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Abstract: Machine learning research has been able to solve problems in multiple domains. Machine
learning represents an open area of research for solving optimisation problems. The optimisation
problems can be solved using a metaheuristic algorithm, which can find a solution in a reasonable
amount of time. However, the time required to find an appropriate metaheuristic algorithm, that
would have the convenient configurations to solve a set of optimisation problems properly presents a
problem. The proposal described in this article contemplates an approach that automatically creates
metaheuristic algorithms given a set of optimisation problems. These metaheuristic algorithms are
created by modifying their logical structure via the execution of an evolutionary process. This process
employs an extension of the reinforcement learning approach that considers multi-agents in their
environment, and a learning agent composed of an analysis process and a process of modification of
the algorithms. The approach succeeded in creating a metaheuristic algorithm that managed to solve
different continuous domain optimisation problems from the experiments performed. The implica-
tions of this work are immediate because they describe a basis for the generation of metaheuristic
algorithms in an online-evolution.

Keywords: machine learning; reinforcement learning; optimisation; metaheuristic; evolutionary
metaheuristic; high-level data driven metaheuristics; metaheuristic generation; online learning;
search trajectory networks

1. Introduction

The use of metaheuristic algorithms has become an approach widely used to solve
a variety of optimisation problems, such as optimisation problems in the fields of health,
logistics, agriculture, mining, space, robotics, etc. In the last decade, the diversity of meta-
heuristic algorithms has grown widely [1], with a great diversity of components, routines,
selectors, internals, and especially a great variety of parameters. This diversity leads to
different difficulties, such as, for example, being able to find a specific configuration of
parameters for a specific type of optimisation problem. This describes a situation that
induces and generates challenges in choosing a metaheuristic algorithm correctly. Various
strategies have been adopted to minimise the effort of manual configurations. One area
is machine learning, specifically in reinforcement learning [2], where various advances
have been made. For example, the implentation of a general method to reformulate re-
inforcement learning problems as optimisation tasks and then application of the particle
swarm metaheuristic algorithm to find optimal solutions [3]. Solutions to solve the vehicle
routing problem [4] include, feature selection [5], the design of a plane frame [6], or resource
allocation problems [7]. Other approaches include Learn-heuristics [8], Q-Learning [9],
Meta-learning [10], and Hyper-heuristic [11,12], which provide diverse perspectives on op-
timisation problems. In [13], multi-agent reinforcement learning is proposed, which allows
for an upgrade in the reinforcement learning area, which generally uses a single agent.

In algorithm generation, there is an approach that uses the construction of a centralised
hybrid metaheuristic cooperative strategy to solve optimisation problems [14]. Another
approach employs a set of instructions to create a set of machine learning algorithms in
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real-time [15]. A basis for understanding the scope of these approaches can be found
in [16], which provides the taxonomy of combinations with metaheuristics, mathematical
programming, constraint programming, and machine learning. Open problems and the
area’s current status can be found in [17,18].

This research focuses on contributing within the area of High-Level Data-Driven Meta-
heuristics on the topic of Metaheuristic Generation by Reinforcement Learning described
in [17]. Specifically this research is under the following the flow of taxonomy High-Level
Data Driven Metaheuristics→Metaheuristic Generation→ Online Learning→ Reinforce-
ment Learning→ AutoMH framework. This research aims to find, through an evolutionary
generation process based on reinforcement learning, the best metaheuristic algorithm(s)
that solve the set of optimisation problems given by the user. The main benefits expected
from this work are as follows:

• Design a framework based on reinforcement learning that allows, through an online
evolution process, to automatically generate evolutionary metaheuristic algorithms
capable of solving a portfolio of optimisation problems in a viable manner.

• Incorporate flexibity into the framework design to add diverse components such as
operators, intensification functions, and exploration functions.

• Contribute to the area of machine learning for optimisation, specifically in the integra-
tion of reinforcement learning to solve optimisation problems.

The rest of this paper is structured as follows: In Section 2, the proposed design and
the formalisation of its components are detailed. In Section 3, the tests performed and their
results are detailed. Finally, Section 4 concludes and provides guidelines for future work.

