
GP-EndChess: Using Genetic Programming to
Evolve Chess Endgame Players

Ami Hauptman and Moshe Sipper

Department of Computer Science, Ben-Gurion University, Israel
{amiha,sipper}@cs.bgu.ac.il, www.moshesipper.com

Abstract. We apply genetic programming to the evolution of strategies
for playing chess endgames. Our evolved programs are able to draw or win
against an expert human-based strategy, and draw against CRAFTY—a
world-class chess program, which finished second in the 2004 Computer
Chess Championship.

1 Introduction

Developing intelligent (or at least pseudo-intelligent) computer players of strat-
egy games is a problem which AI research have been addressing since the field’s
onset. Because excelling at strategy games has often been considered to be a
sign of intellectual excellence, many have felt that developing an intelligent game
player would represent a big step towards developing a more generally intelligent
machine [1].

The game of chess has always been viewed as an intellectual game par ex-
cellence, “a touchstone of the intellect,” according to Goethe.1 The game’s com-
plexity stems from two main sources. First, the size of the search space: after the
opening phase, each player has to select the next move from approximately 50
possible moves on average. Since a single game typically consists of a few dozen
moves, the search space is enormous. A second source of complexity stems from
the amount of information contained in a single board. Since each player starts
with 16 pieces of 6 different types, and as the board comprises 64 squares, evalu-
ating a single board (a “position”) entails elaborate computation, even without
looking ahead.

Computer programs capable of playing the game of chess have been designed
for more than 40 years, starting with the first working program that was reported
in 1958 [2]. According to Russell and Norvig [3], from 1965 to 1994 there was an
almost linear increase in the strength of computer chess programs—as measured
in their performance in human-rated tournaments. This increase culminated in
the defeat in 1997 of Gary Kasparov—the former World Chess Champion—by
IBM’s special-purpose chess engine, Deep Blue (see [4])

Deep Blue, and its offspring Deeper Blue, rely mainly on brute-force methods
to gain an advantage over the opponent, by traversing as deeply as possible the

1 Some basic chess terms are explained in the appendix.



2

game tree [5]. Although these programs have achieved amazing performance
levels, Noam Chomsky [6] has criticized this aspect of game-playing research as
being “about as interesting as the fact that a bulldozer can lift more than some
weight lifter.”

The number of feasible games possible (i.e., the size of the game tree), given
a board configuration, is astronomical, even if one limits oneself to endgames.
While endgames typically contain but a few pieces, the problem of evaluation
is still hard, as the pieces are usually free to move all over the board, resulting
in complex game trees—both deep and with high branching factors. Thus, we
cannot rely on brute-force methods alone. We need to develop better ways to
approximate the outcome of games with “smart” evaluation functions. The au-
tomated learning of evaluation functions is a promising research area if we are
to produce stronger artificial players [5].

We will use the Genetic Programming (GP) paradigm to evolve board-
evaluation functions, the basic idea of GP being to breed computer programs
to solve a particular problem [7]: Start with a population of random, (usually)
low-fitness individuals. Every individual plays a few games with its peers, and
is assigned a score according to its level of success (or failure), i.e., its fitness.
The next generation is stochastically constructed, based on individuals’ fitness
values. This process repeats itself until the single best individual is returned as
the solution, at the time of the evolutionary program’s termination.

This paper is organized as follows: In the next section we describe previ-
ous work on on automated methods for developing chess endgame strategies.
Section 3 describes our GP setup for the evolution of chess endgame players,
followed by results in Section 4. Finally, we end with concluding remarks and
future work in Section 5.

2 Previous Work

GP has recently been argued to deliver ”high-return, human-competitive ma-
chine intelligence” [8]. Indeed, over the years, several strategies or agents that
play games have been evolved using GP (or some other form of evolutionary
algorithm).

Ferret and Martin [1] had a computer play the ancient Egyptian board game
of Senet, by evolving board-evaluation functions using tournament-style fitness
evaluation. Gross et al. [9] introduced a system that integrates GP and Evolu-
tionary Strategies to learn to play chess. This system did not learn from scratch,
but instead a “scaffolding” algorithm that could perform the task already was
improved by means of evolutionary techniques.

