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ABSTRACT
Failures that are not related to a specific fault can reduce the effec-
tiveness of fault localization in multi-fault scenarios. To tackle this
challenge, researchers and practitioners typically cluster failures
(e.g., failed test cases) into several disjoint groups, with those caused
by the same fault grouped together. In such a fault isolation process
that requires input in a mathematical form, ranking-based failure
proximity (R-proximity) is widely used to model failed test cases.
In R-proximity, each failed test case is represented as a suspicious-
ness ranking list of program statements through a fingerprinting
function (i.e., a risk evaluation formula, REF). Although many off-
the-shelf REFs have been integrated into R-proximity, they were
designed for single-fault localization originally. To the best of our
knowledge, no REF has been developed to serve as a fingerprinting
function of R-proximity in multi-fault scenarios. For better cluster-
ing failures in fault isolation, in this paper, we present a genetic
programming-based framework along with a sophisticated fitness
function, for evolving REFs with the goal of more properly rep-
resenting failures in multi-fault scenarios. By using a small set of
programs for training, we get a collection of REFs that can obtain
good results applicable in a larger and more general scale of scenar-
ios. The best one of them outperforms the state-of-the-art by 50.72%
and 47.41% in faults number estimation and clustering effectiveness,
respectively. Our framework is highly configurable for further use,
and the evolved formulas can be directly applied in future failure
representation tasks without any retraining.

∗Xiaoyuan Xie is the corresponding author.
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1 INTRODUCTION
The co-existence of multiple faults in a program can reduce the
effectiveness of existing fault localization techniques [12, 70, 77],
such as spectrum-based [72] and mutation-based tactics [45]. This
is because the majority of these techniques are performed in single-
fault scenario, which is considered to be unrealistic due to the
increasing scale and complexity of software systems [15, 19, 30, 59].
The crux of multi-fault localization lies in the mutual interference
and interaction among faults [65], to put it another way, failed
test cases1 in the test suite (TS) might be linked to distinct root
causes. To tackle this challenge, researchers proposed to 1) divide
all failed test cases into several disjoint groups according to their
root cause [46, 85], with the goal of having the number of generated
groups equal to the number of faults, as well as failed test cases in
the same group being triggered by the same fault, and 2) combine
failed test cases in each group with successful test cases for parallel
debugging. In the former stage, which is also referred to as fault
isolation or failure indexing, clustering techniques are typically
utilized to achieve the division of failed test cases [13, 22, 52], where
unstructured failed test cases need to be converted into a math-
ematical form before being fed into the algorithm2. To that aim,
six failure proximities have been summarized or proposed in [41]

1The terms “failed test case” and “failure” are interchangeable in this paper.
2We quote the terms “clustering" and "division" interchangeably unless otherwise
specified hereafter.
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for the extraction of formal signatures from failures. Inspired by
the ranking-based proximity (R-proximity) among them, statement
ranking representation (SRR) is designed and being widely adopted
by researchers [7, 20, 62, 82], whose effectiveness and promise have
been demonstrated by extensive trials [20, 39].

While utilizing SRR to preprocess failures, a failed test case is rep-
resented as a ranking list of statements built upon their likelihood
of being faulty. Specifically, a failure-specific TS that comprises a
failed test case and successful test cases is executed on the pro-
gram under test (PUT), along with the coverage information being
collected [23, 49]. The resulting spectrum data is then sent to a
fault localization technique, which is generally a risk evaluation
formula (REF) in spectrum-based fault localization (SBFL) [72, 80],
to produce a failure-specific ranking list that represents this failed
test case in a clustering-friendly form.

A large number of existing REFs, including both manually cus-
tomized ones (such as Tarantula [29], Ochiai [1], and Crossrab [64])
and genetic programming evolved ones (such as GP02, GP03, and
GP19 [79]), were all designed to localize single-fault, i.e., based on
to what extent they can push the faulty statement to the top of
the ranking list, rather than serve as a fingerprinting function of
R-proximity in multi-fault scenarios. But according to our investiga-
tion, almost all researchers who have employed R-proximity used a
specific off-the-shelf REF to represent failures directly [20, 28, 39].

However, the factors that need to be considered inmultiple-
fault isolation and single-fault localization are not exactly
the same. Therefore, the fault localization optimal REF in the
single-fault scenario does not necessarily imply good performance
in multi-fault isolation. It is intuitive that if an REF has a stronger
capability to extracting signatures from failures, the ranking lists
it produces will more properly model failed test cases, thus better
parallel debugging effectiveness can be obtained. Therefore, deliv-
ering an REF that is capable of properly representing failures in
multi-fault scenarios is non-trivial. To the best of our knowledge,
no research has been done to design an REF for such a motivation.

In this paper, we are interested in investigating whether there is
any REF that can deliver better performance than currently adopted
ones, in terms of fault isolation. We present a genetic programming-
based framework, together with a sophisticated fitness function,
to automatically evolve formulas with the goal of more effectively
extracting signatures from failures in multi-fault scenarios.

We download four projects written in C (flex, grep, gzip, and sed)
from the Software Infrastructure Repository (SIR) [50], followed by
creating 960 faulty versions through artificially injecting faults into
clean programs. These injected faults are of varied numbers (i.e.,
two, three, four, and five) and varied types (i.e., assignment fault
and predicate fault). A collection of risk evaluation formulas are
evolved on a small set (i.e., 15%) of these C programs and then tested
on both the remaining C programs as well as real-world
Java programs. Experiments reveal that in the context of failure
representation, evolved fingerprinting functions (EFF)3 are highly
human-competitive: a substantial number of EFFs can not only
outperform all existing REFs on simulated C faults, but also obtain

3An evolved fingerprinting function (EFF) is also a risk evaluation formula (REF). In
this paper, in order to facilitate the comparison and analysis, we denote the off-the-
shelf risk evaluation formula designed for single-fault localization as REF, while denote
the evolved REF that serves as a fingerprinting function of R-proximity as EFF.

similar results to existing REFs on real-world Java faults. Among
them, EFF10-83 exceeds the state-of-the-art REF the most, with
increases of 50.72% and 47.41% regarding faults number estimation
and clustering effectiveness, respectively4.

This paper makes the following contributions:
• Instead of designing a risk evaluation formula with higher
single-fault localization effectiveness, in this paper, we con-
struct fingerprinting functions of R-proximity for better rep-
resenting failures in multi-fault isolation. As far as we are
aware, this is the first work to develop risk evaluation for-
mulas from this perspective.
• Rather than manually design the formula, we adopt genetic
programming to automatically evolve formulas without any
interference from human beings. The proposed configurable
evolution strategy, along with the sophisticated fitness func-
tion, provides a reasonable way to generate and evaluate
R-proximity fingerprinting functions, which enables future
researchers to evolve better ones on their own.
• Using the proposed approach, we successfully evolve for-
mulas that are competitive with previously human-designed
ones. Based on the results, we recommend that stakeholders
who adopt R-proximity employ EFF10-83, the most effective
individuals in the experiment, as the fingerprinting function.

The remainder of this paper is organized as follows: Section 2
reports background and gives a motivating example. Section 3 de-
scribes our evolution framework and the fitness function. Section 4
provides the parameter setting, datasets, metrics, and experimental
environments. Section 5 analyzes the experimental results. Section
6 further discusses our approach. Section 7 declares the threats to
validity. Section 8 summarizes the related work. Conclusions and
directions for future work are proposed in Section 9.