2. AutoMH Framework

This section presents the design of the AutoMH framework and the main components
that make up the extended model of reinforcement learning (RL). Moreover, how the Au-
toMH components interact with the template of the evolutionary metaheuristic algorithm
in the internal modification of the template structure with new instructions or modifications
is explored.

2.1. General Reinforcement Learning Model

A general reinforcement learning model determines what actions an agent should
choose to maximise the objective in a given environment. An overview of RL can be seen
in Figure 1. A general RL model consists of two components:

• A Learning Agent as the component that we want to train and learn to make decisions.
• An Environment that consists of the environment in which the Learning Agent interacts.

The environment contains the possible constraints and rules.

Environment

Agent

state reward action

Figure 1. General reinforcement learning model.

Between the agent and environment components, there is a relationship that feeds
back and has the following connections:

• An Action is chosen from a set of possible actions that the learning Agent can take at a
given time.
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• A State that corresponds to a set of indicators updated from the environment of how
the various elements composing it is functioning.

• A Reward arises for each action performed by the Learning Agent. This reward can be a
prize or a penalty. This information guides the Learning Agent toward identification of
correct or incorrect behaviour.

2.2. Proposed AutoMH Framework

The proposed AutoMH framework automatically aims to create metaheuristic evolution-
ary algorithms using a reinforcement learning modification. Metaheuristic evolutionary
algorithms are contained within non-intelligent agents. The agents are immersed in the
environment and are in charge of carrying out the benchmark that consists of solving a port-
folio of optimisation problems by executing the metaheuristic evolutionary algorithm that
the agent contains. During its execution, the AutoMH framework is constantly searching for
new metaheuristic algorithms, finding suitable and unsuitable algorithms in each episode
to solve the portfolio. The suitable algorithms can be kept in the following episode while
the unsuitable algorithms are modified. At the end of the execution, the AutoMH framework
has as its output the best agent in the environment with an evolutionary metaheuristic
algorithm capable of finding the best solutions for a portfolio of optimisation problems.
Figure 2 details the main parts of the framework architecture. It consists of two essential
components of a reinforcement learning system: the Learning Agent and the Environment.

Environment

Agent Swarm 

Optimisation Problem Portfolio

Learning Agent

Swarm Action 
Process

Reward Analysis 
Process

Action 
Process

Optimisation 
Problem 1

Swarm
State Process

Agent 1

Evolutionary  
Metaheuristic

Rank Report

Agent 2

Evolutionary  
Metaheuristic

Rank Report

Agent n

Evolutionary  
Metaheuristic

Rank Report

Optimisation 
Problem 2

Optimisation 
Problem n

Figure 2. Proposed AutoMH framework for the automatic creation of metaheuristics.

The Learning Agent is in charge of analysing the information from the environment
and determining and performing actions on non-intelligent agents. The Learning Agent is
formally specified in Definition 1.

Definition 1. Learning Agent: The learning agent bears the function of analysing the data gener-
ated by the environment through the Reward Analysis Process and taking actions that will affect
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through a set of actions the internal behaviour of each agent in the swarm of agents through the
Action Process.

The Environment is composed of a set of non-intelligent agents. Each agent has a base
template of a metaheuristic algorithm which evolves in each episode by modifying its
structure. This template is initially empty and is later transformed by adding instructions,
removing instructions or maintaining instructions from its structure through the modifica-
tions made by the Learning Agent. The general components of the Environment are defined
in Definitions 2–4.

Definition 2. Environment: The environment is composed of two elements:

• A set of non-intelligent agents A = {A1, A2, . . . , An}.
• An optimisation problem portfolio P = {p1, p2, . . . , pm} that must be executed by the non-

intelligent agents.

Definition 3. An Agent Ai is defined by the three-tuple Ai = 〈M, Q, S〉, where:

• An Evolutionary Metaheuristic Algorithm M, which is an empty structure named template
τ. This structure is modified at run-time by the swarm action process by adding, modifying,
or removing instructions.

• A Qualification Q corresponds to a variable that indicates the value of the rank assigned to
the agent.