Kendall and Whitwell [5] used evolutionary algorithms to tune evaluation-
function parameters. The resulting individuals were successfully matched against
commercial chess programs, but only when the lookahead for the commercial
program was strictly limited.

Previous works only used simple board-evaluation functions as the building
blocks for the evolutionary algorithm. For example, some typical functions used



3

by Gross et al. [9] are: material values for the different pieces, penalty for bishops
in initial positions, bonus for pawns in center of chessboard, penalty for doubled
pawns and for backward pawns, castling bonus if this move was taken and penalty
if it was not, and rook bonus for an open line or on the same line of a passed pawn.
Kendall and Whitwell [5] used fewer board-evaluation functions, and focused on
the weights of the remaining pieces.

3 Evolving Chess Endgame Strategies using Genetic
Programming

We evolve chess endgame strategies using Koza-style GP [7]. Each individual—
a LISP-like tree expression—represents a strategy, the purpose of which is to
evaluate a given board configuration and generate a real-valued score. The tree’s
internal nodes are called functions, and the leaves—terminals. We used simple
Boolean functions (AND, OR, NOT), and IF functions; terminals were used
to analyze certain features of the game position. We included a large number of
terminals, varying from simple ones (such as the number of moves for the player’s
king), to more complex features (for example, the number of pieces attacking
a given piece). A full description of functions and terminals used is given in
Section 3.3.

In order to better control the structure of our programs we used Strongly
Typed Genetic Programming (STGP) [10]. This method allows the user to assign
a type to a tree edge. Each function is assigned both a return type and a type for
each of its arguments; each terminal is assigned a return type. Assigning more
than one type per edge is also possible. All trees must be constructed according
to these conventions, and only compatible types are allowed to interact. Thus, a
user-defined typing scheme is imposed, although in fact all data passed within
the tree consists of real numbers. We used the ECJ GP System of Luke [11].

3.1 Board evaluation

We wish to develop evaluation strategies that bear similarity to human board
analysis. Thus, instead of looking deep into the game tree, we traverse less nodes,
but consider each node more thoroughly. As such, our strategies use only limited
lookahead.

The current player receives as input all possible board configurations reach-
able from the current position by making one legal move (this is quite easy to
compute). After these boards are evaluated, the one that received the highest
score is selected, and that move is made. Thus, an artificial player is had by com-
bining an (evolved) board evaluator with a program that generates all possible
next moves.

Although this approach has been successfully used in several game-strategy
evolution scenarios (see [1]), it has not yet been applied to chess endgames.



4

3.2 Tree topology

Our programs play chess endgames consisting of kings, queens, and rooks (in
the future we shall also consider bishops and knights). Each game starts from a
different (random) legal position, in which no piece is attacked, e.g., two kings,
two rooks, and two queens in a KQRKQR endgame. Although at first each
program was evolved to play a different type of endgame (KRKR, KRRKRR,
KQKQ, KQRKQR, etc.), which implies using different game strategies, the same
set of terminals and functions was used for all types. Moreover, this set was also
used for our more complex runs, in which GP chess players were evolved to play
several types of endgames. Our ultimate aim is the evolution of general-purpose
strategies.

Still, as most chess players would agree, playing a winning position (e.g.,
with material advantage) is very different than playing a losing position, or an
even one (see Appendix). For this reason, each individual contains three trees:
an advantage tree, an even tree, and a disadvantage tree. These trees are used
according to the current status of the board. The disadvantage tree is smaller,
since achieving a stalemate and avoiding exchanges requires less complicated
reasoning.

3.3 Tree nodes

While evaluating a position, an expert chess player considers various aspects of
the board. Some are simple, while others require a deep understanding of the
game. Chase and Simon found that experts recalled meaningful chess formations
better than novices [12]. This lead them to hypothesize that chess skill depends
on a large knowledge base, indexed through thousands of familiar chess patterns.

