
Evolving Monotone Conjunctions in Regimes
Beyond Proved Convergence

Pantia-Marina Alchirch1()[0000−0002−9596−7884], Dimitrios
I. Diochnos2[0000−0002−2934−606X], and Katia

Papakonstantinopoulou1,2[0000−0002−4674−9303]

1 Athens University of Economics and Business (TESLAB), Hellas
{marina.alchirch,katia}@aueb.gr

2 University of Oklahoma, USA
{diochnos,katia}@ou.edu

Abstract. Recently it was shown, using the typical mutation mecha-
nism that is used in evolutionary algorithms, that monotone conjunctions
are provably evolvable under a specific set of Bernoulli(p)n distributions.
A natural question is whether this mutation mechanism allows conver-
gence under other distributions as well. Our experiments indicate that
the answer to this question is affirmative and, at the very least, this
mechanism converges under Bernoulli(p)n distributions outside of the
known proved regime.

Keywords: Evolvability · Genetic programming · Monotone conjunc-
tions · Distribution-specific learning · Bernoulli(p)n distributions

1 Introduction

Automating the creation of computer programs that perform intelligent opera-
tions has been driving the research in evolutionary programming and in machine
learning – though the approaches used are oftentimes different. Slightly more
than a decade ago, these two fields came closer with the introduction of the
framework of evolvability by Leslie Valiant [16].

Evolvability formulates evolution as a learning process and is a framework
for a special type of local search method that ultimately develops individuals
(that is, computer programs) that have high fitness within their environment. In
other words, the goal is to develop a function that has high predictive accuracy
on an unknown function c that we want to learn from training examples.

We continue the study of a simple and intuitive class of Boolean functions,
that of monotone conjunctions, within the framework of evolvability.

1.1 Monotone Conjunctions and Representation

A monotone conjunction is a function that combines a set of variables with a
Boolean AND. For example, the function f = x1 ∧ x2 ∧ x5 returns true if the
first, second and fifth variable are satisfied simultaneously on a truth assignment

2 P.-M. Alchirch et al.

a = (a1, . . . , an) ∈ {0, 1}n, otherwise it returns false. When we are working
in a space with n Boolean variables, an intuitive representation for monotone
conjunctions is that of a bitstring of length n, where a 1 (resp. 0) in a particular
bit indicates the presence (resp. absence) of the specific variable in the function.
For example, when n = 8, we can represent the function f = x1 ∧ x2 ∧ x5 as:
1 1 0 0 1 0 0 0 . With |h| we denote the size of a monotone conjunction h;

the number of variables that are contained in h. Hence, in our example, |f | = 3.

On the Importance of Conjunctions within Machine Learning Con-
junctions, as well as disjunctions, are perhaps the most basic classes of Boolean
functions that act as building blocks for more complex functions. Even though
these classes of functions are simple, nevertheless they have exponentially many
functions on n Boolean variables and therefore provide a basic testbed for various
ideas, as well as for understanding general bounds that are proved in the context
of machine learning. Furthermore, learning algorithms for such basic classes of
functions may provide insights for more sophisticated algorithms or even extend
naturally to algorithms for richer classes of functions in certain contexts.

As an example, within the Probably Approximately Correct (PAC) model of
learning [15], learning functions that are disjunctions of a constant number k
of conjunctions can be achieved with a learning algorithm that is merely used
for learning conjunctions [11]. The idea is that a disjunction of k conjunctions
f1 ∨ f2 ∨ · · · ∨ fk can be converted to a conjunctive formula, where each clause
has at most k literals3 via the distributive law as shown below:

f1 ∨ f2 ∨ · · · ∨ fk =
∧

u1∈f1,u2∈f2,...,uk∈fk

(u1 ∨ u2 ∨ · · · ∨ uk) .

Therefore, for every selection (allowing repetitions) of k literals (u1, u2, . . . , uk)
over the original set of n Boolean variables {x1, . . . , xn}, one can create a new
variable yu1,u2,...,uk

whose value is defined by yu1,u2,...,uk
= u1 ∨ u2 ∨ · · · ∨ uk.

Hence, an efficient distribution-independent algorithm for learning conjunctions
from the set {x1, . . . , xn}, may also learn such richer functions efficiently, but
this time over the broader set of the y variables, which are (2n)k in total.

1.2 Related Work and Motivation

Using a simulation argument, a hallmark result in evolvability is one by Vitaly
Feldman where it has been shown that evolvability is equivalent to learning
using correlational statistical queries under a fixed distribution [5]. However, this
simulation result, as has also been pointed out by Feldman, is not necessarily the
most intuitive or efficient approach for designing evolutionary algorithms. At the
same time intuitive evolutionary mechanisms are desirable and sought for; see,
e.g., [9, 12]. In this context, it is perhaps not surprising that one of the simplest,
non-trivial, classes of Boolean functions, that of monotone conjunctions, has
received a lot of attention and their evolvability has been studied.

3 A literal is a Boolean variable or its negation.

Evolving Monotone Conjunctions in Regimes Beyond Proved Convergence 3

In particular, Leslie Valiant gave a swapping-type algorithm for learning
monotone conjunctions when the distribution was uniform over {0, 1}n, when he
introduced evolvability [16]. We outline this swapping algorithm in Section 3.1.
The analysis of this algorithm was simplified in [3]. Eventually it was shown that
this algorithm converges for Bernoulli(p)n distributions (defined in Section 3),
characterized by any p ∈ (0, 1), where the uniform distribution is a special case
obtained for p = 1/2. Meanwhile, another direction of research towards the learn-
ability of monotone conjunctions has explored the power of parallel statistical
queries by means of recombination [7], and of horizontal gene transfer [14].