2 BACKGROUND
2.1 Failure Representation
Failure representation is an essential step in fault isolation5. This
is because failed test cases are typically too abstract to be directly
used in the clustering process, it is necessary to translate them into
a mathematical and structured form. To that end, Liu et al. con-
ducted systematic research on failure proximity in [39] and [41],
in which they summarized or proposed six representative failure
proximities, namely, failure-based, stack trace-based, code coverage-
based, predicate evaluation-based, dynamic slicing-based, and statis-
tical debugging-based ones. Coverage vector representation (CVR),
which is similar to the trace-proximity, creates a vector with a
length equal to the number of executable statements in the PUT, for
representing a failed test case. In such a vector, the value of the 𝑖th el-
ement is set to 1 if this failed test case covers the 𝑖th statement, and 0
otherwise. Although CVR has been utilized in a significant number
of previous research such as [14, 24, 83], it has proven to be prob-
lematic since a fault can be triggered in a variety of ways [20, 83].
SRR, which is similar to the rank-proximity, is in widespread use for
its promise of capturing execution signatures of failures via fault

4We share the source code and data at: https://github.com/yisongy/SRR-GP.
5Because multiple faults are typically isolated by indexing failures to their root cause,
“fault isolation” is also referred to as “failure indexing”.

https://github.com/yisongy/SRR-GP
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Table 1: The sample PUT and its coverage against the given TS
S Program Coverage Information Spectrum Information Suspiciousness

𝑡∗1 𝑡2 𝑡∗∗3 𝑡∗4 𝑡5 𝑡6 𝑡∗7 𝑡∗∗8 𝑁𝐶𝐹 𝑁𝑈𝐹 𝑁𝐶𝑆 𝑁𝑈𝑆 𝑁𝐶 𝑁𝑈 𝑁𝑆 𝑁𝐹 𝑁 𝐹𝑡 ∪ 𝑆 𝐹1 ∪ 𝑆 𝐹2 ∪ 𝑆
𝑠1 input x, y, z · · · · · · · · 5/3/2 0/0/0 3/3/3 0/0/0 8/6/5 0/0/0 3/3/3 5/3/2 8/6/5 0.79 0.71 0.63
𝑠2 if (x < y): · · · · · · · · 5/3/2 0/0/0 3/3/3 0/0/0 8/6/5 0/0/0 3/3/3 5/3/2 8/6/5 0.79 0.71 0.63
𝑠3 if (x < z): · · · · 3/3/0 2/0/2 0/1/1 3/2/2 3/4/1 5/2/4 3/3/3 5/3/2 8/6/5 0.77 0.87 0
𝑠4 s = x + y //𝑭𝒂𝒖𝒍𝒕1 ✓s = y + z ★ ★ ★ 3/3/0 2/0/2 0/0/0 3/3/3 3/3/0 5/3/5 3/3/3 5/3/2 8/6/5 0.77 1 /
𝑠5 else: · 0/0/0 5/3/2 1/1/1 2/2/2 1/1/1 7/5/4 3/3/3 5/3/2 8/6/5 0 0 0
𝑠6 z = x + y · 0/0/0 5/3/2 1/1/1 2/2/2 1/1/1 7/5/4 3/3/3 5/3/2 8/6/5 0 0 0
𝑠7 else: · · · · 2/0/2 3/3/0 2/2/2 1/1/1 4/2/4 4/4/1 3/3/3 5/3/2 8/6/5 0.45 0 0.71
𝑠8 if (z <y) · · · · 2/0/2 3/3/0 2/2/2 1/1/1 4/2/4 4/4/1 3/3/3 5/3/2 8/6/5 0.45 0 0.71
𝑠9 s = x * z //𝑭𝒂𝒖𝒍𝒕2 ✓s = x + y ◦ ◦ 2/0/2 3/3/0 0/0/0 3/3/3 2/0/2 6/6/3 3/3/3 5/3/2 8/6/5 0.63 / 1
𝑠10 else · · 0/0/0 5/3/2 2/2/2 1/1/1 2/2/2 6/4/3 3/3/3 5/3/2 8/6/5 0 0 0
𝑠11 s = x + z · · 0/0/0 5/3/2 2/2/2 1/1/1 2/2/2 6/4/3 3/3/3 5/3/2 8/6/5 0 0 0

localization techniques (i.e., a risk evaluation formula in SBFL),
instead of being simply based on covering paths [20, 36, 41].

2.2 SBFL Notations
Coverage information is typically referred to as binary vectors,
which indicate whether a program statement6 is covered by a test
case during running a TS on a PUT. To formalize these binary indi-
cators, researchers in the field of SBFL defined nine notations that
are capable of revealing execution characteristics [56], that is, 𝑁𝐶𝐹 ,
𝑁𝐶𝑆 , 𝑁𝑈𝐹 , 𝑁𝑈𝑆 , 𝑁𝐶 , 𝑁𝑈 , 𝑁𝑆 , 𝑁𝐹 , and 𝑁 (also referred to as 𝑎𝑒 𝑓 ,
𝑎𝑒𝑝 , 𝑎𝑛𝑓 , 𝑎𝑛𝑝 , 𝑎𝑒 , 𝑎𝑛 , 𝑎𝑝 , 𝑎𝑓 , and 𝑎, respectively), where 𝑁𝐶𝐹 and
𝑁𝐶𝑆 represent the number of test cases that execute the statement
and return the testing result of failed or successful, respectively,
𝑁𝑈𝐹 and𝑁𝑈𝑆 represent the number of test cases that do not execute
it and return the testing result of failed or successful, respectively,
𝑁𝐶 and 𝑁𝑈 represent the number of test cases that execute and
do not execute the statement, respectively, 𝑁𝑆 and 𝑁𝐹 represent
the number of successful and failed test cases, respectively, 𝑁 is
the scale of the test suite. The intuition of designing SBFL formu-
las for single fault localization is that statements associated with
more failed and less successful testing results are more likely to be
faulty [43, 54, 74].

2.3 Motivating Example
We exemplify fault isolation and the SRR strategy in parallel debug-
ging through a motivating example.

As shown in Table 1, the PUT that contains 11 statements is
designed to calculate the sum of the bigger two of the three numbers,
in which two faults have been induced by statements 𝑠4 and 𝑠9,
respectively. Given a TS with eight test cases: 𝑡1 = {3,8,6}, 𝑡2 = {7,5,8},
𝑡3 = {9,6,2}, 𝑡4 = {5,7,6}, 𝑡5 = {2,1,5}, 𝑡6 = {6,9,4}, 𝑡7 = {4,8,7}, and
𝑡8 = {9,6,1}, five of them are labelled as failed owing to unexpected
outputs (𝑡1, 𝑡3, 𝑡4, 𝑡7, 𝑡8). The 11×8 matrix composed of rows 𝑠1 to
𝑠11 and columns 𝑡1 to 𝑡8 in Table 1 is the coverage information.
This matrix is obtained by running the TS against the given PUT,
where 𝑡1 ∼ 𝑡8 columns reflect the execution paths of the eight test
cases. The symbol “·” implies that a test case covers an innocent
statement, whereas “★” and “◦” imply that a test case covers the
statements containing 𝐹𝑎𝑢𝑙𝑡1 or 𝐹𝑎𝑢𝑙𝑡2, respectively. The coverage
information is reorganized into spectrum information according
to the notations defined in SBFL, as shown in the 11×9 matrix
composed of rows 𝑠1 to 𝑠11 and columns 𝑁𝐶𝐹 to 𝑁 in Table 17.
6Unless otherwise specified, “statement” refers to “executable statement” in this paper.
7Each cell in the column “Spectrum Information” is in the form of “a/b/c”, where a, b,
and c represent the value of notation under 𝐹𝑡 ∪ 𝑆 , 𝐹1 ∪ 𝑆 , and 𝐹2 ∪ 𝑆 , respectively.

2.3.1 Fault Isolation in Parallel Debugging. In this example, it can
be observed that five failed test cases are triggered by two distinct
root causes, 𝐹𝑎𝑢𝑙𝑡1 and 𝐹𝑎𝑢𝑙𝑡2. If they are not divided properly, fault
localization techniques could be confused by the comprehensive
test suite significantly. For example, SBFL techniques will extract
execution features of both two faults guided by the messy spectrum
data, which will lower the rank of each fault in the generated
ranking list. Let us employ a well-known REF, Ochiai [1], as defined
in Formula 1, to illustrate how such a detrimental effect harms the
fault localization process.

𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠 Ochiai =
𝑁𝐶𝐹√
𝑁𝐹𝑁𝐶

(1)

We first calculate each statement’s suspiciousness by following
the traditional strategy, that is, leveraging all failed test cases 𝐹𝑡 and
all successful test cases 𝑆 to activate Ochiai. The results are shown
in column 𝐹𝑡 ∪ 𝑆 in Table 1. We can immediately sort program
statements in descending order of suspiciousness and get a ranking
list: {𝑠1, 𝑠2, 𝑠3, 𝒔4, 𝒔9, 𝑠7, 𝑠8, 𝑠5, 𝑠6, 𝑠10, 𝑠11}. In this list, the statement
𝑠4 containing 𝐹𝑎𝑢𝑙𝑡1 and the statement 𝑠9 containing 𝐹𝑎𝑢𝑙𝑡2 are
ranked fourth and fifth, respectively. Three innocent statements,
𝑠1, 𝑠2, and 𝑠3, will be inspected before 𝑠4 and 𝑠9.