We assumed that complex aspects of the game board are comprised of simpler
units, which require less game knowledge, and are to be combined in some way.
Our chess programs use terminals, which represent those relatively simple as-
pects, and functions, which incorporate no game knowledge, but supply methods
of combining those aspects. As we used STGP, all functions and terminals were
assigned one or more of two data types: Float and Boolean. We also included a
third data type, named Query, which could be used as any of the former two.

The function set used included the If function, and simple Boolean functions.
Although our tree returns a real number, we omitted arithmetic functions, for
several reasons. First, a large part of contemporary research in the field of ma-
chine learning and game theory (in particular for perfect-information games)
revolves around inducing logical rules for learning games (for example, see [13],
[14] and [15]). Second, according to the players we consulted, while evaluating
positions involves considering various aspects of the board, some more important
than others, performing logical operations on these aspects seems natural, while
mathematical operations does not. Third, we observed that numeric functions
sometimes returned extremely large values, which interfered with subtle calcula-
tions. Therefore the scheme we used was a (carefully ordered) series of Boolean



5

Table 1. Function set of GP individual. B: Boolean, F: Float.

F=If3(B1, F1, F2) If B1 is non-zero, return F1, else return F2

B=Or2(B1, B2) Return 1 if at least one of B1, B2 is non-zero, 0 otherwise

B=Or3(B1, B2, B3) Return 1 if at least one of B1, B2, B3 is non-zero, 0 otherwise

B=And2(B1, B2) Return 1 only if B1 and B2 are non-zero, 0 otherwise

B=And3(B1, B2, B3) Return 1 only if B1, B2, and B3 are non-zero, 0 otherwise

B=Smaller(B1, B2) Return 1 if B1 is smaller than B2, 0 otherwise

B=Not(B1) Return 0 if B1 is non-zero, 1 otherwise

queries, each returning a fixed value (either an ERC or a numeric terminal, see
below). See Table 1 for the complete list of functions.

We developed most of our terminals by consulting several high-ranking chess
players 2. The terminal set examines various aspects of the chessboard, and may
be divided into 3 groups:

1. Float values, created using the ERC (Ephemeral Random Constants) mecha-
nism (see [7] for details). An ERC is chosen at random to be one of the following
six values ±1 · { 1

2 ,
1
3 ,

1
4} ·MAX (MAX was empirically set to 1000), and the

inverses of these numbers. This guarantees that when a value is returned after
some group of features has been identified, it will be distinct enough to engender
the outcome.

2. Simple terminals, which analyze relatively simple aspects of the board, such as
the number of possible moves for each king, and the number of attacked pieces
for each player. These terminals were derived by breaking relatively complex
aspects of the board into simpler notions. More complex terminals belong to
the next group (see below). For example, a player should capture his opponent’s
piece if it is not sufficiently protected, meaning that the number of attacking
pieces the player controls is greater than the number of pieces protecting the
opponent’s piece, and the material value of the defending pieces is equal to or
greater than the player’s. Adjudicating these considerations is not simple, and
therefore a terminal that performs this entire computational feat by itself belongs
to the next group of complex terminals.

The simple terminals comprising this second group are derived by refining
the logical resolution of the previous paragraphs’ reasoning: Is an opponent’s
piece attacked? How many of the player’s pieces are attacking that piece? How
many pieces are protecting a given opponent’s piece? What is the material value
of pieces attacking and defending a given opponent’s piece? All these questions
are embodied as terminals within the second group. The ability to easily embody
such reasoning within the GP setup, as functions and terminals, is a major asset
of GP.
2 The highest-ranking player we consulted was Boris Gutkin, ELO 2400, International

Master (see appendix), and fully qualified chess teacher.



6

Other terminals were also derived in a similar manner. See Table 2 for a com-
plete list of simple terminals. Note that some of the terminals are inverted—we
would like terminals to always return positive (or true) values, since these val-
ues represent a favorable position. This is why we used, for example, a terminal
evaluating the player’s king’s distance from the edges of the board (generally a
favorable feature for endgames), while using a terminal evaluating the proximity
of the opponent’s king to the edges (again, a positive feature).

Table 2. Simple terminals. Opp: opponent, My: player.

B=NotMyKingInCheck() Is the player’s king not being checked?

