′
𝑗
←− 𝑧 𝑗 + G

(
0, 𝑞′

𝑗

)
end

end

return
{
®𝑑 ′, 𝑝 ′

𝑑
, ®𝑧′, ®𝑞′

}
Algorithm 1:MIES-based self-adaptive mutation operator
utilized by the Discrete ES:

{
®𝑑, 𝑝𝑑

}
are the (categorical) de-

cision variables and the strategy parameter, respectively,
where 𝑑1, 𝑑2 ∈ {1, . . . , |T |} represent the selected treat-
ments, and 𝑑3 ∈ {1, . . . , |P |} represents the packaging.
{®𝑧, ®𝑞} are the integer decision variables and strategy pa-
rameters, respectively, with {𝑧1, 𝑧2} represent the activa-
tion level of the selected treatments {𝑑1, 𝑑2}.N , G, andU
denote the normal, geometric and uniform distributions,
respectively. Finally, 𝑝min is the lower bound of 𝑝𝑑 .

3.3 Setup
We describe the technical specifications of our experimental setup.

Postharvest Treatments. We consider the following postharvest
treatments (in alphabetical order): 1-MCP (1-methylcyclopropene),
Blush (Prohydrojasmon propyl-3-oxo-2-pentylcyclo-pentylacetate),
Cytokinin (Benzyl adenine 6), Deccoscald (Ethoxyquin), Edible coat-
ing (combinations of D-Glucose and Starch), Gibberellin (GA3),

Hexanal, Hot-Water-Dipping followed by Hydrocooling, UV-C ra-
diation (254nm), and Wax (Carnauba). The packaging types were
LDPE (Low density polyethylene), RopBAG (Cast polypropylene)
and ZoeBAG.

Budget, Population and Repetitions. The implementation of the
protocols as well as the comprehensive post-storage measurements
constitute a dramatic operational effort in the laboratory. In practice,
a timeline of 7 iterations was approved in the laboratory’s program,
and an overall experimental budget of 26 protocols was granted per
each iteration – accounting for the two systems and the need for a
biological repetition. This budget breaks down in each system to a
population of ` = 11 algorithmically-guided candidate protocols
plus two additional references: a baseline untreated fruit (“control”,
denoted as ®𝜏0), and the “in-house protocol” (a home-brewed pro-
tocol that has proven successful, following a preliminary set of
experiments using a single treatment and packaging; denoted as
®𝜏ih). Each of the 13 protocols is implemented on 10 fruit, to establish
biological repetition. Following the implementation, the packaged
fruit are stored for 4 weeks in either 10◦C or 20◦C refrigeration.

Averaging and Value Determination. Following the storage pe-
riod, the fruit are unpacked and thoroughly assayed. The aggregated
objective function value per each candidate protocol ®𝜏 , L𝑖→𝑓 (®𝜏)
(3), is calculated as the average of all its repetitions (rotten fruit are
discarded while being a minority, otherwise result in a penalty).
Since the evolutionary heuristic relies only on the ranking of the
individuals per each generation, the raw values are used in their
current form during the heuristic’s operation. However, normal-
ization is much needed for conducting global comparisons across
generations. Also, future work on surrogate-model building will
necessitate some form of normalization (to be further discussed
in Section 5.1). A standard form of normalization, using the two
assayed references of a particular iteration (𝑔), is the following:

𝑓

(
®𝜏 (𝑔)

)
:=
L𝑖→𝑓

(
®𝜏 (𝑔)

)
− L𝑖→𝑓

(
®𝜏 (𝑔)ih

)(
L𝑖→𝑓

(
®𝜏 (𝑔)0

)
− L𝑖→𝑓

(
®𝜏 (𝑔)ih

)) , (6)

that is, setting a scale between the untreated “control” (being 1.0)
and the “in-house protocol” (being 0.0). Another form of normal-
ization, which accounts only for the “in-house protocol”, reads:

𝑓

(
®𝜏 (𝑔)

)
:=
L𝑖→𝑓

(
®𝜏 (𝑔)

)
− L𝑖→𝑓

(
®𝜏 (𝑔)ih

)
L𝑖→𝑓

(
®𝜏 (𝑔)ih

) . (7)

These formulae will be used in our presentation of the results.

4 EXPERIMENTAL OBSERVATIONS
Next, we describe in detail the experimental results that were ob-
tained during the 7-iterations campaign over the two systems.