• A State S that corresponds to a report with a set of data structures in which the optimisation
tests results are stored. The stored data correspond to a set of summaries with fitness, and solu-
tion for each optimisation problem. Moreover, the fitness value information for each iteration.

Definition 4. A continuous optimisation problem p is defined by minimise the objective function
f (x) subject to l ≤ x ≤ u, where x = [x1, x2, . . . , xd], d is a positive value ≥ 2 that represents the
dimension of the optimisation problem, l = [l1, l2, . . . , ld], and u = [u1, u2, . . . , ud] are the lower
bounds and the upper bounds of the corresponding variables in x, which define the feasible domain of
the problem p.

A thorough explanation of the components and their interactions are detailed in
Sections 2.3–2.8.

2.3. Instruction

An instruction I is an ordered grouping of elements with the objective of producing a
change in the value of a variable. An instruction is made up of four elements: a variable,
an assignment operator, an operator, and a function. The composition of an instruction
is detailed in the Equation (1). Where, from right to left: q(xt) is the function that is
applied using the current value of the variable xt in order to generate a new value, ∆ is the
operator that will be applied with the value of the variable xt and with the value obtained
by applying the function q(xt). Additionally, the symbol← is the assignment operator for
a new value that will be assigned in xt+1, and the symbol t indicates the iteration number.
Formally, an instruction is determined by Definition 5.

xt+1 ← xt ∆ q(xt) (1)

Definition 5. An instruction I is composed by a variable x, one generic instruction operator
O = {∆k(x) | k ∈ K}, and one intensification function H = {hi(x) | i ∈ L}, or one exploration
function G = {gj(x) | j ∈ J}, where K = {1 . . . m}, J = {1 . . . n}, and L = {1 . . . l}. The values
of m, n, and l are determined by the initial information of the system.
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Additionally, instructions can derive into instruction types such as an exploration
instruction Iε, which is defined by function (2), or an intensification instruction Iγ that is
defined by function (3).

Iε(x, ∆k, gj) = x ∆k gj(x) (2)

Iγ(x, ∆k, hi) = x ∆k hi(x) (3)

Definition 6. An operator ∆ is a mathematical symbol that indicates that a specific operation must
be performed on a variable and an exploration function g(x) or an intensification function h(x).

Instruction Component Feature Considerations

Instruction must be executed atomically; this means that the calculation of the vari-
able’s new value should not integrate new components such as operations, procedures,
or additional functions of those already defined in Equation (1). The complex procedures
that modify the variable are built through instructions using the AutoMH framework. The for-
mat of consecutive instructions to generate complex processes is described in Equation (4).

xt+1 = xt ∆ q(xt)
xt+2 = xt+1 ∆ q(xt+1)
xt+3 = xt+2 ∆ q(xt+2)

...
xt+n = xt+n−1 ∆ q(xt+n−1)

(4)

The operators must allow for the performing of an operation between the value of the
variable x and the function q(x) output value. Through this operation, a new value of the
variable x is obtained. The variable’s new value can be decreased, increased, or unchanged.

A function represents a simple and defined behaviour. Additionally, in the functions
g(x) or h(x), the input parameter of the value of the variable x is optional.

An intensification function h(x) must always exhibit the same behaviour each time
it is used; that is, it must always return the same result when given the same parameters.
In addition, it must not contain random components. An example of a function h(x) is
a function that returns the value of the trigonometric function sine; if we also consider
a delta addition operator, then the instruction is composed of the following structure
xt+1 ← xt + sin(xt). If we instantiate the variable x with the value 1.3, the result of the
instruction described in Equation (5) has an increase in the value of the variable x given the
value provided by function sin(xt).

xt+1 = xt + sin(xt)
xt+1 = 1.3 + sin(1.3)

2.26355818542 = 1.3 + 0.96355818541
(5)