B=IsOppKingInCheck() Is the opponent’s king being checked?

F=MyKingDistEdges() The player’s king’s distance form the edges of the
board

F=OppKingProximityToEdges() The player’s king’s proximity to the edges of the
board

F=NumMyPiecesNotAttacked() The number of the player’s pieces that are not
attacked

F=NumOppPiecesAttacked() The number of the opponent’s attacked pieces

F=ValueMyPiecesAttacking() The material value of the player’s pieces which are
attacking

F=ValueOppPiecesAttacking() The material value of the opponent’s pieces which
are attacking

B=IsMyQueenNotAttacked() Is the player’s queen not attacked?

B=IsOppQueenAttacked() Is the opponent’s queen attacked?

B=IsMyFork() Is the player creating a fork?

B=IsOppNotFork() Is the opponent not creating a fork?

F=NumMovesMyKing() The number of legal moves for the player’s king

F=NumNotMovesOppKing() The number of illegal moves for the opponent’s
king

F=MyKingProxRook() Proximity of my king and rook(s)

F=OppKingDistRook() Distance between opponent’s king and rook(s)

B=MyPiecesSameLine() Are two or more of the player’s pieces protecting
each other?

B=OppPiecesNotSameLine() Are two or more of the opponent’s pieces protect-
ing each other?

B=IsOppKingProtectingPiece() Is the opponent’s king protecting one of his pieces?

B=IsMyKingProtectingPiece() Is the player’s king protecting one of his pieces?

3. Complex terminals. These are terminals that check the same aspects of the
board a human player would. Some prominent examples include: the terminal
OppPieceCanBeCaptured considering the capture of a piece; checking if the
current position is a draw, a mate, or a stalemate (especially important for non-
even boards); checking if there is a mate in one or two moves (this is the most



7

complex terminal); the material value of the position; comparing the material
value of the position to the original board—this is important since it is easier to
consider change than to evaluate the board in an absolute manner. See Table 3
for a full list of complex terminals.

Since some of these terminals are hard to compute, and most appear more
than once in the individual’s trees, we used a memoization scheme to save
time [16]: After the first calculation of each terminal, the result is stored, so
that further calls to the same terminal (on the same board) do not repeat the
calculation. Memoization greatly reduced the evolutionary run-time.

Table 3. Complex terminals. Opp: opponent, My: player. Some of these terminals
perform lookahead, while others compare with the original board.

F=EvaluateMaterial() The material value of the board

B=IsMaterialIncrease() Did the player capture a piece?

B=IsMate() Is this a mate position?

B=IsMateInOne() Can the opponent mate the player after this
move?

B=OppPieceCanBeCaptured() Is it possible to capture one of the opponent’s
pieces without retaliation?

B=MyPieceCannotBeCaptured() Is it not possible to capture one of the player’s
pieces without retaliation?

B=IsOppKingStuck() Do all legal moves for the opponent’s king advance
it closer to the edges?

B=IsMyKingNotStuck() Is there a legal move for the player’s king that
advances it away from the edges?

B=IsOppKingBehindPiece() Is the opponent’s king two or more squares behind
one of his pieces?

B=IsMyKingNotBehindPiece() Is the player’s king not two or more squares be-
hind one of my pieces?

B=IsOppPiecePinned() Is one or more of the opponent’s pieces pinned?

B=IsMyPieceNotPinned() Are all the player’s pieces not pinned?

3.4 Fitness evaluation

As we used a competitive evaluation scheme, the fitness of an individual was
determined by its success against its peers. We used the random-2-ways method
(see [17] for full details), in which each individual plays against a fixed num-
ber of randomly selected peers (typically 5). Each of these encounters entails a
fixed number of games, each starting from a randomly generated position. Since
random starting positions can sometimes be uneven (for example, allowing the
starting player to attain a capture position), every starting position was played
twice, each player playing both black and white. This way a better starting posi-
tion could benefit both players and the tournament was less biased. In addition,



8

in each encounter several games were played, to further reduce the element of
chance.

The score for each game is derived from the outcome of the game. Players
that manage to mate their opponents receive more points than those that achieve
only a material advantage. Draws are rewarded by a score of low value and losses
entail no points at all.

