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Figure 1: Overview. (a): Multiobjective optimization (MOO) evolves increasing amounts of computational potential into granular
metamaterials. Each individual in the population is a granular metamaterial composed of two particle types. Different
configurations of particles confer different material behaviours. In the approach reported here, vibrations are supplied as input
and vibration (if any) is recorded as output. Materials have been found that act as an AND gate (b) or an XOR gate (c). We report
here how MOO can discover a single material (d) that, at one frequency acts as an AND gate, and at another frequency acts as
an XOR gate. Thus, the superposition of input waves supplied to the system will result in emergent behaviors other than what
the material was originally designed to perform. This suggest future materials amenable to reprogramming using increasingly
sophisticated programming languages expressed in the frequency domain.

ABSTRACT
Digital signal processors are widely used in today’s computers to
perform advanced computational tasks. But, the selection of digital
electronics as the physical substrate for computation a hundred
years ago was influenced more by technological limitations than
substrate appropriateness. In recent decades, advances in chemical,
physical and material sciences have provided new options. Granular
metamaterials are one such promising target for realizing mechan-
ical computing devices. However, their high-dimensional design
space and the unintuitive relationship between microstructure and
desired macroscale behavior makes the inverse design problem
formidable. In this paper, we use multiobjective evolutionary opti-
mization to solve this inverse problem: we demonstrate the design
of basic logic gates embedded in a granular metamaterial, and that
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the designed material can be “reprogrammed” via frequency mod-
ulation. As metamaterial design advances, more computationally
dense materials may be evolved, amenable to reprogramming by
increasingly sophisticated programming languages written in the
frequency domain.
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1 INTRODUCTION
Metamaterials are an emerging class of engineered composite ma-
terials that exhibit properties different from their constituent mate-
rials and behave in ways not observed in nature [12]. In the same
way that metamaterials exhibit non-intuitive and exotic material
properties, computational metamaterials have potential to perform
computation in useful ways as well [23, 28]. Here, we explore var-
ious ways to evolve a particular class of metamaterial—granular
metamaterials—to increase its computational capabilities. Granular
metamaterials are metamaterials consisting of discrete particles that
exhibit increased plasticity compared to continuous metamaterials
because they can be dynamically reconfigured: particle properties
can change in response to external stimuli [26]. In this paper, we
propose using granular metamaterials as a physical substrate to
perform mechanical computation.

Considering logic gates as the basic computational blocks upon
which more complex units can be built, we demonstrate here the
design of metamaterials that can act as basic acoustic logic gates:
low or high vibration frequencies or amplitudes can serve as zeros
or ones. There are several advantages of this type of computation
compared to digital computation where logic gates are built from
electrical transistors. First, by moving to a mechanical substrate
we can avoid analogue to digital conversion, sidestepping all of
the limitations of abstract representations and discretizations nec-
essary for a digital computing system [28]. Second, by supplying
vibrations composed of multiple frequencies, multiple computa-
tions may be performed simultaneously using the same patch of
material, suggesting increasingly computationally dense materials
may be evolved in future. Third, acoustically driven computational
metamaterials could serve as useful building blocks for more com-
plex machines such as robots: sensing, control and actuation could
all respond to and/or produce vibration, rendering these otherwise
separate robot components as just different regions within a single-
material robot. Finally, by exploiting the natural dynamics of the
metamaterial, energy efficient computation and higher robustness
and stability may be achieved. Moreover, because computational
components do not need to be physically separate modules (as we
show below), this raises the possibility of bottom-up design of com-
putational architecture where the exact form of computation is not
predetermined [17].