On the other hand, the problem of learning monotone, or not, conjunctions
has been studied within genetic programming (GP) as well. In this direction
[10, 9] have explored tree-like representations for learning monotone conjunc-
tions under the uniform distribution in the realistic (for machine learning and
evolvability) case, where the number of training examples are upper bounded by
some polynomial of the input parameters. There has also been done additional
work on exploring the learnability of monotone conjunctions, but some of these
algorithms may have unrealistic assumptions for the framework of evolvability.
For example, the algorithm in [13] uses a genetic approach in which the updates
depend on the number of bits in which the candidate solution and the input
differ. As another example, in the case of [6] it is assumed that the learner has
knowledge of the exact fitness value of various hypotheses.

Along the lines of genetic programming, another mechanism that has been
studied is the one inspired by the standard mutation mechanism that is encoun-
tered in (1+1) evolutionary algorithms (EAs). This mechanism considers all the
bits in the bitstring representation of a monotone conjunction (recall the discus-
sion from Section 1.1) and tosses a coin that succeeds with probability 1/n in
each bit. Whenever the coin toss succeeds, the bit at the particular coordinate is
flipped. This algorithm has been shown to converge under product distributions
where each variable is satisfied with the same probability p (called Bernoulli(p)n

distributions; see Section 3), when p takes values in (0, 1/3]∪{1/2} [2]. A natural
question that we try to answer in this paper is the following one:

Does the mutation mechanism that is inspired by the (1+1) EA allow
the evolvability of monotone conjunctions under a broader set of distri-
butions, compared to what is currently provably known?

Our experimental findings indicate that the answer is affirmative.

Structure of the Paper Section 2 summarizes the computational models that
come together in our work. Section 3 provides details on the problem that we
study as well as a brief discussion on a related algorithm to our work, from
where we draw inspiration on providing specific values to certain parameters
that govern the evolutionary mechanism that we study. Section 4 provides details
on the implementation of our method and how we define successful executions.
Section 5 presents the values of certain parameters that we use in the experiments
as well as discusses the results of our experimental study. Section 6 concludes
our work with a summary and ideas for future work.

4 P.-M. Alchirch et al.

2 Computational Models Relevant to Our Work

We now describe briefly the computational models that are relevant to our work.
Before we do that, however, we make a remark on the terminology.

Remark 1 (Terminology). A candidate solution of an optimization problem, in
EAs/GP is typically called an individual. On the other hand, in machine learning,
a candidate solution to a learning problem, is typically called a hypothesis (or a
model). One may use these terms interchangeably and in particular in our case
these correspond to Boolean functions (or, if you prefer, to computer programs).

2.1 Evolutionary Algorithms and Evolving Programs

Evolutionary algorithms is a class of algorithms that develop solutions to opti-
mization problems of interest. The development of these solutions proceeds in an
iterative manner, such that candidate solution(s) from one iteration to the next
are typically obtained after applying modification operators on the representa-
tion of the candidate solution(s) of the previous iteration. The function that is
being optimized is called a fitness function. The idea is that the higher the fit-
ness value of a particular individual (solution) is, the better the individual is for
our purposes; i.e., as a solution to the optimization problem that we solve. The
simplest mechanism that creates such solutions is shown in Algorithm 1, where
we see that given an individual (candidate solution) x encoded as a bitstring of
length n, a mutated version x′ is obtained from x after tossing n times a coin that
succeeds with probability 1/n, and upon success of each coin toss, the respective
bit in the binary representation of x is flipped. This modification mechanism is

Algorithm 1: The (1+1) Evolutionary Algorithm

Input: A function f to be optimized over {0, 1}n.
Output: A solution x, candidate for optimizing f .

1 x← random string from {0, 1}n;
2 repeat
3 Compute x′ by flipping each bit of x independently with probability 1/n;
4 if f(x′) ≥ f(x) then x← x′;

5 until some termination condition is met;

called a mutation as it tries to mimic in an elegant and compact way the way
mutations occur in nature, and thus allows this algorithmic scheme to explore
the binary search space in a randomized way. If x′ is at least as fit as its parent
x, then x′ is selected to be the solution used for the next generation; otherwise,
x is selected for one more generation. This way, the different solutions that we
obtain across the different iterations (also known as generations) monotonically
increase the fitness values that correspond to them. The interested reader may
find additional discussion and several interesting results in [4].

Evolving Monotone Conjunctions in Regimes Beyond Proved Convergence 5

A closely related field to EAs is that of genetic programming (GP) [8]. Simi-
larly to EAs, the goal of GP is to develop a solution/individual that maximizes
a fitness function. However, in the case of GP, the individuals correspond to
different functions (computer programs), rather than to mere numerical points
or truth assignments, from the domain of the fitness function. The most usual
representation of these individuals is with the use of tree structures, as then on
one hand such a representation is convenient (in a manner similar to decision
trees) and on the other hand it is easy to define modification operators inspired
by nature, such as mutation and recombination, and give rise to new individuals
to be considered as candidate solutions that may survive in the next generation.