The final fitness for each player is the sum of all points earned in the entire
tournament for that generation. We used the standard reproduction, crossover,
and mutation operators, as in [7]. The major parameters were: population size
– 80, generation count – between 150 and 250, reproduction probability – 0.35,
crossover probability – 0.5, and mutation probability – 0.15 (including ERC).

4 Results

We conducted several experiments to test our evolving chess players. The scor-
ing method was based on the one used in chess tournaments: victory—1 point,
draw— 1

2 point, loss—0 points. In order to better differentiate our players, we
rewarded 3

4 points for a material advantage (without mating the opponent).
The final score is the sum of all scores a player has received, divided by the

number of games. This way, a player who always mates its opponent will receive
a perfect score of 1. The score for a player that played against an opponent of
comparable strength (where most games end in a draw), is 1/2 on average.

4.1 Experiment 1: Competing against a human-defined strategy

As noted above, we developed most of our terminals by consulting several high-
ranking chess players. In order to evaluate our system, we wished to test our
evolved strategies against some of these players. Because we needed to play
thousands of games in every run, these could not be conducted manually, but
instead we programmed an optimal strategy, based on the guidance from the
players we consulted. We wrote this evaluation program using the functions and
terminals of our GP system.

During evolution, our chess programs competed against each other. However,
every 10 generations the best individual was extracted and pitted in a 150-
game tournament against the human-defined strategy. The results are depicted
in Figure 1, showing runs for KRKR, KRRKRR and KQRKQR, respectively.

These figures clearly show that starting from a low level of performance, chess
players evolve to play as good as high-ranking humans for all groups of endgames,
in one case even going beyond a draw to win (KQRKQR endgame, where a high
score of 0.63 was attained). Improvement was rapid, typically requiring only a
few dozens of generations (about 15 hours on a standard workstation).

4.2 Experiment 2: Competing against a world-class chess engine

Having attained good results against a human-defined strategy based on expert
chess players, we went one step further and competed against a highly powerful



9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6 8 10 12 14 16 18 20

av
er

ag
e 

po
in

ts

10s of generations

KQRKQR
KRRKRR

KRKR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20

av
er

ag
e 

po
in

ts

10s of generations

KQRKQR
KQKQ
KRKR

Fig. 1. Left: Results against a strategy defined by a chess Master. The three graphs
show the average score over time of the best run of 50 runs carried out, for three types
of endgames: KRKR, KRRKRR, KRQKRQ. A point represents the score of the best
individual at that time, pitted in a 150-game tournament against the human-defined
strategy. Right: Results against CRAFTY. The three graphs show the average score
over time of the best run of 15 runs carried out, for three types of endgames: KRKR,
KQKQ, KQRKQR. A point represents the score of the best individual at that time,
pitted in a 50-game tournament against CRAFTY.

chess engine. For this task, we used the CRAFTY engine (version 19.01) by
Hyatt 3. CRAFTY is a state-of-the-art chess engine, using a typical brute-force
approach, with a fast evaluation function, NegaScout search, and all the standard
enhancements [18]. CRAFTY finished second at the 12th World Computer Speed
Chess Championship, held in Bar-Ilan University on July 2004. According to
www.chessbase.com, CRAFTY has a rating of 2614 points, which places it at the
human Grandmaster level. CRAFTY is thus, undoubtedly, a worthy opponent.

As expected, CRAFTY proved to be a formidable opponent, constantly mat-
ing the GP opponent at early generations. However, during the process of evolu-
tion, substantial improvement was observed to occur. As shown in Figure 1, our
program managed to achieve near-draw scores, even for the complex KQRKQR
endgame. Considering our evolved 2-lookahead programs’ competing against a
world-class chess player, our method seems quite viable and promising.

4.3 Experiment 3: Multiple-endgame runs

Aiming for general-purpose strategies, this third experiment involved the playing
of one game of each type (rather than a single type)—both during evolution
and in the test tournaments. Evolved players were pitted against the Master-
defined strategy and CRAFTY. As can be seen in Figure 2, near-draw scores
were achieved under these conditions as well. We observed that performance
kept improving and are confident that it would continue doing so with added
computational resources.