In recent years there has been some research on embedding me-
chanical computation into material. In [22], a universal logic gate is
implemented as a nonlinear mass-spring-damper model. In [20], a
soft bistable building block is designed and used in the implementa-
tion of soft mechanical diodes and logic gates. [14] and [3] present
examples of acoustic gate design in a 1D chain of elastic particles.
Computational metamaterials have been introduced to perform
specialized computing tasks such as integration, differentiation and
convolution [28]. Perhaps closest to our work is [26], in which the
authors show the potential of a hand-designed 2D granular system
to act as an acoustic switch modulated by the packing pressure to
switch between on and off states. Despite these recent advances, in
none of the aforementioned works is the computational unit auto-
matically optimized to perform computation, let alone how best to
densely pack computation in new ways into materials is explored.
Instead, computational building blocks are hand-designed based

on the intuitions of a human designer. In this paper, we propose
using evolutionary algorithms to automatically optimize the ma-
terial properties for dense computation. Moreover, the mentioned
works are mostly conducted using continuous rather than granular
metamaterials, or in one-dimensional particle chains, while our
work is performed with two-dimensional sheets of granular meta-
material. Due to advantages of this type of material for dynamic
programmability (as we will show), we envision a wider potential
in expanding our work to more complex computational elements,
as explained in our conclusions.

Granular metamaterials possess many parameters that affect
their behavioral response to stimuli. For example, the particle prop-
erties (size, shape, stiffness, mass, and so on) and their placements
can affect the eigenfrequencies of the system and consequently the
localized propagation or suppression of acoustic waves through
the material. With so many design parameters, deciding on the
optimal micro-structure to achieve a desired macro-behavior (i.e. a
logic gate) is a challenge. Evolutionary algorithms have long been
shown capable of automated optimization in such design spaces
[15], [18]. Given this, in previous work [19] we demonstrated that
we can evolve the configurations of granular metamaterials such
that they act as logic gate. Here, we show that a MOO can densely
pack multiple operations into the same piece of material: at one
frequency the material acts as an AND gate; at another frequency
it acts as an XOR gate. Finally, we show that combining two dif-
ferent input frequencies can enable the material to simultaneously
compute both logical functions. This suggest future materials may
be amenable to reprogramming using increasingly sophisticated
programming languages expressed in the frequency domain.

2 METHODS
In order to build a computing system, we need to choose a physical
substrate within which to embed the architecture of the compu-
tational model [27]. The conventional choice is digital electronic
devices. As discussed in the introduction, this choice was heavily in-
fluenced by the manufacturing technology of the time: the promise
of the semiconductor industry and Gordon Moore’s repeatedly val-
idated prediction about the doubling of transistors on integrated
circuits every two years [16]. This promise led to the abandonment
of the other computational substrates and huge investments in dig-
ital electronics. General purpose digital computers in effect won
the “Hardware Lottery” and enjoyed significant advances during
the last 50 years [10]. However, the physical constraints of minia-
turization are now causing Moore’s Law to slow significantly [24].
This has triggered a renewed interest in exploring other possible
physical substrates for computation. In addition to photonics [25],
DNA computing [1] and quantum computing [8], Metamaterials
are one such promising computational substrate.

In this paper, we explore the computational capabilities of gran-
ular metamaterials. Granular metamaterials have been studied to
a great extent in the material sciences literature [2, 11, 13]. They
are made from many individual grains with possibly different ma-
terial properties. They can exhibit complex interesting behaviors
but there are (simplified) computational models that can accurately
predict them [21]. The basic principle that we use in this work is
the ability of a granular assembly to have extinguishable responses
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Figure 2: The system setup. A logic gate with two inputs
(green and blue particles) and one output (red particle) em-
bedded in a 2D granular assembly with two types of particles
(indicated with different shades of grey). 𝐴1 and 𝐴2 are the
amplitudes of oscillations applied in 𝑥 direction to the input
ports. 𝜔 is the input frequency. The truth table is shown on
the right:𝐷 represents the diameter of particles.𝑂𝑖 𝑗 (𝑖, 𝑗 ∈ 0, 1)
is the magnitude of the vibrations in the output.

to mechanical vibrations with different frequencies. In the next
section, we expand this idea and formalize the problem setup.