Our work in this paper falls under the broader umbrella of supervised machine
learning, where the goal of the learner is to develop a function that approximates
well some ground truth function. In other words, the goal of the learner is very
well aligned with the goal of GP. On the other hand, the functions that we
consider in our case have a very natural representation using bitstrings, as it
was discussed in Section 1.1, and thus we can ultimately use Algorithm 1.

2.2 Supervised Machine Learning and Evolvability

In supervised machine learning the learner is typically presented with a set
S = {(xi, c(xi))}mi=1 of training examples that exhibit the behavior of some
ground truth function c on certain instances of the domain X . Based on this
information, the learner forms a hypothesis (or a model) h that approximates
the ground truth c. For example, one typical approach for selecting a hypothesis
h from a set of possible hypotheses H, is that of empirical risk minimization,
where the h ∈ H that is selected is the function that has the best predictive
accuracy on the training examples S that were given to the learner.

Evolvability on the other hand is a special framework for supervised machine
learning. In particular, in evolvability, the learner only gets to know how well
their hypotheses approximate the ground truth function c, based on aggregate
information that is computed from training examples. This information is equiv-
alent to a noisy estimate of the risk (error rate) of the various hypotheses. The
idea is that evolvability casts the whole process of evolution as a learning prob-
lem and the modifications that occur on the individuals (hypotheses) during the
evolution should be favoring the fittest ones for survival to the next generation.
In that sense, the encoding of the individuals at the genotype level cannot depend
on individual experiences, but rather on some aggregate signal that is received
from the environment, which thus describes how fit the particular individual is
for this environment. Algorithms for evolvability are called ecorithms.

After this brief high-level discussion on supervised learning and evolvability,
we will now provide more details for the framework of evolvability. We are looking
at Boolean functions where the output values true and false are represented
by 1 and −1 respectively. Evolvability works in a local search fashion, where
at each step of the evolution a (parent) hypothesis h is considered together
with the hypotheses that are obtained after applying a mutation operator on

6 P.-M. Alchirch et al.

the particular (parent) hypothesis h, forming a neighborhood N(h). Eventually,
each hypothesis in the neighborhood N(h) is evaluated using a fitness function,
called performance, and ultimately this function is driving the search. For a
target function c that we are trying to learn4 and a distribution D over {0, 1}n,
the performance of a hypothesis h, also called the correlation of h and c, is

PerfD (h, c) = Ex∼D [h(x) · c(x)] . (1)

Note that from the above definition we also have that:

PerfD (h, c) =
∑

x∈{0,1}n
h(x)c(x)Prx∼D (x) = 1− 2 ·Prx∼D (h(x) 6= c(x)) .(2)

An approximate value P̂erf S (h, c) of PerfD (h, c) is obtained empirically for each
hypothesis using a sample S; we denote this value with νh for brevity. Then, for
a real constant t, called tolerance, we obtain the sets:Bene = {h′ ∈ N(h) | νh′ > νh + t}

Neut = {h′ ∈ N(h) | νh′ ≥ νh − t} \ Bene.
Del = {h′ ∈ N(h) | νh′ < νh − t}

(3)

Hence, for the next iteration, a hypothesis from the set Bene is selected, should
Bene 6= ∅. Otherwise, a hypothesis from Neut is selected; note that Neut 6= ∅
since Neut always contains the parent hypothesis h. Thus, while the set Del of
deleterious mutations is needed for partitioning the neighborhood N(h), it is of
little interest as no hypothesis will ever be selected from Del. The goal of the
evolution is to produce in poly(1/ε, 1/δ, n)-time a hypothesis h such that

Pr
(
PerfD (h, c) < PerfD (c, c)− ε

)
< δ . (4)

3 The Learning Problem that we Study

We are interested in learning monotone conjunctions in the framework of evolv-
ability. In particular, we focus on Bernoulli(p)n distributions Bn,p over {0, 1}n.
These distributions are specified by the probability p of setting each variable
xi equal to 1. Thus, a truth assignment (a1, . . . , an) ∈ {0, 1}n has probability∏n

i=1 p
ai(1− p)1−ai . Given a monotone conjunction c that we want to learn and

a hypothesis h, we can partition the variables that appear in either c or h as
shown below:

c =

m∧
i=1

xi ∧
u∧

k=1

yk and h =

m∧
i=1

xi ∧
r∧

`=1

w` . (5)

Therefore, the x’s are mutual variables, the y’s are called undiscovered (or miss-
ing) variables, and the w’s are the wrong (or redundant) variables. Variables

4 The function c is also called ideal function, as it represents the ideal behavior in a
certain environment.

Evolving Monotone Conjunctions in Regimes Beyond Proved Convergence 7

in the target c are called good, otherwise they are called bad. Given this de-
composition, we can calculate the quantity Prx∼Bn,p

(h(x) 6= c(x)) under a Bn,p
distribution, with the following two observations:

– h(x) = +1 and c(x) = −1: This happens on truth assignments where the
xi’s are satisfied, the w`’s are satisfied, and at least one of the yk’s is falsified.
Therefore, this will happen with probability pmpr(1− pu).

– h(x) = −1 and c(x) = +1: Similar analysis implies that this will happen
with probability pmpu(1− pr).