An exploration function g(x) must exhibit stochastic behaviour each time it is used;
it must always return a random value. An example of a function g(x) is a function that
returns a random value obtained over a continuous interval [0, 1]; if we also consider a
subtraction delta operator, then the instruction is composed with the following structure
xt+1 ← xt −U ∼ (0, 1). If we instantiate the variable x with the value 1.3, the result of the
instruction described in Equation (6) will decrease the value of the variable x.

xt+1 = xt −U(0, 1)
xt+1 = 1.3 − U(0, 1)

0.9679 = 1.3 − 0.3321
(6)
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2.4. Evolutionary Metaheuristic Algorithm

An evolutionary metaheuristic algorithm M is a template that changes in each episode
depending on the decisions made by the Learning Agent through the Action Process. Modifi-
cations to its structure are performed at run-time through Swarm Action Process. Formally,
M is determined by Definition 7.

Definition 7. An evolutionary metaheuristic algorithm is defined by the 4-tuple M = 〈τ, E, Γ, δ〉,
where: τ is a metaheuristic template that is composed by INITIAL, STEP, END, and RUN functions,
E is an sequence of exploration functions E = [g1, g2, . . . , gn], Γ is an sequence of intensification
functions Γ = [h1, h2, . . . , hn], and δ is an set of operators δ = {∆1, ∆2, . . . , ∆n}.

• The INITIAL function is in charge of initialising the variables of the optimisation
problem. Initialisation is carried out using one or more exploration instructions.
Subsequently, the current fitness is calculated and the solution is stored.

• The STEP function is the main core of the template. In this function the main modi-
fications are made in the evolutionary metaheuristic algorithm. Actions are carried
out such as adding, modifying or deleting instructions both of the type of exploration
instructions, as well as intensification instructions. Subsequently, the new fitness of
the solution is calculated, and the new fitness and solution is stored in the event that it
is better than the previous one.

• The END function is executed when the end condition of the metaheuristic algorithm
ends. Its function is to extract the solution found and its associated fitness.

• The RUN function has the purpose of executing the INITIAL, STEP and END functions.

Figure 3 describes an example of a template τ that has already been modified by
the Learning Agent. The RUN function is the main template. The INITIAL function has
a single instruction that is composed of the operator NONE with the code O00, and by
the UNIFORM10(0, 1) function with the code I109. The STEP function is composed of an
exploration instruction 〈O01, I131〉, and two intensification instructions 〈O02, I06〉 and
〈O03, I14〉. The END function returns the fitness, solution, and the historical fitness (it is
the fitness saved in each iteration).

At the end of the execution of the metaheuristic algorithm M, it outputs the fitness,
the solution and the historical fitness of a problem p. The definition of the output is
described in Equation (7). In which, from left to right, f (x) is the value of the objective
function of a problem p, the solution is the array of variables, and the historical fitness is
an array where the fitness values of each iteration are stored, the array values must satisfy
f (x)i ≥ f (x)i+1.

Output = { f (x), [x1, x2, . . . , xdimension], [ f (x)1, f (x)2, . . . , f (x)max_iteration]} (7)

The output corresponds to an observation Ostate of the behaviour of metaheuristic
algorithm M when solving a problem p. The definition is described in Equation (8) and
corresponds to the order of the components in Equation (7), where R+ = {x ∈ R | x ≥ 0},
l and u are the lower and upper bounds on R of variable x, and l < u. Within the definition,
the space-size can be observed, which is directly related to the domain that the variables have
in a problem p. Observation Ostate has a number of 1+ dimension+max_iteration elements.

f itness historical f itness

Ostate = {
︷︸︸︷
R+ , [[l, u]1, [l, u]2, . . . , [l, u]dimension]︸ ︷︷ ︸, ︷ ︸︸ ︷

[R+
1 ,R+

2 , . . . ,R+
max_iteration]}

space-size

(8)

A numerical example of an observation O is described in Equation (9), where the array of
variables x has a dimension value of 2, l is−10.0, u is 10.0, and the value of max_iteration is 10.