2.1 Embedding Computation
In a typical electronic system, the inputs and outputs are electrical
signals. Here, we evolve an analogous mechanical system where
inputs and outputs are acoustic signals. Our system is a two di-
mensional assembly of two types of circular particles placed on a
hexagonal lattice. The setup is shown in Fig. 2. As we mentioned
before, such granular system can be widely tuned by changing the
particles’ properties to achieve different responses [11]. The re-
sponse is dependent on a large number of variables, such as particle
arrangements, mass, modulus, shape, interactions between parti-
cles, and boundary conditions of the system. These properties can
affect the frequency spectrum of the material, normal modes of the
system, and consequently position of the band gap: a contiguous
region of the input frequency spectrum muffled by the material.

Our goal is to regulate the intrinsic material properties to obtain a
metamaterial with a desired vibrational response. We are interested
in embedding computation in the granular metamaterial and the
first step towards this goal is to see if we can design the basic logic
gates. In this system, the inputs and outputs are acoustic waves. So
we choose two particles on one side of the material as the input
ports (the particles with green and blue markers in Fig. 2) and one
particle on the other side as the output port (the particle with the
red marker). The input signal is a sinusoidal wave with amplitude
𝐴𝑖 and frequency𝜔 in 𝑥 direction. This signal is applied to a particle,
causing it to move from its initial position (𝑥0

𝑖
). We can look at the

amplitude of the displacement signal in time (𝑥𝑖 (𝑡)) as the abstract
bit representation: small or no displacement means a ‘0‘ and high
magnitude of displacement means a ‘1‘. Going back to our analogy
for the input signal, applying a sinusoidal wave with amplitude zero
(𝐴𝑖 = 0) to an input port means a ‘0‘ bit at that port of the logic gate.
In our simulations, we fixed the non-zero amplitude to 1 × 10−2
(which is 10% of the diameter of a particle.). The frequency of the
applied signal (𝜔) is also a fix value, chosen based on the frequency
spectrum of a regular configuration which will be discussed in the

next section. The truth table in Fig. 1 shows our bit representation.
The output 𝑂𝑖 𝑗 (𝑖, 𝑗 ∈ 0, 1) is the amplitude of the displacement of
the particle at the output port.

In each of the four cases shown in the truth table in Fig. 1, the
gain of the system is defined as the amplitude of the fast Fourier
transform (𝑓 ) at the driving frequency (𝜔) in the output, divided
by the sum of the amplitudes of the fast Fourier transform at the
driving frequency (𝜔) in the inputs. In other words:

𝐺𝑖 𝑗 (𝜔) =
𝑓 (𝑂𝑖 𝑗 )

𝑓 (in𝑖 ) + 𝑓 (in𝑗 )
𝑖, 𝑗 ∈ 0, 1 (1)

In our experiments, we can measure the gain (𝐺𝑖 𝑗 ) for each of
the four input cases. Then, in order for the material to act as a
logic gate, the relative magnitude of the gain in each case must be
consistent with desired functionality of the gate. Note that because
it’s experimentally impractical to get an absolute zero or one, we
are looking at the relative magnitudes of the two cases. For example,
for an AND gate when both input ports are driven with a sinusoidal
wave (𝑖𝑛𝑝𝑢𝑡 = ‘11‘), we expect to see a high amplitude of oscillation
at the output (𝑜𝑢𝑡𝑝𝑢𝑡 = ‘1‘) and therefore we expect a high gain
(𝐺11). But in the other remaining three cases (𝑖𝑛𝑝𝑢𝑡 = ‘00‘, ‘01‘,
and ‘10‘) we expect a low amplitude of vibration (𝑜𝑢𝑡𝑝𝑢𝑡 = ‘0‘)
and thus a low gain (𝐺00,𝐺01 and 𝐺10). Based on this formulation,
we can devise a metric to measure the similarity of the material’s
functionality to a desired logic gate. We will show this metric in
the next section.