Adding the above two we get: Prx∼Bn,p (h(x) 6= c(x)) = pm+r+pm+u−2pm+r+u.
As a consequence, (2) reduces to,

Perf Bn,p (h, c) = 1− 2pm+r − 2pm+u + 4pm+r+u . (6)

Definition 1 (Short, Medium, Long). Given integers q and ϑ, a monotone
conjunction f is short when |f | ≤ q, medium when q < |f | ≤ q + ϑ, and long
otherwise.

Definition 1 partitions the class of functions that we want to learn in three groups
and will allow us to define a criterion (Criterion 1) that we will use in order to
determine if a particular experimental run is successful or not. We will also need
the following definition.

Definition 2 (Best q-Approximation). A hypothesis h is called a best q-
approximation of c if |h| ≤ q and ∀h′ 6= h, |h′| ≤ q : PerfD (h′, c) ≤ PerfD (h, c).

3.1 A Related Algorithm: The Swapping Algorithm

Before we discuss details of our implementation, we briefly describe a related
algorithm to our work, the swapping algorithm for monotone conjunctions, that
was introduced by Valiant in [16].

The swapping algorithm has been shown to converge [1] under Bernoulli(p)n

distributions that are characterized by any 0 < p < 1 using the general evo-
lutionary scheme that was described in Section 2.2, where at every step of the
evolution the neighborhood N(h) is partitioned into the sets Bene, Neut, and
Del, and selection first favors the set Bene, otherwise the set Neut. The algo-
rithm is important for our work because we intend to use some of its parameters
and ideas in the evolutionary mechanism that we want to study.

In the swapping algorithm, the neighborhood N(h) of a monotone conjunc-
tion h is the set of monotone conjunctions that arise by adding a variable (neigh-
borhood N+(h)), removing a variable (neighborhood N−(h)), or swapping a
variable with another one (neighborhood N±(h)), plus the conjunction itself.
Thus, N(h) = N−(h) ∪N+(h) ∪N±(h) ∪ {h}. As an example, let h = x1 ∧ x2,
and n = 4. Then, N−(h) = {x1, x2}, N+(h) = {x1 ∧ x2 ∧ x3, x1 ∧ x2 ∧ x4},
and N±(h) = {x3 ∧ x2, x4 ∧ x2, x1 ∧ x3, x1 ∧ x4}. Note that |N(h)| = O (n |h|)
in general. Finally, for the parameters q and ϑ that appear in Definition 1, the
swapping algorithm uses the following values:

q = dlog1/p(3/ε)e and ϑ = blog1/p(2)c . (7)

8 P.-M. Alchirch et al.

4 Implementation

Regarding the implementation, our starting point is the algorithm for the evo-
lution of monotone conjunctions that was used in [2], which in turn is based on
the (1 + 1) EA (Algorithm 1). Our evolutionary mechanism is shown in detail
in Algorithm 2. This algorithm is known to converge [2] to a hypothesis that

Algorithm 2: Mutator function based on the (1 + 1) EA

1 q ← dlog1/p (3/ε)e;
2 h′ ←Mutate(h);
3 if p < 1/3 then t← pq−1 min{4pq/3, 1− 3p};
4 else if p = 1/3 then t← 2 · 3−1−2q;
5 else if p = 1/2 then t← 2−2q;
6 else if p > 1/3 and p < 1/2 then
7 ϑ← 0;
8 Λ← 1− 2p;

9 µ← min{2pq+ϑ, Λ};
10 t← pq−1µ(1− p);
11 else
12 k ← blog1/p (2)c;
13 ϑ← k;

14 Λ← min{
∣∣ 2pk − 1

∣∣ , ∣∣ 1− 2pk+1
∣∣};

15 µ← min{2pq+θ, Λ};
16 t← pq−1µ(1− p);
17 if |h′| > q then return h;
18 νh ← EvaluateHypothesis(h);
19 νh′ ← EvaluateHypothesis(h′);
20 if νh′ > νh + t then return h′;
21 else if νh′ >= νh − t then return USelect(h, h′);
22 else return h;

satisfies (4), which is the goal for evolution, for Bernoulli(p)n distributions that
are characterized by p ∈ (0, 1/3]∪{1/2}. However, we are interested in studying
this evolutionary mechanism, at the very least, for other values of p that char-
acterize Bernoulli(p)n distributions and it is this particular case that we explore
in this paper. Below we explain the functions that appear in Algorithm 2.

EvaluateHypothesis returns the performance PerfD (h, c) of a hypothesis
h. In the experiments we do that using (6), by using the values m, u, and r, of
the mutual, undiscovered, and redundant variables.

The function Mutate takes as input the bit vector that represents the initial
hypothesis, flips each bit with probability 1/n, and returns the new mutated
hypothesis. This is the mutation mechanism that was described in Algorithm 1.

The function USelect is responsible for selecting uniformly at random a
hypothesis from the two that are passed as parameters. In particular, the two

Evolving Monotone Conjunctions in Regimes Beyond Proved Convergence 9

hypotheses are h and h′, where h is the initial hypothesis and h′ the mutated
one that occurred from function Mutate.