O = {0.0001, [0.0002, 0.0003], [8, 7.3, 4.4, 3.2, 1.003, 0.734, 0.11, 0.021, 0.003, 0.0001]} (9)
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# Parent template. 
def Run(): 
    # Create an empty solution. 
    solution = None 
    # Initial function. 
    Initial() 
    # Execute while the term criterion is not 
    # met. 
    while term_condition_is_met() is False: 
        # Step function. 
        result = Step() 
        # If there is a new result. 
        if result is True 
            # Update solution. 
            solution = get_solution() 
            # Update term condition. 
            update_term_condition() 
    # End function. 
    End(solution) 

# End function. 
def End(solution): 
    # Return fitness, solution, and historical 
    # fitness. 
    return fitness(solution), solution, historical()

# Step function. 
def Step(): 
    if random_number < P: 
        # Exploration instructions. 
        x = x + triangular2()  # <O01, I131> 
    else: 
        # Intensification instructions. 
        x = x - arctan(x)        # <O02, I06> 
        x = x * ln(1+x)           # <O03, I14> 

    # Calculate fitness for minimisation 
    # problems. 
    new_fitness = fitness(x) 

    if new_fitness < current_fitness: 
        # Update fitness and solution. 
        current_fitness = new_fitness 
        solution = x 
        return True 
    else: 
        return False 

# Initial function. 
def Initial(P=0.5): 
    # Exploration instruction. 
    x = uniform10(0, 1)    # <O00, I109> 
    # Calculate fitness. 
    current_fitness = fitness(x)      
    solution = x 

Figure 3. Metaheuristic template τ.

2.5. Swarm State Process

The Swarm State Process consists of a process to collect the observation Ostate generated
by the swarm of non-intelligent agents when solving a problem p using an algorithm M.
The purpose of this process is to be able to have all the states of the non-intelligent agents of
the environment in a single structure.

The first step is to build a matrix that contains the partial-state of the swarm, that is,
that incorporates the state information of a single non-intelligent agent. Each cell of this
matrix must contain a single observation of an execution of an algorithm M in solving a
problem p. This matrix is defined as A = (Oij) (see Equation (10)), where i ∈ {1, . . . , m};
j ∈ {1, . . . , k}, m is the total number of optimisation problems, k is the number of executions
that an algorithm M solves a problem p.

Agentpartial-state = Apsi =

E1 E2 · · · Ek


P1 O1,1 O1,2 · · · O1,k
P2 O2,1 O2,2 · · · O2,k
...

...
...

. . .
...

Pm Om,1 Om,2 · · · Om,k

(10)

Finally, the second step is to group all the partial-states of all the non-intelligent agents
in the swarm to obtain the total state. The state is defined by Equation (11).

State = {Aps1 , Aps2 , . . . , Apsn} (11)

2.6. Reward Analysis Process

The objective of the Reward Analysis Process is to rank each agent in the swarm. Whether
a non-intelligent agent has obtained a good or bad ranking is related to whether it has
obtained a good or bad reward according to its results in solving the portfolio of problems
when using its algorithm M.
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In order to obtain the ranking of the non-intelligent agents, a procedure must be
performed to transform the information from continuous values in R that the state has,
to discrete values in N. This initial approximation procedure consists of extracting the
fitness of each observation, and each execution of a problem p when using an algorithm M
(see Equation (12)). Subsequently, to approximate this observation, a calculation is made
using the mean according to Equation (13). Equations (12) and (13) describe the process
only for problem P1; however, this process must be carried out with each problem that the
agent has.

E1 E2 Ek

P1 O1,1 O1,2 · · · O1,k
↓ ↓ ↓

P1 f (x)1,1 f (x)1,2 · · · f (x)1,k

(12)

meani,j =
f (x)1,1, f (x)1,2, . . . , f (x)1,k

k
(13)

The set of approximations using the mean fitness is represented by the matrix Q = (qi,j)
(See Equation (14)), where i ∈ {1, . . . , m}, j ∈ {1, . . . , n}, m is the number of optimisation
problems, and n is the number of agents in the swarm. Each cell qi,j has been calculated
using the procedure of Equations (12) and (13).

Q =

A1 A2 · · · An


P1 q1,1 q1,2 · · · q1,n
P2 q2,1 q2,2 · · · q2,n
...

...
...