2.2 The Simulator
The simulator 1 is a simplified granular system based on the model
used in [26]. It’s a two dimensional system, made of frictionless
circular disks with a fixed diameter (𝐷). The particles can have
different material properties such as different masses or different
stiffnesses (this is shown as dark/light colors in the figures.). They
are placed on a 5 by 6 hexagonal lattice and so there is a total
number of 30 particles. The system is periodic in 𝑥 direction and
has a fixed boundary in 𝑦 direction. Gravity is ignored, so the only
forces acting on the particles are the result of a purely repulsive
linear spring potential between the disks which can be formalized
as a Lennard-Jones potential.

Our system is simulated using discrete element method (DEM).
Starting from the initial positions of the particles (placed on a
hexagonal lattice), the repulsive forces are calculated based on the
distance between the overlapping particles. Next, the accelerations,
velocities and positions are updated using the Verlet integration.
But there is a pre-processing step to make sure that the system is
at an equilibrium at 𝑡 = 0 (meaning that the sum of total forces
between particles is (near) zero) and thus the particle packing is
statistically stable. This is done by calculating the total force and
updating the initial positions of the particles using the steepest-
descent method. Here, we use Fast Inertial Relaxation Engine (FIRE)
to reduce the processing load.

Table 1 includes the main simulation parameters and their as-
signed values in our experiments. 𝑁𝑡 is total simulation time.

1https://github.com/AtoosaParsa/gecco-2022 contains the source code necessary
for reproducing our results.

https://github.com/AtoosaParsa/gecco-2022
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Table 1: Simulator Parameters

Parameter Value

Particle Diameter 0.1
Particle Mass 1
Stiffness Ratio 10

Packing Fraction 0.91
𝑁𝑡 1𝑒4

As was mentioned briefly before, one of the important properties
of a granular assembly is the existence of gaps in their vibrational
density of states [5]. To find the band gap (the biggest gap), the
mass-weighted dynamical matrix is calculated using the Hessian of
the total potential energy. The eigenvalues of this matrix are the
eigenfrequencies of the system. We can plot the eigenfrequency
spectrum by sorting the frequencies in an increasing order, then
we see the gaps in the spectrum, where We call the biggest gap
the band gap. When this granular system is excited at a specific
frequency, depending on where that frequency falls within the
spectrum, the acoustic signal will propagate or will be filtered. This
is the underlying process in the granular metamaterial that enables
it to act as a logic gate.

2.3 Performance Measures
The goal of the optimization is to find a configuration of particles
that will act as an AND gate at one frequency (𝜔1) and an XOR
at another frequency (𝜔2). Thus, we need to define metrics for
each of these two cases to measure the amount of “AND-ness”
and “XOR-ness” in a candidate solution. We use the same metrics
that we defined in our previous work [19]. As we discussed at
the start of this section, we can measure the gain of the system
(𝐺𝑖 𝑗 (𝜔) in equation 1) for each of the four possible input cases
(‘00‘, ‘01‘, ‘10‘, ‘11‘). 𝐺00 is trivial: if the input is ‘00‘, meaning that
no vibration is applied to either of the input particles, the output
will remain ‘0‘ as well. But for the remaining three cases, we have
specific expectations in a logic gate. In an AND gate, we only want
to have a significant gain when both of the inputs are activated
at 𝜔1 frequency (high 𝐺11 (𝜔1) is desired). In order to achieve this
goal, one option is to define a single fitness function as follows:

𝑓“AND-ness” =
𝐺11 (𝜔1)

(𝐺10 (𝜔1) +𝐺01 (𝜔1))/2
(2)

On the other hand, to have an XOR gate at frequency 𝜔2, we
expect to have a significant vibration at the output, if only one of
the input ports is being driven by a sinusoidal displacement (‘01‘
and ‘10‘ cases). So the fitness in this case can be defined as follows:

𝑓“XOR-ness” =
(𝐺10 (𝜔2) +𝐺01 (𝜔2))/2

𝐺11 (𝜔2)
(3)

Our goal is to find a configuration of particles that maximizes
both of these objectives, so we can formulate the problem as a
multiobjective optimization problem. We present the details of the
optimization in the next section.