Finally, we would like to make the following remark. As discussed in Sec-

tion 2.2, the evolutionary mechanism has access to a noisy value P̂erf S (h, c),
that is obtained from an appropriately large sample S, as a proxy for the true
value PerfD (h, c) for some hypothesis h. However, by using (6) directly in Eval-
uateHypothesis we obtain the true value exactly. We argue that this should
not be a problem, as the neighborhood is split into the sets Bene, Neut, and
Del based on the tolerance t. The idea is that when one may try in the fu-
ture to prove rigorously our experimental findings from Section 5, it should be
enough to identify the minimum non-zero difference in the performance between
any two hypotheses in the hypothesis space. Assuming this value is equal to ∆,
then by setting the tolerance equal to ∆/2 and requiring approximation of each
PerfD (h, c) to be done within ∆/2 of their true value, then the sets Bene, Neut,
and Del, will be entirely correct in the partitioning of the hypotheses in the
neighborhood, to beneficial, neutral, and deleterious.

4.1 Setting the Parameters q and ϑ

Two important parameters that we use in Algorithm 2 are the parameters q and
ϑ and the values that we use are given by (7). Regarding q, its value has been
the same in [3, 1, 2] and therefore it is only natural to maintain this definition in
our work as well. Regarding ϑ, we introduce it because it was useful for proving
the convergence of the swapping algorithm when p ≥ 1/2. One of the ideas
from [1] is that when the function c that we want to learn is of medium size
(i.e., q < |c| ≤ q + ϑ) and the distribution Bn,p is governed by some p ≥ 1/2,
then convergence is proved when a hypothesis h is formed that is a best q-
approximation of c (per Definition 2). Hence, our hope is that this phenomenon
will transcend from the swapping algorithm where it has been proved to work,
to the (1+1) EA mechanism that we explore in this work.

4.2 Guessing a Good Value for the Tolerance t

Beyond q and ϑ for which we use the values of (7), another important parameter
for evolution is that of the tolerance t. As the algorithm that we use (Algorithm 2)
comes from [2], we use the values indicated by [2] in the proved regime; i.e., when
p ∈ (0, 1/3] ∪ {1/2}. In the unproved regime (i.e., when p 6∈ (0, 1/3] ∪ {1/2}) we
attempt to use the tolerance that is indicated in [1] which allows the swapping
algorithm to converge for every p ∈ (0, 1) that characterizes the Bernoulli(p)n

distribution that governs the instances. In particular, the tolerance in [1] is

tswapping = pq−1µ(1− p) , (8)

where µ = min{2pq+ϑ, Λ}. Regarding the quantity Λ, if 0 < p < 1/2 we have

Λp<1/2 = 1− 2p . (9)

10 P.-M. Alchirch et al.

When p ∈ [1/2, 1), the quantity Λ is defined by first looking if p is of the form
2−1/k, with k ∈ {1, . . . , n}, or if p belongs to a sub-interval of [1/2, 1) of the form
(2−1/k, 2−1/(k+1)); in other words, we care about the two consecutive points from
the family of points 2−1/k (with k ∈ {1, . . . , n}) that contain p. It is this latter
case which corresponds to the values of p > 1/2 that we examine in this work
in the unproved regime (i.e., p ∈ {0.6, 0.7, 0.8, 0.9}). Note that the interval of
interest (2−1/k, 2−1/(k+1)) is obtained for k = blog1/p(2)c. Eventually, a quantity
that is good enough for our purposes is to set

Λp>1/2 = min{
∣∣2pk − 1

∣∣ , ∣∣1− 2pk+1
∣∣} . (10)

In other words, using (9) and (10) we can define

Λ =

{
Λp<1/2 , if 1/3 < p < 1/2,
Λp>1/2 , if 1/2 < p < 1 .

(11)

Now, one can use (11) in (8) and compute the desired tolerance that will be used
for the experiments depending on the p that we want to test.

4.3 Successful Executions

The following criterion was used for proving convergence in [1] and we adopt it.

Criterion 1 (Success Criterion) We define a single run to be successful if
we accomplish the following:

(a) When c is short, identify c precisely.
(b) When c is medium, generate a best q-approximation of c.
(c) When c is long, generate a hypothesis h such that PerfBn,p

(h, c) ≥ 1− ε.

Therefore, for a given Bernoulli(p)n distribution and a given target c, we
run Algorithm 2 in an endless loop until we satisfy our Criterion 1. In fact, we
consider such an execution successful if we satisfy Criterion 1 for 10 consecutive
iterations, thus signifying that the solution that we have found has some notion
of stability and therefore it is not the case that we satisfy perhaps Criterion 1
during one iteration but then in a subsequent iteration the hypothesis drifts
away and evolves to a solution that has performance less than 1− ε.

Remark 2 (On the Strictness of the Success Criterion). Criterion 1 is probably
more strict than what is really needed in some cases. To see this, consider the
following situation: say, p = 0.2, ε = 0.01 (⇒ q = 4), and the target function
that we want to learn is c = x1 ∧ x2 ∧ x3 ∧ x4. Then, according to Criterion 1,
this is case (a), and we would like to evolve h such that h = c. However, the
hypothesis h′ = x5∧x6∧x7∧x8 is very different from c (as none of the variables
that appear in h also appears in c) but nevertheless, using (6), we see that it
holds Perf Bn,p

(h′, c) = 1− 2 · 0.24 − 2 · 0.24 + 4 · 0.28 ≈ 0.99361. In other words,
even if h′ does not satisfy the stringent requirement of case (a) of our criterion
for successful execution, since ε = 0.01 it nevertheless satisfies (4) which is really
the goal of evolution, as it has performance at least 1− ε.