3 CRAFTY’s source code is available at ftp://ftp.cis.uab.edu/pub/hyatt.



10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6 8 10 12 14 16 18 20

av
er

ag
e 

po
in

ts

10s of generations

CRAFTY
Master

%Wins %Advs %Draws

Master 6.00 2.00 68.00
CRAFTY 2.00 4.00 72.00

Fig. 2. Left: Results for multiple-endgame runs—wherein all endgames were used dur-
ing evolution—against both CRAFTY and the Master-defined strategy. Each graph
shows the average score over time of the best run of 20 runs carried out. A point
represents the score of the best individual at that time, pitted in a 50-game tourna-
ment against CRAFTY, or a 150-game against the Master. Right: Percent of wins,
advantages, and draws for best tournament of run (i.e., fitness peak of graph).

5 Concluding Remarks and Future Work

We presented a method by which chess endgame players may be evolved to
successfully hold their own against excellent opponents. One of the major prima
facie problems with our scheme is its complexity, as evidenced by Tables 1, 2,
and 3. In the time-honored tradition of computer science, we argue that this
is not a bug but rather a feature—to be more precise, a somewhat overlooked
feature of genetic programming.

We believe that GP represents a viable means to automatic programming,
and perhaps more generally to machine intelligence, in no small part due to
its being cooperative with humans. More than many other adaptive search tech-
niques (e.g., genetic algorithms, artificial neural networks, ant algorithms), the
GPer, owing to GP’s representational affluence and openness, is better posi-
tioned to imbue the genomic language with his or her own intelligence. While
artificial-intelligence (AI) purists may wrinkle their noses at this, taking the
AI-should-emerge-from-scratch stance, we argue that a more practical path to
AI involves man-machine cooperation. GP is a forerunning candidate for the
‘machine’ part.

We did not design our genome (Tables 1, 2, 3) in one fell swoop, but rather
through an incremental, interactive process, whereby man (represented by the
humble authors of this paper) and machine (represented by man’s university’s
computers) worked hand-in-keyboard. To wit, we began our experimentation
with small sets of functions and terminals, which were revised and added upon
through our examination of evolved players and their performance and through
consultation with high-ranking chess players. GP’s design cooperativeness, often
overlooked, is thus perhaps one of its major boons.



11

In addition, the number of terminals we used is small, compared to the num-
ber of patterns used by chess experts when evaluating a position: According to
Simone and Gilmartin [19] this number is close to 100,000. Since most pattern-
based programs nowadays are considered to be far from competitive (see [13]),
the results we obtained may imply that we have made a step towards developing
a program that has more in common with the way humans play chess.

In the future we aim to follow a number of paths: 1) improve the evolved
programs’ performance against the above and other endgames, 2) branch out
beyond endgames, and 3) analyze the evolved cognition as to its resemblance
and difference from human cognition.

Appendix: Brief Glossary of Basic Chess Terms

(More at www.arkangles.com)
Material value. Sum of all numerical values (see Point Count) for player’s

pieces (which are given positive values), and the opponent’s (negative values).
Point count. Queen is worth 9 points, rooks – 5 points, bishops – 3 or 3.25

points, knights – 3 points, and pawns – 1 point. King is typically assigned an
infinite value.

Advantage. When the current configuration of the game favors one side
over another; includes: material advantage, permanent advantage, positional ad-
vantage, and temporary advantage.

Capture. Moving a piece to a square occupied by an enemy piece, thereby
removing the enemy piece from the board.

Fork. A form of double attack where one piece threatens two enemy pieces
at the same time. In a triple fork, three enemy pieces are threatened.

Endgame. The final phase of the game when there are few pieces left on the
board. Endgame abbreviations are used to represent the remaining pieces (e.g.,
KRKR).