4.1 Presentation of Results
Figure 1 depicts the entire set of combinations that were evalu-
ated on both systems. It introduces a hybrid lollipop visualization,
exhibiting the raw function values (log-scaled) and the decision
variables. Moreover, Figure 2 provides a gallery of photographs of
the 20◦C system (4𝑡ℎ generation) taken after 4 weeks of storage.

2030



Algorithmically-Guided Postharvest by Experimental Combinatorial Optimization GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA

Figure 1: The objective function raw values of the entire campaign of the 10◦C [TOP] and 20◦C [BOTTOM] systems, encompassing
7 generations. The unnormalized objective function values are log-scaled. The current lollipop visualization depicts a hybrid of
the raw function values and the decision variables. The glyph represents the packaging type, its dual color is defined by the
first and second treatments, whereas their activation levels are represented by symbol size and border thickness.

Clearly, it is problematic to draw conclusions over the limited ob-
servation of 7 generations, especially when the cross-generational
comparison of raw values is questionable. Therefore, in what fol-
lows, our analysis will examine the level of coverage of the cate-
gorical sub-space (Section 4.3), as well as the nature of the attained
protocols (Section 4.4). Firstly, however, we report on the attempt
to normalize the data.

4.2 Objective Function Values’ Normalization
Table 1 presents the objective function values of the references in
each generation. Clearly, high variance is observed for each ref-
erence per each system. This variance is likely rooted in seasonal
differences, since the generations are practically spanned over sev-
eral months, and the cucumbers’ growing conditions vary.
By using these reference values, normalization was applied to the
raw objective function values via (6) or (7), as long as the values
of L𝑖→𝑓

(
®𝜏 (𝑔)0

)
, L𝑖→𝑓

(
®𝜏 (𝑔)ih

)
were finite in generation 𝑔 (i.e., both

references ended up unrotten). Figure 3 presents these normalized
values of the top 25% protocols (i.e., 75𝑡ℎ-percentile) across the two
systems. Due to rotten references, the 1𝑠𝑡 and the 5𝑡ℎ generations
of the 10◦C system, as well the 5𝑡ℎ generation of the 20◦C system,
are absent from this perspective. We examined the global rankings
(i.e., following cross-generational sorting) among the entire sets of
evaluated search-points. It is evident that the global rankings of the
raw values are not consistent with the normalized values (that is,
the rankings are not aligned; see Figure 3[TOP] for (6)), likely due
to inter-generational variability of the reference values. However,
when compared in this perspective, a trend of ascending values is
observed along the ordering, suggesting that the rankings are cor-
related to some extent. We performed a statistical test to quantify
this correlation and calculated Pearson’s correlation coefficients
(𝑟 -values) between the raw values to each of the two normalization
forms. Notably, Pearson’s 𝑟 -values read 𝑟 (6) = 0.48 and 𝑟 (7) = 0.55
for the normalization forms (6) and (7), respectively. Indeed, these
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Figure 2: Photography of the 4𝑡ℎ generation of the 20◦C sys-
tem after 4 weeks of storage. TOP LEFT: untreated fruit (“con-
trol”); TOPRIGHT: practiced protocol (“in-house”); BOTTOM
LEFT: worst individual; BOTTOM RIGHT: best individual.

system reference 𝑔 = 1 𝑔 = 2 𝑔 = 3 𝑔 = 4 𝑔 = 5 𝑔 = 6 𝑔 = 7

10◦C ®𝜏 (𝑔)0 ∞ ∞ 11.259 7.273 ∞ 4.506 2.443

®𝜏 (𝑔)ih ∞ 5.411 3.894 1.485 6.667 2.048 0.790

20◦C ®𝜏 (𝑔)0 17.876 40.03 4.187 2.772 ∞ 107.128 15.836

®𝜏 (𝑔)ih 0.525 10.999 2.426 1.244 ∞ 3.090 1.436

Table 1: Explicit objective function values of the two refer-
ences of every generation during the experimental campaign.

𝑟 -values reflect weak to moderate correlation. Overall, we conclude
that applying normalization requires further investigation, since it
does not provide satisfying outcome in its current form.