Evolving Monotone Conjunctions in Regimes Beyond Proved Convergence 11

5 Experimental Results and Discussion

Using Algorithm 2 we perform experiments5 for Bn,p distributions such that p =
j/10, where j ∈ {1, 2, . . . , 9}. By testing the values p ∈ {0.1, 0.2, 0.3, 0.5} we can
understand the rate of convergence when p is in the regime of proved convergence
(based on [2]). Moreover, we can also use these numbers as baselines for forming
conclusions regarding the rate of convergence when we perform experiments
under distributions Bn,p that are characterized by values of p, when p is outside
of the known regime of (0, 1/3] ∪ {1/2} where we have proved convergence.

5.1 Details on the Experimental Setup

Dimension of the Instance Space. In all of our experiments we set the dimension
of our instance space to be equal to n = 100. This value of n = 100 allows a
rich hypothesis space while at the same time it allows the repetitive execution
of Algorithm 2 in a fairly reasonable amount of time for our experiments.

Target Sizes that we Test. For each p value mentioned above we generate targets
that have sizes taken from the sets Sa, Sb, and Sc shown below:

Sa = {1, 2, q/4, q/2, 3q/4, q − 1, q}
Sb = {q + 1, q + ϑ/2, q + ϑ}
Sc = {q + ϑ+ 1, q + ϑ+ (n− q − ϑ)/4,

q + ϑ+ 2(n− q − ϑ)/4,
q + ϑ+ 3(n− q − ϑ)/4, n}.

(12)

In particular, the target sizes from the set Sa are used for testing case (a) of
Criterion 1, the target sizes from the set Sb are used for testing case (b) of
Criterion 1, and the target sizes from the set Sc are used for testing case (c) of
Criterion 1. Note that when p < 1/2, then ϑ = 0. In such a case we consider the
set Sb to be empty. That is, the target size that is indicated as having size q+ 1
is available in the set Sc where now q + ϑ+ 1 = q + 0 + 1 = q + 1.

Epochs (Repetitions). For each pair (p, |c|) that we test, we perform 100 different
epochs (repetitions) starting from the empty hypothesis (i.e., h is a bitstring of
length n where each entry has the value of 0) until convergence. The epochs
smooth the experimental results and allow us to better understand the average
case of execution.

Numerical Values of the Parameters q, ϑ, and t. Table 1 summarizes the values
that the parameters q, ϑ, and t obtain, when p = j/10 for j ∈ {1, 2, . . . , 9}.

5.2 High-Level Summary of Results

We note that in every single one of our experiments we were able to satisfy
Criterion 1. Table 2 presents the average number of iterations that was necessary
so that we can satisfy Criterion 1 in every case that we tested.

5 Source code available at: https://gitlab.com/marina_pantia/evolvability_code

12 P.-M. Alchirch et al.

Table 1: Values of q, ϑ, and tolerance t corresponding to each probability p that
we tested in our experiments. Note that the values for the tolerance t should be
multiplied by 10−6. In every case the dimension of the instance space is n = 100.

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

q 3 4 5 7 9 12 16 26 55

ϑ 0 0 0 0 1 1 1 3 6

t (10−6) 13.3 17 26.2 8.05 3.81 3.79 6.62 2.33 1.09

Table 2: Average number of iterations until convergence (as computed using
100 epochs), depending on the target size and the probability used. Note that
when p < 1/2, then ϑ = 0 and therefore in these situations it is the case that
q + 1 > q + ϑ/2 as well as q + 1 > q + ϑ. Therefore, some values may be
repeated or appear out of order. However, for uniformity we keep these rows
everywhere in accordance to the presentation of the sets Sa, Sb, and Sc in (12)
from Section 5.1. In addition, when p ∈ {0.5, 0.6, 0.7}, then ϑ = 1 and hence
q + 1 = q + ϑ/2 = q + ϑ as we use rounding in order to treat decimals (i.e.,
round(ϑ/2) = round(1/2) = 1).

target size |c| probability p
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 9355.3 8240.16 6109.52 4494.06 1846.62 292.16 263.67 231.91 264.03

2 18373.48 13234.84 8878.63 6757.35 3460.26 1275.46 1189.7 413.5 432.55

q/4 9355.3 8240.16 6109.52 6757.35 3460.26 2377.29 2285.82 1251.94 1147.72

q/2 18373.48 13234.84 8878.63 13631.78 6485.19 4388.57 4522.01 2340.74 1482.84

3q/4 18373.48 22613.09 22200.21 15894.43 11988.98 7071.61 6480.98 3718.52 2071.57

q 39011.15 33743.87 40434.23 37737.39 26736.85 15716.76 15174.42 6951.12 3826.76

q + 1 12.56 13.56 14.82 15.67 24303.88 23337.84 28692.53 7449.52 3608.87

q + ϑ/2 39011.15 33743.87 40434.23 37737.39 24303.88 23337.84 28692.53 9728.63 4553.08

q + ϑ 39011.15 33743.87 40434.23 37737.39 24303.88 23337.84 28692.53 14651.58 9382.01

q + ϑ+ 1 12.56 13.56 14.82 15.67 17.2 20.4 27.54 39.87 102.61

q + ϑ+ (n− q − ϑ)/4 12.49 13.78 14.4 15.04 17.15 20.53 25.37 38.43 100.97

q + ϑ+ 2(n− q − ϑ)/4 12.67 13.68 14.93 14.79 16.88 20.8 25.24 38.15 92.61

q + ϑ+ 3(n− q − ϑ)/4 13.03 13.9 14.92 14.45 17.31 20.72 25.4 38.95 97.44

n 12.22 13.93 15.04 14.77 17.21 20.87 25.92 37.27 94.81

On the Convergence against Long Targets. As it can be seen from Table 2, case
(c) in Criterion 1, corresponding to |c| > q + ϑ, is perhaps the easiest one to
accomplish. The intuitive reason from the work of [1] is that q and ϑ have been
selected in such a way, so that any hypothesis h that has size q, regardless of its
composition of good and bad variables among the q variables that it contains,
will satisfy the equation Perf Bn,p