In five failed test cases in TS, 𝑡1, 𝑡4, and 𝑡7 (with superscript “*”
in Table 1) are triggered by 𝐹𝑎𝑢𝑙𝑡1, while 𝑡3 and 𝑡8 (with superscript
“**” in Table 1) are triggered by 𝐹𝑎𝑢𝑙𝑡2. In fault isolation, ideally,
they should be rearranged into two fault-focused clusters, namely,
𝐹1 = {𝑡1, 𝑡4, 𝑡7}, and 𝐹2 = {𝑡3, 𝑡8}. Two fault-focused TSs, 𝐹1∪𝑆 , 𝐹2∪𝑆 ,
can be produced by combining 𝐹1 and 𝐹2 with all successful test
cases 𝑆 , respectively. After executing these two fault-focused TSs
on the PUT, two sets of spectrum data can be collected, as shown
in Table 1. The suspiciousness of statements calculated by Ochiai
using these two sets of spectrum data is shown in columns 𝐹1 ∪ 𝑆
and 𝐹2 ∪ 𝑆 in Table 1, respectively. Two faulty statements, 𝑠4 and
𝑠9, are both found to be riskiest in the corresponding ranking list,
enabling two independent developers to effectively debug the two
faults in a parallel manner.

We can conclude two essential points from this toy example:
1) fault isolation can alleviate the negative impact caused by the
multi-fault co-existence, thus making the fault localization tech-
nique deliver more pertinent outcomes, and 2) the core of fault
isolation lies in the division of failed test cases. As stated previously,
clustering techniques are typically employed to serve as a division

And in the column “Suspiciousness”, the suspiciousness of 𝑠9 under 𝐹1 ∪ 𝑆 and the
suspiciousness of 𝑠4 under 𝐹2 ∪𝑆 cannot be calculated, since Ochiai loses its definition
when the value of 𝑁𝐶 is zero.
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Figure 1: The overview of the proposed framework

strategy, where unstructured failed test cases need to be converted
to a mathematical form, i.e., failure representation. The SRR strat-
egy, one of the most sophisticated and advanced failure proximities
for this purpose, is illustrated as follows.

2.3.2 Statement Ranking Representation. Take 𝑡3 as an example.
First, pairing 𝑡3 with 𝑆 to form a failure-specific TS, 𝑡3 ∪ 𝑆 . Second,
executing this TS on PUT to obtain coverage information, and then
converting the coverage into spectrum data. Third, utilizing a risk
evaluation formula (e.g., Ochiai) to determine each statement’s
suspiciousness. Finally, a ranking list can be produced to represent
𝑡3, i.e., {4, 4, 6, 11, 6, 6, 2, 2, 1, 6, 6}8, which will be invoked in the
subsequent clustering process as a proxy for 𝑡3. Similarly, 𝑡7 can
be represented as a ranking list {3, 3, 2, 1, 5, 5, 5, 5, 11, 5, 5}. To
elucidate the distinction in capabilities to representing failed test
cases across different REFs, we produce proxies for 𝑡3 and 𝑡7 using
another REF, Naish2, as defined in Formula 2. The outputs are {4, 4,
7, 6, 7, 7, 2, 2, 1, 10, 10} and {3, 3, 2, 1, 6, 6, 8, 8, 5, 8, 8}, respectively.

𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠 Naish2 = 𝑁𝐶𝐹 −
𝑁𝐶𝑆

𝑁𝑆 + 1
(2)

The value of distance (e.g., Euclidean distance) between 𝑡3 and 𝑡7
(using Ochiai) is calculated as being 15.49 while being 12.25 (using
Naish2)9. Obviously, Ochiai distinguishes the two failed test cases
more properly than Naish2. However, the latter has theoretically
proven to be better than the former in terms of single-fault localiza-
tion [72]. As a consequence of this observation, we can conjecture
that a stronger REF in single-fault localization is not necessarily
dominant when it comes to serving as a fingerprinting function of
R-proximity for failure representation in multi-fault scenarios.

Notice that in this motivating example: 1) the execution paths
of the failed test cases triggered by the same fault are also the
same, and 2) a failed test case has only one root cause. Such a
simplification (or an assumption) is only used to make the example
more understandable while is not prevalent in practice. In real-
world fault isolation tasks: 1) a fault could be triggered in different
ways, and 2) more than one fault could be responsible for a failure at
the same time. Obviously, multiple faults could be more difficult to
be isolated in this scenario than in the previous simple assumption.

8In this phase, if several statements with the same suspiciousness form a tie [75], the
rankings of all statements in the tie will be set to the beginning position of this tie.
9The subsequent clustering process is omitted due to the limited space.

In this paper, for a more practical and robust evaluation, we adopt
the more realistic assumption rather than the simplified one.

3 APPROACH
In this section, we outline the overview of the proposed evolution
framework in Section 3.1, introduce the fitness function in Section
3.2, and describe key steps of the evolution process in Section 3.3.

3.1 Overview
We employ genetic programming (GP) [61] as the evolving algo-
rithm owing to two points. First, a risk evaluation formula is made
up of notations (i.e., 𝑁𝐶𝑆 , 𝑁𝐶𝐹 , 𝑁𝑈𝑆 , and 𝑁𝑈𝐹 ) and various opera-
tors, the possible combinations between them are numerous and
complicated, resulting in a big search space, and GP is well-suited
to handle such a difficulty [2]. Second, in SRR-based fault isolation,
the obtaining of clustering results involves several phases, thus the
relationship between an EFF and its failure representation capa-
bility cannot be simply determined, GP can relieve this challenge
through a well-designed fitness function.

The workflow of the proposed framework is illustrated in Fig-
ure 1. The details of the workflow are formally outlined in Algo-
rithm 1, where 𝐼𝑃 , 𝑃𝐴, 𝑁𝐺 , and 𝐹𝑆 represent the Initial Population,
Parents, Next Generation, and Fitness Score in Figure 1, respectively,
and 𝐶𝑃 represents the current population. The inputs of the frame-
work include six hyperparameters (𝑛, 𝑑 , 𝑝 , 𝑐 , 𝑜 , and𝑚), one external
method (𝐹𝐹 ), and a stopping criterion (𝑆𝐶), with the evolved fin-
gerprinting functions as the output.

3.2 Fitness Function
The calculation of the fitness score of an EFF equals the evaluation
of the clustering process based on it, which can be measured by two
factors, 𝑇𝑜𝑡𝑎𝑙_𝑚𝑒𝑡𝑟𝑖𝑐𝑠 and 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐹𝑎𝑐𝑡𝑜𝑟 . 𝑇𝑜𝑡𝑎𝑙_𝑚𝑒𝑡𝑟𝑖𝑐𝑠 involves
four external metrics that are commonly used in the evaluation of
a clustering process [67, 71], i.e., the Fowlkes and Mallows Index
(FMI), the Jaccard Coefficient (JC), the Precision Rate (PR), and the
Recall Rate (RR), which are defined and introduced in Section 3.2.1.
𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐹𝑎𝑐𝑡𝑜𝑟 is designed to address the threats posed by the vir-
tual mapping problem and to heuristically guide the evolution,
which is defined and introduced in Section 3.2.2. The fitness score
of an EFF on one faulty version is visualized in the lower part of
Figure 1 and defined in Formula 3.
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Algorithm 1 Evolution Framework
Input:

the size of population 𝒏, the maximum tree depth of EFF 𝒅,
fitness function 𝑭 𝑭 , the size of selected parents 𝒑, crossover
rate 𝒄 , copy rate 𝒐, mutation rate 𝒎, stopping criterion 𝑺𝑪

Output:
evolved fingerprinting function

1: 𝑰 𝑷 ← 𝒏 randomly initialized EFFs within the constraint of 𝒅
2: 𝑪𝑷 ← 𝑰 𝑷
3: repeat
4: 𝑭𝑺 ← 𝑭 𝑭 (𝑪𝑷)
5: 𝑷𝑨← Selecting 𝒑 individuals in 𝑪𝑷 according to 𝑭𝑺
6: 𝑵𝑮 ← crossover, copy, or mutate individuals in 𝑷𝑨 with 𝒄 ,

𝒐, and 𝒎, respectively
7: 𝑪𝑷 ← 𝑵𝑮
8: until 𝑺𝑪 == True

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑆𝑐𝑜𝑟𝑒 = 𝑇𝑜𝑡𝑎𝑙_𝑚𝑒𝑡𝑟𝑖𝑐𝑠 ∗ 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐹𝑎𝑐𝑡𝑜𝑟 (3)
Given an EFF, and a program that contains 𝑟 faults (referred to

as an 𝑟 -bug faulty version) and corresponding test cases, the fitness
function is determined by four factors (𝐷𝑀 , 𝐸𝑁 , 𝐼𝑀 , and 𝐶𝐴), and
the output is fitness score (𝐹𝑆), as formally depicted in Algorithm 2.