2.4 Evolutionary Search
We employ a standard multiobjective optimization algorithm, Non-
dominated Sorting Genetic Algorithm II (NSGA-II) [4]. The hyper-
parameters used in the simulations are shown in Table 2 below:

Table 2: Optimization Parameters

Parameter Value

Population Size 50
Generations 250

Runs 5
Mutation Probability 0.8
Crossover Probability 0.2
Bit-flip Probability 0.05

The individuals are granular assemblies made of two types of
particles (soft and stiff particles). We use a direct encoding, so the
genome is a binary string of length 30 (the lattice is 5 × 6). In this
binary encoding, ‘1‘ means a stiff particle (dark grey particles in
the figures) and ‘0‘ means a soft particle (light grey particles in the
figures). In order to add variation to the population, both mutation
and crossover operators are implemented. The mutation operator
is a bit-flip operator with probability of 0.05. The crossover is a
single-point crossover operator. We implement a (𝜆 + 𝜇) evolution-
ary algorithm where both 𝜆 and 𝜇 are equal to the population size.
Selection of the Pareto nondominated front is based on the Gen-
eralized Reduced Run-Time Complexity Non-Dominated Sorting
algorithm presented in [7]. We perform 5 independent runs, each
with a different random initial population.

All of our code are written in Python. We use the DEAP library
[6] for the evolutionary optimization. SCOOP [9] is used to par-
allelize the code to speed up the population evaluation. All of the
experiments ran on our computing cluster.

3 RESULTS
In this section, we first present our experimental setup using the
methods and metrics developed in the previous section. Then, we
show the optimization results and take a closer look at the Pareto
optimal solutions by investigating their functionality as logic gates.

3.1 Experimental Setup
Our goal is to find a granular assembly made of two types of par-
ticles that can act as an AND gate at 𝜔1 = 7 and as an XOR gate
at 𝜔2 = 10. These frequencies have been chosen arbitrarily and
by looking at the frequency spectrum of random configurations.
We formalized the problem as an optimization problem with two
objectives (equations 2 and 3) and proposed to use the NSGA-II
algorithm to solve the problem. The simulator and optimization
parameters were also presented in the previous section.

3.2 Evolved Solutions
Fig. 4 shows the evolutionary progress. Panel (a) of this figure plots
the evolution of the first fitness (“AND-ness” (Eqn. 2)) on top and
the second fitness (“XOR-ness” (Eqn. 3)) on the bottom. Solid blue
line in these two plots shows the average fitness of the population,
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averaged over 5 independent evolutionary runs, along with its
standard deviation in light blue. We see that the average fitness
fluctuates during the evolution and even decreases at a few points.
Since the problem is a multiobjective optimization, sometimes new
individuals are added to the population that might have lower
values in one fitness but higher values in the other. This can cause
a decrease in the the average fitness of the whole population.

In order to show the effectiveness of the evolutionary search, we
also performed a random search for each of the two objectives: one
for the AND-ness metric and the other for the XOR-ness metric.
Since each one of the 30 particles can either be soft or stiff, there
are a total number of 230 = 1073741824 possible configurations.
In each experiment, we drew 5000 random configurations from a
uniform distribution and evaluated them based on the objective.
Fig. 4c shows the histograms of these two random distributions. For
comparison, we’ve also plotted the best andworst found solutions in
each figure. The histograms show how rugged the fitness landscape
is: for the AND-ness metric, the histogram spreads from 0.026
to 7.88 with a mean value around 0.760 and for the XOR-ness, it
spreads from 0.21 to 60.24 with a mean at 1.622.