(h, c) ≥ 1− ε. In particular, the intuitive idea
is that c and h contain enough many variables and hence they make positive
predictions on a small subspace of the n-dimensional hypercube {0, 1}n. As a
consequence c and h agree almost everywhere, since almost everywhere they
make a negative prediction. As a further consequence, their correlation is at
least 1 − ε. Indeed, in our experiments when |c| > q + ϑ, regardless of the
underlying value of p that governs the distribution, we see that h satisfies the
criterion Perf Bn,p

(h, c) ≥ 1− ε very quickly.

Evolving Monotone Conjunctions in Regimes Beyond Proved Convergence 13

On the Convergence against Short and Medium Targets. Moreover, quite re-
markably, based on the results shown in Table 2 for short and medium targets,
the evolutionary mechanism that we study appears to be converging faster to a
solution that satisfies Criterion 1 when p is outside of the known proved regime
of (0, 1/3] ∪ {1/2}. As characteristic examples one can compare the entries cor-
responding to p = 0.4 versus p = 0.3, or p = 0.8 versus p = 0.5.

The conclusions that we draw for the different values of p that we test are
similar. Therefore in Section 5.3 below we focus on one particular case where p =
0.4, while in Section 5.4 we complement Table 2 and the discussion of Section 5.3
by showing boxplots with more refined information on the convergence rate of
every case that we tested.

5.3 Details on the Convergence when p = 0.4

Figure 1a presents the average number of iterations against target sizes up to
q + 2 when p ∈ {0.3, 0.4, 0.5} and n = 100. Table 1 informs us that for p = 0.3,

(a) Iterations until convergence when n = 100
and p = 0.4, compared to p = 0.3 and p = 0.5
where it is known that the algorithm converges
efficiently. On the horizontal axis we see target
sizes as a function of q, so that we can study
better case (a) of Criterion 1.

(b) Iterations until convergence when n = 100
and p = 0.4, compared to p = 0.3 and p = 0.5
where it is known that the algorithm converges
efficiently. We can see the convergence rate when
p = 0.4 across the entire spectrum of possible
target sizes.

Fig. 1: Iterations until convergence when n = 100 and p ∈ {0.3, 0.4, 0.5}. In
Figure 1a we focus in the situation where |c| ∈ {1, 2, q/2, 3q/4, q, q + 1} which
covers case (a) of Criterion 1, even though q is different for the different p values;
see, e.g., Table 1. When |c| > q + 1 the convergence is very fast for all cases. In
Figure 1b we see the complete picture for target sizes between 1 and n = 100.

p = 0.4, and p = 0.5 we have q = 3, q = 4, and q = 5 respectively. Even though
these values of q are different, nevertheless, they all correspond to the situation
where the target is short – case (a) of Criterion 1 – and for this reason we decided
to put labels on the x axis that are related to q. Of course, since the q values are
different, one can also consider a plot similar to Figure 1b and be able to see the
complete picture for target sizes between 1 and n = 100 in each case. Regardless

14 P.-M. Alchirch et al.

if one uses Figure 1a or Figure 1b, we observe that (i) the algorithm converges
for every target size, and (ii) the rate of convergence when p = 0.4 is very similar
to what we observe for p = 0.3 and p = 0.5 where it has been proved that the
algorithm converges. Similar results are discussed below for other values of p.

5.4 Further Details on the Experiments of Every (p, |c|) Pair Tested

We complement Table 2 and the discussion of Section 5.3 by providing further
statistics for the executions of Algorithm 2. Figure 2 presents boxplots regard-
ing the number of iterations that was needed so that Criterion 1 was satisfied
for every p = i/10, with i ∈ {1, 3, 4, 5, 6, 7, 8, 9} and for every target size that
belonged to one of the sets Sa, Sb, and Sc that were described in (12). (Due to
space limitations we omitted the case for p = 0.2.) Each boxplot shows the me-
dian value for the execution of the algorithm regarding a particular (p, |c|) pair.
Furthermore, the thick part of the boxplot indicates the range of values that be-
long between the 25th and the 75th percentile. The whiskers are drawn so that
they are in 1.5 times the inter-quartile range and finally in some cases we may
also see some outliers which correspond to executions that took unexpectedly
long/short time.

5.5 Discussion

As a summary, for every value p = j/10 with j ∈ {1, 2, . . . , 9} that characterizes
a Bernoulli(p)n distribution, Algorithm 2 satisfied the goal of evolution and
converges to a function that satisfies (4). This is true against any target function
that we tested. Moreover, the average case analysis indicates that the running
time needed to converge to such a good solution is in fact comparable to the
running time that is needed (on average) by a simpler variant of this algorithm,
that is obtained when the algorithm is tested against values of p ∈ (0, 1/3] ∪
{1/2}, where it is has been proved that the algorithm converges efficiently [2].