Algorithm 2 Fitness Function
Input:

an 𝑟 -bug faulty version, an evolved fingerprinting function
𝑬𝑭 𝑭 , distance metric 𝑫𝑴 , the faults number estimation strat-
egy 𝑬𝑵 , the medoids initialization strategy 𝑰𝑴 , clustering
algorithm 𝑪𝑨

Output:
fitness score

1: Utilize 𝑬𝑭 𝑭 to convert failed test cases into ranking lists
2: Calculate distances between ranking lists using 𝑫𝑴
3: Employ 𝑬𝑵 to get the predicted number of faults 𝑘
4: If 𝑘 != 𝑟 :
5: set 𝑭𝑺 to be zero
6: Elif 𝑘 == 𝑟 :
7: Leverage 𝑰𝑴 to initialize medoids and running 𝑪𝑨
8: Obtain𝑇𝑜𝑡𝑎𝑙_𝑚𝑒𝑡𝑟𝑖𝑐𝑠 and 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐹𝑎𝑐𝑡𝑜𝑟 by calculating and

analyzing four external metrics
9: set 𝑭𝑺 to be 𝑇𝑜𝑡𝑎𝑙_𝑚𝑒𝑡𝑟𝑖𝑐𝑠 times 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐹𝑎𝑐𝑡𝑜𝑟

Notice that in the designed fitness function, we validate the EFF’s
fitness score only when the faulty version meets the requirement of
“𝑘 == 𝑟”, i.e., the estimated number of clusters is equal to the number
of faults, otherwise the fitness score is set to zero. The reason behind
this scheme lies in the goal of fault isolation, that is, all failed test
cases need to be divided into several groups with each of which
targeting a single fault. Only when the number of generated clusters
is equal to the number of faults can we properly establish mapping
relations between them. Actually, in practical parallel debugging,
“𝑘 ≠ 𝑟” is a more common scenario since properly representing and
dividing failures is indeed tricky. The subsequent localization step
can also runwhen𝑘 is not equal to 𝑟 , but this may incur unnecessary
costs. We further discuss this in Section 6 and Section 7.

Table 2: Scenarios in two types of metrics
Metric Notation Results of failure indexing

In generated cluster In oracle cluster

pair of cases-based

SS Same Same
SD Same Difference
DS Difference Same
DD Difference Difference

single case-based

TP Positive Positive
FP Positive Negative
TN Negative Negative
FN Negative Positive

3.2.1 Total_metrics. External metrics [67] and internal metrics [53]
are generally implemented to measure a clustering process, with
the former being preferred when the oracle is accessible. In fault
isolation, the oracle is described as the real linkages between failed
test cases and faults, which can be compared with the generated
clusters. Considering the availability of such oracles, we select four
widely-used external metrics, FMI, JC, PR, and RR, to quantitatively
evaluate the clustering in our fitness function. Among them, we
refer to FMI and JC as pair of cases-based metrics, and refer to PR
and RR as single case-based metrics.

Pair of cases-based metrics compare the indexing consistency of
each pair of failed test cases in the generated cluster with that in the
oracle cluster. Four possible scenarios in this process are depicted in
Table 2. Suppose there are 𝑛 failed test cases, a total of𝐶2

𝑛 pairs will
be examined. The numbers of pairs that fall into SS, SD, DS, and SS
categories are denoted by 𝑋𝑆𝑆 , 𝑋𝑆𝐷 , 𝑋𝐷𝑆 , and 𝑋𝐷𝐷 , respectively,
and these four notations can be incorporated into FMI and JC, which
are defined in Formula 4 and Formula 5, respectively. FMI and JC
are used to determine the similarity between the generated cluster
and the oracle cluster [25], the larger the value in their interval, i.e.,
[0, 1], the more effective clustering is.

𝐹𝑀𝐼 =

√︄
𝑋𝑆𝑆

𝑋𝑆𝑆 + 𝑋𝑆𝐷
× 𝑋𝑆𝑆

𝑋𝑆𝑆 + 𝑋𝐷𝑆
(4)

𝐽𝐶 =
𝑋𝑆𝑆

𝑋𝑆𝑆 + 𝑋𝑆𝐷 + 𝑋𝐷𝑆
(5)

Single case-based metrics compare the classification result of each
failed test case in the generated cluster with that in the oracle cluster.
Four possible scenarios in this process are depicted in Table 2. We
use 𝑋𝑇𝑃 , 𝑋𝐹𝑃 , 𝑋𝑇𝑁 , and 𝑋𝐹𝑁 to denote the numbers of failed test
cases that fall into TP, FP, TN, and FN categories, respectively, and
these four notations can be incorporated into PR and RR, which
are defined in Formula 6 and Formula 7, respectively. The intervals
of PR and RR are both [0, 1] and that the larger the value in this
range, the more effective clustering is.

𝑃𝑅 =
𝑋𝑇𝑃

𝑋𝑇𝑃 + 𝑋𝐹𝑃
(6)

𝑅𝑅 =
𝑋𝑇𝑃

𝑋𝑇𝑃 + 𝑋𝐹𝑁
(7)

Different permutations of generated and oracle clusters will
result in different external metric outputs, and the diversity of
permutations will expand dramatically as the number of faults
grows. For example, in a 2-bug faulty version, the permutations of
two generated clusters and two oracle clusters are𝐴2

2 = 2, while in a
5-bug faulty version, the permutations of five generated clusters and
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five oracle clusters are𝐴5
5 = 120. Such diversity of permutations does

not exist in practical parallel debugging, it only exists in the contrast
between the clustering output and the oracle in experiments. In
other words, each developer will be allocated to a fault-focused TS,
and they will be responsible for localizing the corresponding fault
independently. Regardless of how many underlying permutations
exist, there is only one real combination of generated clusters and
oracle clusters (we call this problem the virtual mapping problem).
For those “𝑘 == 𝑟” faulty versions, we first enumerate all feasible
permutations, and then pick the optimal one depending on the value
of FMI, JC, PR, or RR for evaluation, because which permutation
reflects the real mapping relations is unknown.

By doing so, we get the optimal value of each metric, denoted as
𝐹𝑀𝐼𝑜𝑝𝑡 , 𝐽𝐶𝑜𝑝𝑡 , 𝑃𝑅𝑜𝑝𝑡 , and 𝑅𝑅𝑜𝑝𝑡 . We design 𝑇𝑜𝑡𝑎𝑙_𝑚𝑒𝑡𝑟𝑖𝑐𝑠 to in-
corporate them, as shown in Formula 8. The value of𝑇𝑜𝑡𝑎𝑙_𝑚𝑒𝑡𝑟𝑖𝑐𝑠

of an EFF on a faulty version is in the range of [0, 4].

𝑇𝑜𝑡𝑎𝑙_𝑚𝑒𝑡𝑟𝑖𝑐𝑠 = 𝐹𝑀𝐼𝑜𝑝𝑡 + 𝐽𝐶𝑜𝑝𝑡 + 𝑃𝑅𝑜𝑝𝑡 + 𝑅𝑅𝑜𝑝𝑡 (8)

3.2.2 PenaltyFactor. While evaluating the effectiveness of an EFF
on a faulty version, the optimal value of four metrics might occur
on different permutations, we believe that the consistency among
them reflects the rationality of the contrast between generated and
oracle clusters. Consequently, we also take such a consistency into
consideration since it associates with 𝑇𝑜𝑡𝑎𝑙_𝑚𝑒𝑡𝑟𝑖𝑐𝑠 . Specifically,
if the optimal values of the four metrics all appear on the same
permutation, it means that the four metrics can easily reach a
consensus, indicating that the ranking lists produced by the EFF
represent failed test cases distinguishably. On the contrary, if the
optimal values of the four metrics are dispersed onto different
permutations, such a divergence indicates that the ranking lists
produced by the EFF are too analogous to be divided.

We regard the evaluation of the four metrics for all permutations
as a voting process, in which each metric votes for the permutation
with its highest value. Thus, a permutation will get four votes if the
highest values of all four metrics appear on it. In an 𝑟 -bug version,
𝐴𝑟
𝑘
permutations will each be assigned a value of vote, and this

𝑟 -bug version’s vote will be determined as the highest value of
vote among 𝐴𝑟

𝑘
permutations (denoted as 𝑉𝑜𝑡𝑒𝑚𝑜𝑠𝑡 ). We design

𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐹𝑎𝑐𝑡𝑜𝑟 as an extra weight, to lower the fitness score of a
fault isolation process with less rationality, as shown in Formula 9.

𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐹𝑎𝑐𝑡𝑜𝑟 = 1 − 0.05 ∗ (4 −𝑉𝑜𝑡𝑒𝑚𝑜𝑠𝑡 ) (9)

The possible values of 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐹𝑎𝑐𝑡𝑜𝑟 are 0.85, 0.9, 0.95, and 1,
when 𝑉𝑜𝑡𝑒𝑚𝑜𝑠𝑡 takes 1, 2, 3, and 4, respectively.

3.3 Evolution Processes
The evolution process of our framework is threefold, which involves
initial population generation, selection, as well as crossover, copy,
and mutation, as shown in the upper part of Figure 1.