. . .
...

Pm qm,1 qm,2 · · · qm,n

(14)

The second part of the approximation process consists of performing a series of
operations that comprises:

1. The assignment of ranges is conducted using the data provided by the matrix Q.
The method used is the minimum method (competition method), which in order
to perform ranking to each value, the minimum of the ranges that would have
been assigned is assigned to all tied values. The ranking result is stored in matrix
R = (ri,j) (See Equation (15)), where: i ∈ {1, . . . , m}, j ∈ {1, . . . , n}, m is the number
of optimisation problems, and n is the number of agents in the swarm.

R =

A1 A2 · · · An


P1 r1,1 r1,2 · · · r1,n
P2 r2,1 r2,2 · · · r2,n
...

...
...

. . .
...

Pm rm,1 rm,2 · · · rm,n

(15)

2. The minimum method is performed for each row of the matrix Q, which considers
that each problem bears its own ranking among all the agents. The ranking result for
each row will be stored in matrix R.

3. A sum of each column in the matrix R is performed. Each sum will correspond to the
final ranking value for each agent in the swarm. The values of each sum are stored in
a vector S where each value of cell S ∈ Nn.

S =

A1 A2 An[ ]m

∑
i=1

ri,1

m

∑
i=1

ri,2 · · ·
m

∑
i=1

ri,n (16)
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2.7. Action Process

The Action Process takes the information generated by the Reward Analysis Process
and performs a swarm modification procedure. To do this, we define a matrix Am,n (See
Equation (17)), where the first row corresponds to the values calculated from Equation (16),
and the second row A2,i represents the actions to be assigned to each value si ↔ A1,i.

Am,n =

[ ]
s1,1 s1,2 · · · s1,n
a2,1 a2,2 · · · a2,n (17)

An action can have only one of the following cases: N ↔ NONE, M ↔ MODIFY,
or R↔ RESTART. The case NONE action means that the agent will not have any modifica-
tions made to its metaheuristic algorithm M. The case MODIFY action means that the agent
can carry out modifications in the structure of its metaheuristic algorithm M. In the case of
RESTART action, the template τ of the non-intelligent agent will be initialised with random
instructions.

The steps to calculate the actions are as follows:

1. Sort the swarm agents from the best ranking to the worst ranking (See Equation (18)).

Si =
[
8 6 13 9 7 7 4 7 10 6

]
unsorted

Si =
[
4 6 6 7 7 7 8 9 10 13

]
sorted for minimisation problems

Si =
[
13 10 9 8 7 7 7 6 6 4

]
sorted for maximisation problems

(18)

2. The partitions for the array Si are calculated and included in the matrix A. In this step
there can be two cases:

• The standard case is when there is a single best ranking (See Equation (19)).
The best ranking is marked with the NONE action, and the remaining number of
rankings are divided in two, marking one part with the MODIFY action, and the
other part with the RESTART action. This case also applies when all agents have
the same ranking value.

Am,n =

[ ]
4 6 6 7 7 7 8 9 10 13

a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7 a2,8 a2,9 a2,10

Am,n =

[ ]
4 6 6 7 7 7 8 9 10 13
N M M M M M R R R R

(19)

• An alternative case is when there are multiple best rankings (See Equation (20)).
That is, the same ranking value exists in other agents. The first best ranking must
be chosen in the group of the best rankings and marked with the NONE action,
and the remaining amount of the group are to be divided in two, marking one
part with the MODIFY action, and the other part with the RESTART action. Divide
the remaining amount of rankings in two, marking one part with the MODIFY

action, and the other part with the RESTART action.

Si =
[
4 4 4 4 4 4 8 9 10 13

]
Am,n =

[ ]
4 4 4 4 4 4 8 9 10 13

a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7 a2,8 a2,9 a2,10

Am,n =

[ ]
4 4 4 4 4 4 8 9 10 13
N M M M R R R R R R

(20)
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2.8. Swarm Action Process

The Swarm Action Process has the function of modifying the agents of the swarm that
bear the MODIFY case. To carry out the modifications, each agent obtains a random integer
employing a discrete uniform distribution U{1, 6}. The value obtained will correspond to
a type of action that will modify the metaheuristic algorithm’s instruction structure. The
allowed modifications are ADD, REPLACE, and REMOVE for instructions INTENSIFICATION,
and EXPLORATION. Figure 4 shows the allowed set of actions for the Learning Agent, giving
an action-space of eight movements.