Implications. One first implication of these experimental results is that the
(1+1)-EA variant that we examined, appears to be equally powerful as the swap-
ping algorithm which provably evolves monotone conjunctions for Bernoulli(p)n

distributions governed by any p ∈ (0, 1) satisfying (4). A second implication is
that the success criterion that we set beforehand (Criterion 1) indeed appears
to capture fairly accurately what is happening on successful executions that also
generate stable solutions. As a consequence of these two, a third implication is
that the experimental convergence that we explored motivates future work for a
formal approach on rigorously proving the convergence of the algorithm under
Bernoulli(p)n distributions for values of p ∈ (0, 1) outside of the known proved
regime, which is (0, 1/3]∪{1/2} based on [2]. Fourth, somehow surprisingly, the
experimental results suggest that the convergence of the algorithm is actually
faster in the unknown regime compared to the known one, when the target is
short or medium (i.e., for target sizes that are expected to be difficult); e.g.,
compare the results between p = 0.8 and p = 0.5 in Table 2.

Evolving Monotone Conjunctions in Regimes Beyond Proved Convergence 15

(a) p = 0.1, q = 3 and ϑ = 0. (b) p = 0.3, q = 5 and ϑ = 0.

(c) p = 0.4, q = 7 and ϑ = 0. (d) p = 0.5, q = 9 and ϑ = 1.

(e) p = 0.6, q = 12 and ϑ = 1. (f) p = 0.7, q = 16 and ϑ = 1.

(g) p = 0.8, q = 26 and ϑ = 3. (h) p = 0.9, q = 55 and ϑ = 6.

Fig. 2: Boxplots of iterations needed until convergence when n = 100 and for
probabilities p ∈ {0.1, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. The x-axis corresponds to
target sizes generated according to the sets Sa, Sb, and Sc that are presented in
Section 5.1; these sizes depend on p as they depend on the parameters q and ϑ
which ultimately depend on p. Furthermore, when |c| > q+ϑ, the convergence is
very fast and thus the deviation from the median of the iterations is insignificant.

16 P.-M. Alchirch et al.

6 Conclusions

We studied the evolvability of monotone conjunctions under Bernoulli(p)n dis-
tributions using the standard mutation mechanism that appears in (1+1) EAs.
We extended the algorithm introduced in [2] by drawing inspiration from the
convergence properties of the swapping algorithm under such distributions [1].
Our experiments indicate that the extension we proposed allows the forma-
tion of hypotheses that approximate well any target function c under arbitrary
Bernoulli(p)n distributions since the computed solutions in our experiments were
stable and more importantly satisfied the goal of evolution required by (4) in every
combination (p, |c|) that we tested. In the future, it would be interesting to prove
rigorously this experimental result, as well as explore the convergence of this
(1+1) EA-based mutation mechanism under distributions beyond Bernoulli(p)n.

References

1. Diochnos, D.I.: On the Evolution of Monotone Conjunctions: Drilling for Best
Approximations. In: ALT. pp. 98–112 (2016)

2. Diochnos, D.I.: On the Evolvability of Monotone Conjunctions with an Evolution-
ary Mutation Mechanism. Journal of Artificial Intelligence Research 70, 891–921
(2021)

3. Diochnos, D.I., Turán, G.: On Evolvability: The Swapping Algorithm, Product
Distributions, and Covariance. In: SAGA. Lecture Notes in Computer Science,
vol. 5792, pp. 74–88. Springer (2009)

4. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary
algorithm. Theoretical Computer Science 276(1-2), 51–81 (2002)

5. Feldman, V.: Evolvability from learning algorithms. In: STOC. pp. 619–628 (2008)
6. Kalkreuth, R., Droschinsky, A.: On the Time Complexity of Simple Cartesian

Genetic Programming. In: IJCCI. pp. 172–179. ScitePress (2019)
7. Kanade, V.: Evolution with Recombination. In: FOCS. pp. 837–846 (2011)
8. Koza, J.R.: Genetic programming - on the programming of computers by means

of natural selection. Complex adaptive systems, MIT Press (1993)
9. Lissovoi, A., Oliveto, P.S.: On the Time and Space Complexity of Genetic Pro-

gramming for Evolving Boolean Conjunctions. Journal of Artificial Intelligence
Research 66, 655–689 (2019)

10. Mambrini, A., Oliveto, P.S.: On the Analysis of Simple Genetic Programming for
Evolving Boolean Functions. In: EuroGP. Lecture Notes in Computer Science,
vol. 9594, pp. 99–114. Springer (2016)

11. Pitt, L., Valiant, L.G.: Computational limitations on learning from examples. Jour-
nal of the ACM 35(4), 965–984 (1988)

12. Reyzin, L.: Statistical Queries and Statistical Algorithms: Foundations and Appli-
cations. CoRR abs/2004.00557 (2020)

13. Ros, J.P.: Learning Boolean Functions with Genetic Algorithms: A PAC Analysis.
In: FOGA. pp. 257–275 (1992)

14. Snir, S., Yohay, B.: Prokaryotic evolutionary mechanisms accelerate learning. Dis-
crete Applied Mathematics 258, 222–234 (2019)

15. Valiant, L.G.: A theory of the learnable. Communications of the ACM 27(11),
1134–1142 (1984)

16. Valiant, L.G.: Evolvability. Journal of the ACM 56(1), 3:1–3:21 (2009)