3.3.1 Initial Population Generation. The initial population genera-
tion is performed by repeatedly creating a single EFF until the size
of the population reaches the predefined threshold. Our framework
constructs an EFF by integrating spectrum notations (i.e.,𝑁𝐶𝐹 ,𝑁𝐶𝑆 ,

add

div mul

NUF sub NCF

div pow

NCS NUF NUF 2

add

1 NUS

Figure 2: EFF in tree form

𝑁𝑈𝐹 , and 𝑁𝑈𝑆 )10 and fundamental integers (i.e., 1 and -1) with sev-
eral operators (e.g., addition, subtraction, multiplication, division,
negation, exponential operation, and tanking the absolute value). In
a tree-based GP model, the generation of an EFF is accomplished by
constructing a tree, with the leaf nodes being spectrum notations
or fundamental integers and the branch nodes being operators. For
instance, the EFF shown in Formula 10 is generated by constructing
a tree shown in Figure 2. The crossover and mutation of EFFs are
both performed by altering their corresponding trees.

𝑁𝑈𝑆 + 1
𝑁𝑈𝐹

+
(
𝑁𝐶𝑆

𝑁𝑈𝐹
− 𝑁 2

𝑈𝐹

)
× 𝑁𝐶𝐹 (10)

3.3.2 Selection. During the evolution, we employ the roulette algo-
rithm to select a random subset of the current population according
to their fitness scores, for serving as the parents for the next gener-
ation. The intuition behind such a strategy is that the higher the
fitness score of an EFF, the more suitable it is 1) for serving as a
fingerprinting function of R-proximity, and 2) for evolving better
individuals through crossover, copy, or mutation. The scale of the
parents should be set properly since if it is too large, many EFFs
with lower fitness scores will be selected, resulting in a decline in
overall population fitness, thus hindering an efficient evolution. On
the contrary, if the scale of the parents is too small, there will be
many redundant individuals in the next generation, which can lead
to a decrease in overall population richness.

In particular, to prevent the evolution framework from searching
in a recursive space, if an EFF in the 𝑛th generation is consecutively
selected and copied into the 𝑛 + 1th and 𝑛 + 2th generations, it is no
longer permitted to appear in the 𝑛 + 3th generation.

3.3.3 Crossover, Copy and Mutation. To develop EFFs for the next
generation, our framework first determines the evolving strategy
(i.e., crossover, copy, or mutation) according to the preset crossover
rate, copy rate, and mutation rate, respectively, and then generates
a new EFF by constructing a tree based on the existing EFF/EFFs
(EFF for copy and mutation, and EFFs for crossover) in the parents
generation. This process will be continued until the population
scale reaches the predetermined level.

To guarantee overall population richness, we stipulate that the
same EFF/EFFs in the parents generation cannot be used to generate
individuals for the next generation through the same evolving

10The other spectrum notations 𝑁𝐶 , 𝑁𝑈 , 𝑁𝑆 , 𝑁𝐹 , and 𝑁 could be obtained by the
simple integration of these four basic elements.
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strategy. For example, if an EFF has already been generated by
mutating EFF 𝑃1 in the parents generation, our framework prevents
further mutations to EFF 𝑃1, but permits building a new EFF by
1) applying crossover or copy to EFF 𝑃1, or 2) mutating the other
EFFs in the parents generation other than EFF 𝑃1.

4 EXPERIMENTAL SETUP
In this section, we introduce the experimental setup of this study,
including parameter setting, datasets, metrics, and environments.

4.1 Parameter Setting
As mentioned in Section 3.1, the inputs of the evolution framework
involve six hyperparameters, one external method (fitness function),
and a stopping criterion. In our experiments, we set 160 as the
size of population 𝒏, 17 as the maximum tree depth 𝒅, 80 as the
size of selected parents 𝒑, and 0.7, 0.2, and 0.1 as the (single-point)
crossover rate 𝒄 , copy rate 𝒐, and mutation rate𝒎, respectively. The
fitness function 𝑭 𝑭 we designed is illustrated in Section 3.2. The
stopping criterion 𝑺𝑪 is configured to a fixed run of 15 generations,
considering earlier studies’ experience [21, 51, 79].

As mentioned in Section 3.2, the inputs of the fitness function
involve four factors. We adopt the euclidean distance as the dis-
tance metric 𝑫𝑴 , the solutions of MSeer [20] that are based on the
mountain method [9, 78] as the faults number estimation strategy
𝑬𝑵 and the medoids initialization strategy 𝑰𝑴 , and k-medoids [33]
as the clustering algorithm 𝑪𝑨.

The above hyperparameters are not hard-coded but can be con-
figurable, determining a specific value or choice for each of them (no
matter optimal or not) just enables the framework to run, thus we
can evaluate whether our framework is promising and competent
to its mission.

4.2 Datasets
We create 960 C programs each with multiple artificial faults for the
training and test. We also create 100 Java programs each with multi-
ple real-world faults only for the test, to examine the practicability
and applicability of the evolved formulas.

4.2.1 C Programs (SIR). We download four classic projects from
SIR [50]: flex, grep, gzip, and sed, as shown in Table 3. Research
such as [4, 5, 16, 32, 38, 48] has confirmed that mutation-based
faults can simulate real-world faults to an extent, thus can provide
credible results for experiments in the field of software testing and
debugging. In light of that, we use these four projects as benchmark
programs to generate 228 single-bug faulty versions by employing
mutation-based strategies [44]. Specifically, we adopt an existing
tool [6] with 10 “fork” and 21 “star” on GitHub to perform muta-
tion. It defines 67 types of point that can be mutated, and provides
several mutation operators for each one. The mutation operators
we leverage (i.e., the fault types we investigate) can be categorized
into the following two classes.

• Assignment Fault [27]: Editing a variable’s value in the
statement, or replacing the operators such as addition, sub-
traction, multiplication, division, etc. with each other.

Table 3: Subject Programs
Project Version kLOC No. of faults Description
flex 2.5.3 14.5 76 Parser generator
grep 2.4 13.5 47 Text matcher
gzip 1.2.2 7.3 44 File archiver
sed 3.02 10.2 61 Stream editor
Chart 2.0.0 96.3 18 Chart library
Closure 2.0.0 90.2 36 Closure compiler
Lang 2.0.0 22.1 38 Apache commons-lang
Math 2.0.0 85.5 29 Apache commons-math
Time 2.0.0 28.4 20 Date and time library

• Predicate Fault [76]: Reversing the 𝑖 𝑓 -𝑒𝑙𝑠𝑒 predicate, or
deleting the 𝑒𝑙𝑠𝑒 statement, or modifying the decision condi-
tion, and so on.

To create an 𝑟 -bug faulty version, the faults from 𝑟 individual
single-bug faulty versions are injected into the same program, such
a technique has been implemented in lots of previous research [26,
34, 82]. If a multi-fault program contains only assignment faults
or only predicate faults, we refer to it as a TypeA faulty version or
a TypeP faulty version, respectively. A TypeH faulty version is a
program in which two types of fault occur hybridly. A total of 960
multi-fault versions are generated in our experiments, which can
be categorized dually: it consists of 2-bug, 3-bug, 4-bug, and 5-bug
ones evenly (i.e., 240 of each) from the perspective of the number
of faults, while consists of TypeA, TypeP, and TypeH ones evenly
(i.e., 320 of each) from the perspective of fault types. Among them,
15 percent are expropriated for the training and the remaining 85
percent are used for the test.

4.2.2 Java Programs (Defects4J). Defects4J is one of the most popu-
lar benchmarks in the current field of fault localization [31], but it
is generally used in single-fault scenarios, because each of its faulty
versions only targets a specific fault. Recently, An et al. adapted De-
fects4J to multi-fault scenarios by transplanting the fault-revealing
test case(s) of other faulty version(s) to a basic faulty version, en-
abling a strengthened test suite to detect more faults in the original
program (i.e., the basic faulty version) [3]. Following their strategy,
a total of 100 multi-fault versions are generated using 141 faults on
five projects, i.e., Chart, Closure, Lang, Math, and Time, as shown
in Table 3. The generation of Defects4J multi-fault versions is based
on the search in real-world software development, not manual. Be-
cause of this, the number of faulty versions that can be generated is
limited, and specifying the number of faults and the fault type for
each faulty version could be difficult. It is challenging to complete
the training phase on such small-scale and unpolished datasets.
Therefore, all Defects4J benchmarks are only used for the test.

Because the way of combining multiple single-faults in Defects4J
differs from that in SIR, and faults provided in Defects4J are from
the real world, the numbers of generated 2-bug, 3-bug, 4-bug, and
5-bug Defects4J faulty versions are unbalanced, and we can hardly
categorize them as TypeA, TypeP, or TypeH. Thus, we present the
test results on Defects4J programs in a separate part in Section 5.