Fig. 4b shows the Pareto front at three different stages during the
evolution for one of the 5 independent evolutionary runs. We can
see that at the start of the optimization (generation 0), individuals
in the population have objective values close to the mean value of
a randomly drawn solution. As evolution proceeds, the population
progresses towards higher fitness values and also spreads across the
axis to the extreme solutions where one objective function (AND-
ness/XOR-ness) dominates the other one (see red markers showing
the Pareto front at generation 250). The magenta square on this
plot shows one of the solutions in the middle of the Pareto front
which has moderately high fitness value in both objectives. the plot
on the bottom of this panel shows the chosen particle configuration
along with its fitness values.

All the solutions of the last generation of the evolutionary search
are Pareto-optimal. These solutions are shown in Fig. 3. It’s inter-
esting to investigate these configurations visually, to see if one can
find a regular pattern or a specific order in the particle placements
that correlates with high fitness values. We’ll talk about this in
more detail in the Discussion section. The magenta star in this
figure shows a candidate solution with moderately high fitness
values in both objectives. This is the configuration that we chose
to investigate further in Fig. 5.

In order to examine the performance of the evolved solution, we
tested the response of the configuration when different vibrations
are applied to the input ports. Fig. 5a shows the functionality of the
solution as an AND gate at 𝜔1 = 7. Fig. 5b shows its function as an
XOR gate at 𝜔1 = 10. For each gate, we supply the four different
input signals: ‘00‘, ‘01‘, ‘10‘ and ‘11‘. For the AND gate, we see
a high amplitude of oscillation when both of the input ports are
activated at 𝜔1 = 7 (see (𝑣) in panel (a)). The response is plotted
both in frequency and in time space. In the XOR case in panel (b),
only when one of the inputs is activated we see a high magnitude of
displacement at the output. The plots confirm themultifunctionality
of the designed granular assembly at different frequencies. In other
words, we can “program” the material by modulating the frequency
of the input signal. This means that without needing to reconfigure

Figure 3: Configurations in the non-dominated Pareto front
at the last generation of the evolutionary process. The ma-
genta star shows the chosen solution, the green and red stars
show the extreme solutions with highest AND-ness or high-
est XOR-ness. The numbers beside each configuration show
the fitness values as (AND-ness, XOR-ness). These are the can-
didate solution of our optimization problem: can you find
any specific patterns common in the particle placements
shown in this figure?

the particles or change any material properties, we can observe
different functionalities from the material.

4 DISCUSSION AND CONCLUSION
In our previous paper [19], we introduced the possibility of perform-
ing computation in a granular substrate. We showed that we can
design a granular assembly made of two types of particles which
can act as an AND gate or an XOR gate depending on the frequency
of the input vibrations. But one of the reasons that mechanical com-
puting devices were abandoned at the outset of the computer age
and overshadowed by their digital electronic counterparts was the
miniaturization capability of electronic transistors and the promise
of the compact computational power predicted by Moore’s Law.
To address this concern in the application of granular metamate-
rials as a new generation of computational devices, we decided to
investigate how much computational power can be packed into
one granular configuration. Because of the unique properties of
a granular metamaterial under vibrations with different frequen-
cies, we decided to work on modulating the input frequency as a
way to program the material to perform different computational
tasks. In the Results section, we demonstrated the success of our
approach in finding particle configurations that can exhibit two
different functionalities without any changes to the material after
fabrication.