Action 

None

Restart

Add Intensification Instruction 

Add Exploration Instruction 

Replace Intensification Instruction 

Replace Exploration Instruction 

Remove Intensification Instruction 

Remove Exploration Instruction 

Modify

Figure 4. Summary of the allowed action-space for the Learning Agent.

Figure 5 shows the three types of modifications that are made in the metaheuristic
algorithm M. From these modifications, the agent can repeat the optimisation tests to
observe whether the structure changes generate better or poorer results.

def Step(): 
    if random < P: 
       # Exploration instructions. 
       x = x + triangular2()  # <O01, I131> 
    else: 
       # Intensification instructions. 
       x = x - arctan(x)        # <O02, I06> 
       x = x * ln(1+x)           # <O03, I14>

def Step(): 
    if random < P: 
       # Exploration instructions. 
       x = x + triangular2()   # <O01, I131> 
    else: 
       # Intensification instructions. 
       x = x - arctan(x)         # <O02, I06> 
       x = x * sqrt(x)             # <O03, I08> 

Replace 
Instruction

def Step(): 
    if random < P: 
       # Exploration instructions. 
       x = x + triangular2()   # <O01, I131> 
    else: 
       # Intensification instructions. 
       x = x - arctan(x)         # <O02, I06> 
       x = x * ln(1+x)            # <O03, I14> 

def Step(): 
    if random < P: 
       # Exploration instructions. 
       x = x + triangular2()   # <O01, I131> 
       x = x / uniform9(-1,1) # <O04, I108> 
    else: 
       # Intensification instructions. 
       x = x - arctan(x)         # <O02, I06> 
       x = x * ln(1+x)            # <O03, I14> 

Add 
Instruction

def Step(): 
    if random < P: 
       # Exploration instructions. 
       x = x + triangular2()  # <O01, I131> 
    else: 
       # Intensification instructions. 
       x = x - arctan(x)        # <O02, I06> 
       x = x * ln(1+x)           # <O03, I14>

def Step(): 
    if random < P: 
       # Exploration instructions. 
       x = x + triangular2()   # <O01, I131> 
    else: 
       # Intensification instructions. 
       x = x * ln(1+x)            # <O03, I14> 

Remove 
Instruction

Figure 5. Example of modifications in the structure of the metaheuristic algorithm.
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In summary, Figure 6 describes the pseudocode of the AutoMH framework.

# AutoMH framework. 
def AutoMH(params...): 
    # Create a random non-intelligence agents population. 
    # Each agent has a randomly created metaheuristic algorithm. 
    agents = create_random_agents( ) 

    # Run standard process. 
    best_agent = standard_process( ) 
    print(best_agent) 

    # Repeat through episode length. 
    for i in range(episode_length): 
        # Run standard process. 
        best_agent = standard_process( ) 
        print(best_agent) 

    # Finally, print the best agent. 
    print(best_agent) 

# Standard process. 
def standard_process(params...): 
    # In the environment run the optimization problem benchmark.  
    benchmark_result = run_benchmark(agents, optimisation_problem_portfolio) 

    # Convert benchmark_result to state. 
    state = swarm_state_process(benchmark_result) 

    # For agents determine their action type None, Modify, or Restart. 
    ranking, action = reward_analysis_process(state) 

    # For agents marked with Modify, determine the Add, Replace, or Remove action. 
    ranking, action = action_process(ranking, action) 

    # Make the changes in each non-intelligent agent, modifying the internal structure 
    # of each metaheuristic algorithm in case it is required. 
    swarm_action_process(agents, ranking, action) 

Figure 6. AutoMH framework pseudocode.