4.3 Metrics
The strategy for calculating an EFF’s fitness score on one faulty
version has been given in Algorithm 2 and Formula 3. In our ex-
periments, we determine an EFF’s fitness score by simply adding
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Table 4: The clustering effectiveness of 12 groups of existing risk evaluation formulas on SIR
Group1 Group2 Group3 Group4 Group5 Group6 Group7 Group8 Group9 Group10 Group11 Group12

2-bug 𝐹𝑉𝑒 9 13 5 49 11 8 10 11 11 12 10 25
𝑆𝑢𝑚𝐹𝑆 22.65 35.91 15.84 150.16 31.43 22.79 24.9 26.91 31.46 35.41 34.16 74.48

3-bug 𝐹𝑉𝑒 30 35 16 29 40 28 31 22 32 20 24 34
𝑆𝑢𝑚𝐹𝑆 82.18 93.63 43.14 79.51 107.69 76.84 85.22 59.36 86.54 54.24 66.39 90.91

4-bug 𝐹𝑉𝑒 24 16 33 34 16 15 21 30 17 19 44 24
𝑆𝑢𝑚𝐹𝑆 59.4 41.52 82.07 82.21 40.07 37.98 51.03 74.02 43.14 47.53 105.59 59.33

5-bug 𝐹𝑉𝑒 19 22 26 26 19 11 21 15 11 33 29 26
𝑆𝑢𝑚𝐹𝑆 46.11 53.21 62.05 60.36 46.3 27.27 51.08 35.52 27.54 77.56 67.98 62.45

TypeA 𝐹𝑉𝑒 23 27 22 36 26 23 23 24 25 22 39 35
𝑆𝑢𝑚𝐹𝑆 59.66 72.76 56.72 95.51 69.91 62.54 59.35 58.45 67.72 57.58 98.41 96

TypeP 𝐹𝑉𝑒 27 26 28 46 30 17 27 23 21 34 39 37
𝑆𝑢𝑚𝐹𝑆 70.68 69.59 73.21 128.07 80.1 46.51 70.5 61.9 57.11 87.97 104.79 100.07

TypeH 𝐹𝑉𝑒 32 33 30 56 30 22 33 31 25 28 29 37
𝑆𝑢𝑚𝐹𝑆 80.01 81.92 73.16 148.65 75.48 55.85 82.38 75.46 63.86 69.2 70.92 91.1

All 𝐹𝑉𝑒 82 86 80 138 86 62 83 78 71 84 107 109
𝑆𝑢𝑚𝐹𝑆 210.35 224.27 203.09 372.23 225.49 164.89 212.23 195.81 188.68 214.75 274.12 287.17

Table 5: 12 groups of risk evaluation formulas with the same
capability to representing failed test cases

Name REFs
Group1 Naish2 [42]
Group2 Jaccard [8], Anderberg [42], Sørensen-Dice [42], Dice [42], Good-

man [42], M2 [42] , Naish1 [42], DStar [63]
Group3 Tarantula [29] , qe [35] , CBI Inc [37], Kulczynski2 [42], Ochiai [1]
Group4 Wong2 [66] , Hamann [42], Simple Matching [42], Sokal [42],

Rogers & Tanimoto [42], Hamming etc. [42], Euclid [42]
Group5 Wong1 [66], Binary [42], Russel & Rao [42]
Group6 Scott [42], Rogot1 [42]
Group7 Ample2 [42], Arithmetic Mean [42], Cohen [42], Crosstab [64]
Group8 Wong3 [66]
Group9 Fleiss [42]
Group10 GP02 [79]
Group11 GP03 [79]
Group12 GP19 [79]

up the fitness scores it gets on all faulty versions that satisfy the
criterion of “𝑘 == 𝑟”, as shown in Formula 11.

𝑆𝑢𝑚𝐹𝑆 =

𝐹𝑉𝑒∑︁
𝑖

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑆𝑐𝑜𝑟𝑒𝑖 (11)

Where 𝐹𝑉𝑒 is the number of “𝑘 == 𝑟” faulty versions when using the
EFF. 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑆𝑐𝑜𝑟𝑒𝑖 is the clustering effectiveness on the 𝑖th faulty
version, which is calculated by Formula 3.

4.4 Environments
We generate multi-fault versions and collect program coverage on
Ubuntu 16.04.1 LTS with GCC 5.4.0. The evolution model is built
upon DEAP 1.3.1 and runs on Hp Apollo 2000 equipped with 160
CPU cores with 2.4GHz and 96 GB of memory.

5 RESULTS AND ANALYSIS
As mentioned in Section 1, numerous risk evaluation formulas
have been proposed in the last four decades [11], and they have
been investigated theoretically or empirically by researchers. For
example, Naish et al. analyzedmore than 30 REFs for their capability
of fault localization [42], while Xie et al. first excluded some REFs
that are not intuitively justified in the context of SBFL, then selected
30 REFs from Naish et al.’s research to explore [72]. In addition,
Crosstab [64] and DStar [63] proposed by Wong et al., as well
as GP02, GP03, and GP19 that were presented by Yoo [79] and
investigated by Xie et al. [73], are also representative techniques

in the field of SBFL. As a consequence, we choose the mentioned
35 REFs as baselines. We reorganize them into 12 disjoint groups,
as shown in Table 5, since we find that some REFs have the same
performance in representing failed test cases (details are omitted to
conserve space). Only one REF (in bold) from each group is selected
for analyses because the others in the group are equivalent to it in
failure representation.

We report the test results on SIR programs in Section 5.1, 5.2,
and 5.3. The test results on Defects4J programs are reported in
Section 5.4, as the reason given in Section 4.2.2.

5.1 The Effectiveness of Existing REFs
For each group of REFs, we invoke Formula 11 to obtain its failure
representation capability on the test set, as shown in Table 4.

From the perspective of the number of faults, the groups of
REFs with the highest value of 𝐹𝑉𝑒 in 2-bug, 3-bug, 4-bug, and 5-bug
scenarios are Group4 (49), Group5 (40), Group11 (44), and Group10
(33), respectively, and the groups of REFs with the highest value of
𝑆𝑢𝑚𝐹𝑆 in the four scenarios are Group4 (150.16), Group5 (107.69),
Group11 (105.59), and Group10 (77.56), respectively. From the
perspective of fault types, the groups of REFs with the highest
value of 𝐹𝑉𝑒 in TypeA, TypeP, and TypeH scenarios are Group11
(39), Group4 (46), and Group4 (56), respectively, and the groups of
REFs with the highest value of 𝑆𝑢𝑚𝐹𝑆 in the three scenarios are
Group11 (98.41), Group4 (128.07), and Group4 (148.65), respectively.
If we review the results globally instead of breaking them down
into the mentioned seven local-environments, the greatest group
of REFs is Group4, with the ranking lists it produces leading the
fault isolation step to precisely estimate the number of faults on 138
faulty versions and get a clustering effectiveness score of 372.23.

The second and third highest values of 𝐹𝑉𝑒 and 𝑆𝑢𝑚𝐹𝑆 are not
elaborated here due to the limited space. We highlight those in
Table 4 using varied shades of background colors.

5.2 The Effectiveness of Newborn EFFs
We choose a small portion of EFFs generated by the evolution frame-
work11 for the test, and find that many of them outperform the
current 12 groups of REFs in terms of failure representation. We
analyze the top-10 EFFs to stress the promise of the proposed evo-
lution framework, whose expressions and clustering performance

11The time cost of evolving one generation is about 40 hours.
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Table 6: The clustering effectiveness of 10 evolved fingerprinting functions on SIR
EFF10-83 EFF7-34 EFF11-82 EFF8-137 EFF8-16 EFF11-42 EFF5-98 EFF11-8 EFF3-149 EFF4-38

2-bug 𝐹𝑉𝑒 60 (22.45%) 58 (18%) 68 (38.78%) 64 (30.61%) 27 45 23 32 45 66 (34.69%)
𝑆𝑢𝑚𝐹𝑆 182.82 (21.75%) 180.15 (19.97%) 214.3 (42.71%) 186.88 (24.45%) 85.7 139.07 75.27 96.37 137.46 210.8 (40.38%)

3-bug 𝐹𝑉𝑒 60 (50.00%) 45 (12.50%) 48 (20.00%) 44 (10.00%) 48 (20.00%) 46 (15.00%) 37 37 47 (17.50%) 43 (7.50%)
𝑆𝑢𝑚𝐹𝑆 154.69 (43.64%) 124.43 (15.54%) 128.43 (19.26%) 120.27 (11.68%) 123.14 (14.35%) 121.93 (13.22%) 99.85 98.53 125.11 (16.18%) 119.21 (10.70%)