The input frequency is the key to regulate the functionality of the
designed metamaterial and potentially increase its computational
density. To explore this potential, we investigated the incorporation
of a more complex computational block into metamaterials: a half
adder. The half adder is a logical computational block that adds
two input bits and generates a carry (C) and a sum (S) signal, with
the carry signal representing the overflow to the next digit. The
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Figure 4: Evolutionary progress. The progress of each of the objective functions during the evolution (averaged over 5 indepen-
dent runs) is plotted in (a) for AND-ness (top) and XOR-ness (bottom). (b) shows the Pareto front of one of the evolutionary
runs at three different stages during the optimization. The magenta square in this plot indicates the chosen solution from the
final population and its corresponding particle configuration. (c) shows histograms of randomly drawn configurations. They
demonstrate that a random configuration will on average have an AND-ness of 0.760 and XOR-ness of 1.622.

simplest half adder design is made of one AND gate and one XOR
gate and is shown in Fig. 6b. Since the half adder can be implemented
using just AND and XOR gates, it is an interesting test case for our
designedmetamaterial. As shown in Fig. 6a, we can change the input
vibration to the sum of two sinusoidal waves with two different
frequencies (𝜔1𝑎𝑛𝑑𝜔2). Since the output of the computational block
is defined as the magnitude of the oscillation at the excitation
frequency (refer to the Methods section) in this system, we will
have two (temporal) outputs: one at 𝜔1 and the other at 𝜔2. The
frequency responses in Fig. 6d demonstrates this idea: there are
two spikes in each plot, corresponding to the system response at
two different frequencies: one at 𝜔1 = 7 which produces the carry
signal (C) and the other at 𝜔2 = 10 which produces the sum (S).

One of the important performance metrics in this system is the
variation between the magnitude of vibrations in ‘0‘ and ‘1‘ output
cases: the higher variation results in a more distinguishable on and
off states. We notice that in the third plot of Fig. 6d, when the input
is ‘10‘, the outputs are expected to be ‘0‘ at𝐶 and ‘1‘ at 𝑆 . But the two
spikes at 7 and 10 frequencies are almost of the same magnitude and
the difference is not significant. Oneway to fix this issue is to choose
different excitation frequencies, meaning that instead of choosing
𝜔1 = 7 and 𝜔1 = 10 we can have frequencies that are further away
from each other in the spectrum. This might reduce the possibility
that the two phases of the input signal interrupt each other and thus
result in a better multifunctional metamaterial. The other option is
to increase the resolution of the granular metamaterial. By adding
more particles in the system, the frequency spectrum of the material

will expand (because the number of degrees of freedom increases).
Therefore we will have more normal modes in the system and have
more freedom in designing the material.

This paper is meant to confirm the computational power of a
granular metamaterial and demonstrate one possible method to
program such systems. We are not trying to imply that they have
higher performancewith regards to traditional digital devices.Much
work remains before a fair comparison of the computational power
of such a systemwith today’s general purpose digital computers can
be performed as the digital electronics and semiconductor industry
have benefited from billion dollar investments and huge research
efforts. However, it is our hope that this work might help revive
the idea of analogue mechanical computing by highlighting their
computational potential.

In the end, we would also like to point out the potential of granu-
lar metamaterials. In this work, we showcased an overly simplified
model made of frictionless circular particles with just one different
material property (stiffness). There are other parameters such as
particle shapes, masses, modulus, friction and other inter-particle
interactions that can be incorporated in building a more sophisti-
cated model. There is also the possibility of utilizing particles that
can change their physical properties dynamically in response to
some stimuli such as temperature. Such particles can be used to
make a “reconfigurable” granular assembly with the ability to shift
from one configuration to another without the need to reassemble
the whole material. There are many possible ways to reconfigure
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Figure 5: Evaluating the functionality of the candidate solution. (a) examines its performance as an AND gate at 𝜔 = 7. Panel (𝑖)
shows the particle configuration on the left and the frequency spectrum on the right. The horizontal lines mark the excitation
frequencies at 𝜔1 and 𝜔2. Panels (𝑖𝑖) through (𝑣) show the response of the system in frequency and time space for the four
input cases. (b) examines the performance of the candidate configuration as an XOR gate at 𝜔 = 10.

metamaterials to exhibit more complex behaviour yet to be ex-
plored, some of which may allow these materials to assume much
computational power.
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