4.3 Coverage of the Categorical Sub-Space
We question the efficacy of the proposed algorithm in covering the
sub-space of treatments and packaging, that is, the exploration capa-
bility of the sub-space of ®𝑑 within ®𝜑 (5). This categorical sub-space
comprises 10 · 9 · 3 = 270 combinations altogether. An examina-
tion of the search-points visited by the algorithm reveals that this
sub-space was well-covered considering the budget of 77 evalu-
ations: there were 61 and 64 unique ®𝑑-points per the 10◦C and
20◦C systems, respectively, encompassing ≈ 23% of the categori-
cal sub-space (versus maximally attainable coverage of 28.5% by
enumeration using this budget). Figure 4 visualizes this coverage
of the categorical search-space by a 3D scatter plot per the 20◦C
system. This observation indicates that the employed ES is highly
exploratory during the first generations, as expected from this class
of heuristics in the early stage of evolution. It may also serve as a
validation for the effective application of the self-adaptive mutation
and the recombination operators in the context of exploration.

4.4 Nature of Attained Solutions
Figure 5 shows the top 6 protocols obtained by the entire campaign
of the 20◦C system, using spider charts to visualize the decision
variables. The spider charts of the 10◦C system are excluded due
to space limitations. We will describe the nature of the attained
solutions of both systems, without going into postharvest details
(the scientific analysis of the explicit treatments exceeds the scope
of this paper). The top-ranked protocols are explainable by the
postharvest experts, although some combinations of treatments
possess a surprising nature. Also, the fact that the 3 packaging types
appear in the top-ranked protocols (10◦C only; data was not shown)
is also surprising, especially the LDPE type (which is composed of
the cheapest polymer, rendering its associated protocol an attractive
candidate according to the yet unexplored economical aspect).

5 DISCUSSION AND SUMMARY
The current study introduced the postharvest quality loss minimiza-
tion problem, and formulated it as an experimental combinatorial
single-objective optimization problem (3) over the search-space of
treatment protocols (1). Such a generalized perspective, when ap-
plied to cucumbers with commonly exercised postharvest practices
(10 treatments and 3 packaging types), resulted in a vast search-
space of 1017 possible combinations. Then, by adhering to pragmatic
settings in common postharvest laboratories, and by accounting for
realistic settings in future real-world deployment of such protocols,
we considered a constrained model using only 2 treatments prior to
the packaging phase (4), which reduced the search-space cardinality
to ∼ 106. We presented a compact form for this model using the
5-dimensional ®𝜑 representation (5), and proposed an ES to address
it (with its kernel being Algorithm 1).

Evidently, the proposed heuristic obtained satisfying results
by locating a diverse set of protocols, which outperform the best
known practices, including some protocols with a surprising nature
that will necessitate fundamental postharvest research. Further-
more, protocols that proved successful upon evaluations (post-4-
weeks), were placed back in storage for an extended period of time (9
weeks altogether). Figure 6 presents a gallery of the 3𝑟𝑑 generation,
whose best individual was kept in storage for an overall period of 9
weeks. The fruit exhibited a surprising postharvest quality, while
the two references ended up completely rotten (photography is
excluded). To the best of our knowledge, such a postharvest accom-
plishment for cucumbers has not been reported yet in the literature.
Two versions of normalization were applied to the objective func-
tion values, in order to render them comparable across generations.
These attempts were only partially successful, and will require ad-
ditional research efforts. The generational gaps within raw fitness
values are reflected by the high variance of the measured refer-
ences (“untreated” and “in-house”), which were explicitly analyzed.
The high variance may be explained by the fact that exogenous
growing factors have varied during the course of this experimental
campaign. In that sense, the optimization problem could be con-
sidered to possess a dynamic objective function. Nevertheless and
importantly, the lack of normalization did not hamper the search,
which relied only on per-generation rankings. It will affect, though,
future attempts to accomplish learning of the response surfaces.
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Figure 3: The normalized objective function values of the protocols of the 75𝑡ℎ-percentile: the 10◦C [LEFT] and 20◦C [RIGHT]
systems. This bar visualization depicts the ordered protocols (best at the left-most position; colored according to generation),
whereas negative bars represent protocols that outperform the “in-house protocol” ®𝜏ih.
TOP: Normalization using (6) and ordering according to the raw values. The global rankings of the raw values are not consistent
with the normalized values, likely due to inter-generational variability of the reference values. However, a trend of ascending
values is observed, suggesting that the rankings are weakly correlated. BOTTOM: Normalization using (7) and ordering according
to the normalized values. Within this context, generation 2 produced the best protocols in both systems.