4-bug 𝐹𝑉𝑒 45 (2.27%) 44 30 34 45 (2.27%) 31 61 (38.64%) 33 33 19
𝑆𝑢𝑚𝐹𝑆 108.16 (2.43%) 104.3 71.9 82.03 111.95 (6.02%) 78.05 147.46 (39.65%) 80.59 82.63 48.55

5-bug 𝐹𝑉𝑒 43 (30.30%) 32 24 26 49 (48.48%) 33 36 (9.09%) 56 (69.70%) 26 11
𝑆𝑢𝑚𝐹𝑆 103.05 (32.86%) 74.99 54.37 59.4 118.42 (52.68%) 81.2 (4.69%) 87.54 (12.87%) 133.92 (72.67%) 63.98 26.46

TypeA 𝐹𝑉𝑒 73 (87.18%) 62 (58.97%) 54 (38.46%) 55 (41.03%) 62 (58.97%) 43 (10.26%) 57 (46.15%) 58 (48.72%) 46 (17.95%) 39
𝑆𝑢𝑚𝐹𝑆 191.64 (94.74%) 171.41 (74.18%) 155.58 (58.09%) 153.72 (56.20%) 162.3 (64.92%) 116.26 (18.14%) 148.79 (51.19%) 149.95 (52.37%) 127 (29.05%) 116.32 (18.20%)

TypeP 𝐹𝑉𝑒 69 (50.00%) 52 (13.04%) 57 (23.91%) 53 (15.22%) 57 (23.91%) 65 (41.30%) 57 (23.91%) 51 (10.87%) 43 46
𝑆𝑢𝑚𝐹𝑆 179.34 (40.03%) 138.12 (7.85%) 150.89 (17.82%) 143.81 (12.29%) 148.62 (16.05%) 177.19 (38.35%) 149.79 (16.96%) 135.99 (6.18%) 118.67 134.78 (5.24%)

TypeH 𝐹𝑉𝑒 66 (17.86%) 65 (16.07%) 59 (5.36%) 60 (7.14%) 50 47 43 49 62 (10.71%) 54
𝑆𝑢𝑚𝐹𝑆 177.74 (19.57%) 174.33 (17.28%) 162.53 (9.34%) 151.05 (1.61%) 128.29 126.8 111.54 123.47 163.51 (10.00%) 153.93 (3.55%)

All 𝐹𝑉𝑒 208 (50.72%) 179 (29.71%) 170 (23.19%) 168 (21.74%) 169 (22.46%) 155 (12.32%) 157 (13.77%) 158 (14.49%) 151 (9.42%) 139 (0.72%)
𝑆𝑢𝑚𝐹𝑆 548.72 (47.41%) 483.86 (29.99%) 468.99 (25.99%) 448.58 (20.51%) 439.21 (17.99%) 420.25 (12.90%) 410.12 (10.18%) 409.41 (9.99%) 409.18 (9.93%) 405.02 (8.81%)

Table 7: 10 evolved fingerprinting functions
Name Formula expression Name Formula expression
EFF10-83 𝑁

𝑁𝐶𝑆
𝑈𝐹

+𝑁𝐶𝐹 − 1 EFF7-34 2𝑁𝑈𝑆 +
(
𝑁𝑆 − 𝑁𝑈𝐹

)
× 𝑁𝐶𝑆

EFF11-82
��𝑁𝐶 − 1

�� EFF8-137 𝑁
𝑁𝑆 −𝑁𝑈𝐹 +𝑁𝐶𝐹 +1
𝑈𝑆

EFF8-16
����2𝑁𝐶𝑆 +𝑁𝑈𝑆 −

𝑁𝑈𝐹
𝑁𝐶𝑆

���� EFF11-42 𝑁
𝑁𝑆
𝐶𝑆

− 𝑁𝑈𝐹

EFF5-98 (
𝑁𝐶𝑆 − 𝑁𝑈𝐹

)
+𝑁𝑈𝑆 × 𝑁𝐶𝑆 EFF11-8 𝑁𝐶𝑆

(
𝑁𝑈𝐹 +𝑁𝐶𝑆 + 1

)
− 𝑁𝑈𝐹

EFF3-149
𝑁
𝑁𝑈𝐹
𝑈𝐹

𝑁𝑈𝐹 −𝑁𝐶𝐹 −𝑁𝑈𝑆 −1
EFF4-38 −𝑁𝐶𝑆 ×

(
𝑁 2
𝐶𝐹
+𝑁𝑈𝑆 × 𝑁𝐶𝑆

)

are presented in Table 7 and Table 6, respectively. The naming con-
vention of the evolved fingerprinting functions is formalized into
“EFF+𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛-𝑖𝑑”, for example, EFF𝑥-𝑦 denotes the 𝑦th individ-
ual of the 𝑥 th generation in the evolution process.

Particularly, EFF10-83 is found to be highly competitive across
the evolved fingerprinting functions. It precisely predicts the num-
ber of faults on 208 faulty versions and scores 548.72 points on
clustering effectiveness in the test.

5.3 Contrast Analysis
To reveal the competitiveness of EFFs generated by our evolution
framework, we compare them with the corresponding best groups
of REFs in both local and global environments, and accordingly
set varied shades of background colors for the cells in Table 6. For
example, as shown in Table 4, in the 2-bug scenario, the best of the
existing 12 groups of REFs for 𝐹𝑉𝑒 and 𝑆𝑢𝑚𝐹𝑆 is Group4, which
leads the fault isolation step to precisely predict the number of
faults on 49 faulty versions and obtain 150.16 points on clustering
effectiveness. Therefore, in Table 6, the opacity of the cells (“EFF10-
83”, “2-bug”-“𝐹𝑉𝑒”) and (“EFF10-83”, “2-bug”-“𝑆𝑢𝑚𝐹𝑆 ”) is set to
22.45% and 21.75%, respectively, since EFF10-83 enables the number
of faults to be precisely predicted on 60 faulty versions and to
get 182.82 points on clustering effectiveness in the 2-bug scenario,
22.45% and 21.75%12 higher than that of Group4, respectively.

As can be seen from Table 6, in each of seven local-environments,
at least three EFFs are better than the corresponding best group
of REFs regardless of 𝐹𝑉𝑒 or 𝑆𝑢𝑚𝐹𝑆 . For example, in the 2-bug
scenario, EFF10-83, EFF7-34, EFF11-82, EFF8-137, and EFF4-38 dom-
inate Group4. And in the TypeA scenario, EFF10-83, EFF7-34, EFF11-
82, EFF8-137, EFF8-16, EFF11-42, EFF5-98, EFF11-8, EFF3-149, and
EFF4-38 (only for 𝑆𝑢𝑚𝐹𝑆 ) dominate Group11, and so on.

12Such increases are given in brackets in Table 6.

Figure 3: The contrast between existing 12 groups of REFs
and 10 newborn EFFs on SIR

In a global perspective, all of the ten selected EFFs are better
than the optimal existing REFs, Group4, with increases ranging
from 0.72% to 50.72% for 𝐹𝑉𝑒 and 8.81% to 47.41% for 𝑆𝑢𝑚𝐹𝑆 , as
shown in Table 6 and Figure 3.

These results not only demonstrate the promise of the proposed
evolution framework, but also highlight a superior individual in the
evolution process. As a consequence of which, for the researchers
and developers who utilize SRR to represent failed test cases, we
recommend employing EFF10-83 as the fingerprinting function
since it 1) improves 𝐹𝑉𝑒 by 50.72% and 𝑆𝑢𝑚𝐹𝑆 by 47.41% compared
with Group4 on a global scale, and 2) outperforms all 12 groups of
REFs in each of local-environments.

5.4 Test in Real-world Scenarios
We also test these ten EFFs on additional 100 Java multi-fault ver-
sions. Their clustering effectiveness compared with that of 12 exist-
ing groups of REFs is given in Table 8. For real-world Java faults
that deviate from the training setup (simulated C faults), the EFFs
produced by our framework perform almost as well as the baselines
in terms of both metrics.
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Table 8: The clustering effectiveness of 12 existing groups of
REFs and 10 EFFs on Defects4J

REFs 𝑭𝑽𝒆 𝑺𝒖𝒎𝑭𝑺 EFFs 𝑭𝑽𝒆 𝑺𝒖𝒎𝑭𝑺

Group1 47 186.42 EFF10-83 61 241.77
Group2 59 234.01 EFF11-82 61 242.23
Group3 56 224.00 EFF8-16 58 230.85
Group4 56 220.29 EFF5-98 57 227.21
Group5 60 238.01 EFF3-149 57 224.57
Group6 42 166.42 EFF7-34 43 170.35
Group7 47 186.42 EFF8-137 40 158.42
Group8 53 209.49 EFF11-42 62 247.21
Group9 41 162.42 EFF11-8 60 239.21
Group10 65 257.81 EFF4-38 37 146.96
Group11 64 254.37 \ \ \
Group12 61 241.40 \ \ \

We would like to emphasize that an important contribution of
this paper is to provide a highly-configurable GP-based solution to
automatically evolving REFs for failure representation. The selected
10 formulas in Table 7 are evolved based on the hyperparameters in
Section 4.1. That is, given better hyperparameters and more rounds
of evolution, our framework is possible to deliver stronger formulas
than these 10.