Ranking chess players. Both professional and amateur chess players may
obtain a nationally (or internationally) recognized numerical rating (sometimes
referred to as ELO). Independently, professional players may earn titles, gained
in special official tournaments, in which title-holders must participate. A title,
once earned, is the player’s for life, while the point rating can oscillate. The
lowest international title is Master (usually not gained before the player reaches
ELO 2200). The highest titles are International Master (IM) and Grandmaster
(GM). In 2003 there were only about 3000 IMs and GMs worldwide.

The research was partially supported by the Lynn and William Frankel Fund
for Computer Science.

References

1. Ferrer, G.J., Martin, W.N.: Using genetic programming to evolve board evaluation
functions for a board game. In: 1995 IEEE Conference on Evolutionary Computa-
tion. Volume 2., Perth, Australia, IEEE Press (1995) 747–752



12

2. Bernstein, A., de V. Roberts, M.: Computer versus Chess-Player. Scientific Amer-
ican 198 (1958) 96–105

3. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall,
Englewood Cliffs , NJ (1995)

4. DeCoste, D.: The Significance of Kasparov vs Deep Blue and the Future of Com-
puter Chess. ICCA Journal 21 (1998) 33–43

5. Kendall, G., Whitwell, G.: An evolutionary approach for the tuning of a chess evalu-
ation function using population dynamics. In: Proceedings of the 2001 Congress on
Evolutionary Computation CEC2001, COEX, World Trade Center, 159 Samseong-
dong, Gangnam-gu, Seoul, Korea, IEEE Press (2001) 995–1002

6. Chomsky, N.: Language and Thought. Moyer Bell, Wakefield, RI (1993)
7. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means

of Natural Selection. MIT Press, Cambridge, MA, USA (1992)
8. Koza, J.R., Keane, M.A., Streeter, M.J., Mydlowec, W., Yu, J., Lanza, G.: Ge-

netic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer
Academic Publishers, Norwell, MA (2003)

9. Gross, R., Albrecht, K., Kantschik, W., Banzhaf, W.: Evolving chess playing pro-
grams. In Langdon, W.B., Cantú-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R.,
Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M.A.,
Schultz, A.C., Miller, J.F., Burke, E., Jonoska, N., eds.: GECCO 2002: Proceed-
ings of the Genetic and Evolutionary Computation Conference, New York, Morgan
Kaufmann Publishers (2002) 740–747

10. Montana, D.J.: Strongly typed genetic programming. Evolutionary Computation
3 (1995) 199–230

11. Luke, S.: ECJ: A Java-based Evolutionary Computation and Genetic Programming
Research System. (2000)
http://www.cs.umd.edu/projects/plus/ec/ecj/.

12. Charness, N.: Expertise in chess: The balance between knowledge and search. In
Ericsson, K.A., Smith, J., eds.: Toward a general theory of Expertise: Prospects
and limits. Cambridge University Press, Cambridge (1991)

13. Fürnkranz, J.: Machine learning in computer chess: The next generation. Interna-
tional Computer Chess Association Journal 19 (1996) 147–161

14. Bonanno, G.: The logic of rational play in games of perfect information. Pa-
pers 347, California Davis - Institute of Governmental Affairs (1989) available at
http://ideas.repec.org/p/fth/caldav/347.html.

15. Bain, M.: Learning Logical Exceptions in Chess. PhD thesis, University of Strath-
clyde, Glasgow, Scotland (1994)

16. Abelson, H., Sussman, G.J., with J. Sussman: Structure and Interpretation of
Computer Programs. Second edn. The MIT-Press (1996)

17. Panait, L.A., Luke, S.: A comparison of two competitive fitness functions. In Lang-
don, W.B., Cantú-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan,
K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M.A., Schultz, A.C.,
Miller, J.F., Burke, E., Jonoska, N., eds.: GECCO 2002: Proceedings of the Ge-
netic and Evolutionary Computation Conference, New York, Morgan Kaufmann
Publishers (2002) 503–511

18. Jiang, A.X., Buro, M.: First experimental results of ProbCut applied to chess. In:
Proceedings of 10th Advances in Computer Games Conference, Kluwer Academic
Publishers, Norwell, MA (2003) 19–32

19. Simon, H., Gilmartin, K.: A simulation of memory for chess positions. Cognitive
Psychology 5 (1973) 29–46