Figure 4: The categorical sub-space visualized by a 3D scat-
ter plot, depicting all the 270 feasible search-points (black
points), and those visited de facto by the algorithm per the
20◦C system (64 red stars). Importantly, the Tabu restric-
tion within the mutation operator is applied to the entire
5-dimensional decision vector, allowing the algorithm to re-
visit the same categorical combinations while searching the
integer activation levels. The observed coverage of this cate-
gorical sub-space is indicative of the high exploratory nature
of the employed ES.

5.1 Generalization and Future Work
We outline some potent directions for future research:

(1) Learning the postharvest response surface is a highly attrac-
tive research pathway, whose merit is twofold: (i) surrogate-
model construction, and (ii) postharvest mechanistic investi-
gation. Firstly, utilization of surrogate-models (also known as
metamodeling; see, e.g., [7, 8, 31]) would serve as a practical
accelerator for the sequential experimentation process. Sec-
ondly, obtaining response-surfaces of color/stiffness/mass
deviations would contribute to unveiling postharvest mech-
anisms, which constitutes a grand fundamental research
challenge.

(2) Multiobjective Optimization (see, e.g., [41]) is a natural algo-
rithmic extension. The idea would be to replace the aggrega-
tion of L𝑖→𝑓 (®𝜏) in (3) by a vectorized, quad-criteria Pareto
approach:

Δ𝑐 (®𝜏) ↦→ min,
Δ𝑠 (®𝜏) ↦→ min,
Δ𝑚 (®𝜏) ↦→ min,
scoreexp (®𝜏) ↦→ min .

(8)

While this direction is expected to introduce high demands
concerning the experimental budget, it would be possible
to capitalize on dedicated multiobjective approaches for ex-
pensive evaluations [19, 20]. In addition, constructing the
aforementioned surrogate-models would facilitate such ex-
tended setups.

(3) A possible research question could target “optima transfer”.
From a postharvest point of view, it is highly relevant to
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Figure 5: The top 6 protocols obtained by the entire campaign of the 20◦C system. The current spider visualization depicts the
decision variables. The first and second treatments are marked by the inner colored pointers (green for the 1𝑠𝑡 and purple for
the 2𝑛𝑑 ), and their activation levels are represented by the pointers’ magnitudes. The packaging type is marked in its center:
diamond for LDPE, square for RopBAG, circle for ZoeBAG.

Figure 6: The 3𝑟𝑑 generation of the 20◦C system after 4 and
9 weeks of storage. TOP LEFT: untreated fruit (“control”)
post-4-weeks; TOP RIGHT: practiced protocol (“in-house”)
post-4-weeks; BOTTOM LEFT: best individual post-4-weeks;
BOTTOM RIGHT: best individual post-9-weeks.

question the applicability of the attained protocols to other
family members (Cucurbitaceae), e.g., the zucchini.

(4) One-Shot Optimization [1] is a promising direction to ad-
dress the postharvest search challenge of crops that feature a
limited time-window for experimentation – e.g., berries. Con-
ducting sequential experimentation campaigns, of the nature

reported herein, may be infeasible in such cases, whereas
one-shot optimization may prove successful.

5.2 Impact and Outlook
Indeed, the sequential experimentation perspective is not novel
from the algorithmic point of view, since it is deeply rooted in the
Evolutionary Computation field (noted earlier in the Introduction).
In the future, as more experiments will be algorithmically-guided
analogously to the reported experiments herein, the roles of the
scientists/engineers will shift from locating solutions/designs to
explaining the nature of the attained results while aiming for mech-
anistic understanding. The application of the proposed approach
to minimize quality loss of fresh products is of great interest to the
Agro/Food industries, whose roadmap encompasses the automation
of processes combined with the integration of AI capabilities. The
ability to automatically reproduce scientific results, by extracting
knowledge from scientific literature, has been accomplished in the
domain of chemical syntheses [23]. With the AI revolution taking
place, we question whether more decisions in scientific experiments
may be driven by the machine. In particular, we foresee the formu-
lation of scientific hypotheses as the possible next leap-frog of AI,
capitalizing on established knowledge representation frameworks
[15], and machine-driven causal inference [29].
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