More importantly, although the 10 evolved formulas in Table 7
do not outperform some of the baselines on real-world faults (with
a slight disadvantage, can be regarded as comparable), they are
highly competitive on simulated faults and are all developed by
GP in an automated way. We believe that such results indicate a
potential for artificial intelligence to surpass human intelligence.

6 DISCUSSION
A faulty version will be discarded if the estimated number of faults
𝑘 deviates from its real number of faults 𝑟 , since this work focuses
on the fault isolation phase. That’s to say, a series of analyses in
Section 5 have nothing to do with those “𝑘 ≠ 𝑟” faulty versions.
However, such misprediction situations might reflect different de-
viations from 𝑟 . For example, suppose that the numbers of faults
of three 4-bug faulty versions are being predicted based on the
ranking lists produced by two EFFs (or REFs), 𝑃1 and 𝑃2. We can
immediately get 𝑟𝑖 (𝑖 = 1, 2, 3) are all equal to 4. We denote 𝑘𝑃1

𝑖

and 𝑘
𝑃2
𝑖

(𝑖 = 1, 2, 3) as the predicted results generated by 𝑃1 and
𝑃2, respectively, which are 8, 4, 1, and 5, 4, 3, respectively. Though
they both make a misprediction on two faulty versions, it is visible
that 𝑃2 delivers a closer outcome, indicating that 𝑃2 has a stronger
capability in failure representation than 𝑃1 to some extent.

We reevaluate 12 groups of REFs and 10 selected EFFs from
this aspect in Figure 4, where the horizontal axis is REFs/EFFs,
and the vertical axis is the value of 𝑘13. Three findings can be
summarized from this figure: when the numbers of faults are over-
predicted, no matter in what scenario, 1) Group4 is the closest group
of REFs, 2) EFF10-83 is the closest EFF, and 3) EFF10-83 is closer than
Group4. These three points reinforce the conclusions of Section 5.1,
Section 5.2, and Section 5.3, respectively, further highlighting the
potential of the proposed framework and the promise of EFF10-83.

13We only present the values of𝑘 when they exceed 𝑟 in 2-bug, 3-bug, 4-bug, and 5-bug
scenarios, analyses for the “𝑘 < 𝑟 ” situation are not given due to the limited space
while are available in the public package. And also for the reason given in Section
4.2.2, this section only involves SIR programs.

Figure 4: The values of k when they exceed r

Moreover, we also observe that in “𝑘 > 𝑟” scenarios, the values
of 𝑘 are easier to significantly exceed 𝑟 when using the existing
12 groups of REFs, but only slightly exceed 𝑟 when using 10 EFFs.
This could be because existing REFs designed for single-fault lo-
calization are inherently unsuitable for failure representation, as
we conjectured in Section 1 and at the end of Section 2. On
the contrary, EFFs that are specifically developed for failure repre-
sentation will deliver a closer prediction, thus resulting in a more
cost-effective and efficient parallel debugging process.

7 THREATS TO VALIDITY
In the fitness function, we only evaluate the faulty versions that
satisfy the criterion of “𝑘 == 𝑟”, that is, if the number of faults of a
program is mispredicted, it will not be sent to the following step.
In parallel debugging, even if the number of faults is not precisely
estimated, the subsequent localization can still be carried out. This
is because if 𝑘 is less than 𝑟 , parallel localization can be performed
iteratively, and if 𝑘 exceeds 𝑟 , it can be stopped when all failed
test cases become successful. We do not take these two scenarios
into account since the proposed framework only focuses on fault
isolation, not the subsequent localization stage.

The clustering algorithm adopted in the experiments assigns one
sample to one cluster, which is based on the one-failure-to-single-
fault assumption. In practice, a failure might be triggered by multi-
ple faults jointly or independently, where “jointly” involves fault
interference [84], and “independently” indicates that distinct faults
cause the same failure coincidently. Tackling such a one-failure-to-
multiple-fault problem could be beneficial to fault isolation, even
though fault isolation is usually performed with heuristic strategies.

8 RELATEDWORK
The related work is organized twofold, namely, parallel debugging
and failure representation.

Parallel debugging has proven to be effective and is being used by
a growing community of researchers [20, 24, 28, 47, 68]. For exam-
ple, Podgurski et al. recommended that developers group together
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bug reports (another form of failures) with the same root cause
based on supervised and unsupervised pattern classification [47].
Jones et al. adopted agglomerative hierarchical clustering to divide
failed test cases, pointing out that parallel debugging can lower the
time cost significantly, even if one developer handles all derived
sub-tasks sequentially [28]. DiGiuseppe and Jones demonstrated
that fault isolation is necessary and beneficial, despite the additional
computational costs [12]. To relieve the threat posed by the men-
tioned one-failure-to-multiple-fault problem, Xia et al. leveraged ge-
netic algorithm to combine 12 multi-label learning techniques [69].
Feng et al. comprehensively investigated the multi-label problem
in failure clustering, which was shown to be non-trivial for the
effectiveness of parallel debugging [18].

Apart from the adopted statement ranking representation and
the mentioned coverage vector representation, there are also other
commonly used failure proximities [41]. For example, failure point-
based representation reflects the crashing venue for crashing fail-
ures, which is of great intuition but not suitable for non-crashing
cases [58]. Stack trace-based representation involves an ordered list
of function call sites, i.e., the place at which a function is called [10].
Predicate evaluation-based representation uniformly inserts several
predicates into programs, and collects the predicate evaluations
(i.e., true/false returned when a predicate is covered) during ex-
ecution [40]. Dynamic slicing-based representation gathers data
and control dependencies that existed among program statements,
and computes the slice based on the two types of information [41].
In addition, several failure representation strategies mine other
characteristics from a variety of sources. For example, focusing
on semantically rich execution information, DiGiuseppe and Jones
employed latent-semantic analyses to process the natural language
part of source code, such as variable identifiers and comments [13].
Yoon and Yoo further extended DiGiuseppe and Jones’ work. They
investigated extracting features from source code at what levels
could result in better clustering effectiveness [81]. Wang and Lo
compared keywords in newly received and fixed bug reports, to
identify whether they have the same root cause [60]. Golagha et al.
presented a failure clustering scheme without coverage by extract-
ing five predefined types of features [22]. Tian et al. introduced
product difference as an extra feature, to more effectively evaluate
the similarity between bug reports [55]. Fang et al. calculated the
dissimilarity between test cases by comparing the relative execution
frequencies of program entities [17]. To perform failure clustering
when oracles are inaccessible, Tu et al. represented failures by ex-
tracting features from metamorphic slices, and the outcomes are
shown to be comparable to traditional methods with oracles [57].

Delivering a risk evaluation formula exclusively for failure repre-
sentation inmulti-fault scenarios has not been discussed in previous
works. In this paper, we aim at evolving formulas for a better fail-
ure representation capability, providing a novel insight for further
improving the effectiveness of parallel debugging.

9 CONCLUSION
Focusing on how to more properly divide failures according to their
root cause, in this paper, we propose an evolution framework along
with a sophisticated fitness function, for automatically constructing
fingerprinting functions for failure representation in multi-fault

isolation. The inputs of the evolution framework involve six hy-
perparameters (the size of population, the maximum tree depth of
fingerprinting functions, the size of selected parents, the crossover
rate, copy rate, and mutation rate), one external method (fitness
function), and a stopping criterion. The inputs of the fitness function
involve the distance metric, the faults number estimation strategy,
the medoids initialization strategy, and the clustering algorithm.
The experiments on both simulated C faults and real-world Java
faults demonstrate the potential of the proposed framework, and
show the competitiveness of EFF10-83, the greatest fingerprinting
function evolved by the framework. Last but not least, our approach
is highly configurable because all of the input parameters can be
changed freely, we encourage future researchers to develop better
ranking-based failure proximities using our approach.

In the future, we plan to further explore the characteristic of
failed executions and propose a novel type of failure proximity. A
more extensive experiment with other languages and larger-scale
projects is also to be considered.
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