3. Experiments

This section focuses on presenting the test design of the AutoMH framework and the
results obtained in various tests. Figure 7 describes a global view of the two experi-
ments carried out. Section 3.4 describes the details and results of executing Experiment 1:
AutoMH Experiment. Sections 3.6 and 3.7 describe the details and results of executing
Experiment A and Experiment B that make up Experiment 2: Comparison with other
Metaheuristic Algorithms.

The environment used in the experiments is described in Section 3.1. The optimisation
problems used in the experiments are described in Section 3.2. The operators, the intensifica-
tion functions and the exploration functions used in experiment Section 3.4 are described in
Section 3.3. The metaheuristic algorithms used to perform comparative tests of Experiment
A and Experiment B are described in Sections 3.5–3.7.
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Experiment 2:
Comparison with other Metaheuristic Algorithms

Experiment A Experiment B

Experiment 1: 
AutoMH Experiment

# AMH:
def Initial(P=0.5): 
   x = uniform10(0, 1) 
def Step():
   if random_number < P: 
      x = x + triangular2()
   else: 
      x = x - arctan(x) 
def End(): 
   return x, solution

Operators Metaheuristic 
Algorithm Portfolio 

AutoMH Output 
AMH

- Descriptive statistics 
- Ranking by Execution Time 
- Ranking by Fitness 
- Convergence Graphs 
- Search Trajectory Networks

Unimodal Optimisation
Problems 

Multimodal Optimisation
Problems 

Unimodal
Optimisation

Problems 

Results

Multimodal
Optimisation

Problems 
Exploration 
Functions 

Intensification
Functions 

Results Results

- Descriptive statistics 
- Ranking by Execution Time 
- Ranking by Fitness 
- Convergence Graphs 
- Search Trajectory Networks

Operators 

Intensification
Functions 

Figure 7. Overview of experiments.

3.1. General Environment

The experiment was developed in Python language version 3.9.6, running on an
MSI P65 Creator 9SE laptop with Intel Core I7 9750H CPUs @ 2.60Ghz, 16 GB RAM,
and Windows 10 Pro OS build 19041.685.

3.2. Optimisation Problem Dataset

The experiments will focus on solving a portfolio composed of 13 continuous optimi-
sation problems. These optimisation problems are divided into two groups of problems.
The first group of problems is composed of seven unimodal optimisation problems. These
problems are described in Table 1 and are numbered as P1, P2, P3, P4, P5, P6, and P7. The
second group of problems is composed of six multimodal optimisation problems. These
problems are described in Table 2 and are numbered as P8, P9, P10, P11, P12, and P13.

Table 1. List of unimodal continuous optimisation problems.

Identifier Function Name Domain fmin(x∗) x∗ = [x1, x2, . . . , xn] Details Reference

P01 Sphere [−100, 100] 0 f(0, 0, . . . , 0) Definition A1 [19,20]
P02 Schwefel Function 2.22 [−10, 10] 0 f(0, 0, . . . , 0) Definition A2 [20]
P03 Schwefel Function 1.2 [−100, 100] 0 f(0, 0, . . . , 0) Definition A3 [20]
P04 Schwefel Function 2.21 [−100, 100] 0 f(0, 0, . . . , 0) Definition A4 [20–22]
P05 Rosenbrock’s [−30, 30] 0 f(1, 1, . . . , 1) Definition A5 [19]
P06 Step [−100, 100] 0 f(x1, x2, . . . , xd),

xi ∈ [−0.5, 0.5), i = {1, 2, . . . , d}
Definition A6 [19,20]

P07 Quartic [−1.28, 1.28] 0 f(0, 0, . . . , 0) Definition A7 [20]

A detailed description of each problem can be found in Appendix A.

Table 2. List of multimodal continuous optimisation problems.

Identifier Function Name Domain fmin(x∗) x∗ = [x1, x2, . . . , xn] Details Reference

P08 Schwefel Function 2.26 [−500, 500] 0 f(4.21× 102, . . . , 4.21× 102) Definition A8 [20]
P09 Rastrigin [−5.12, 5.12] 0 f(0, 0, . . . , 0) Definition A9 [23]
P10 Ackley [−32, 32] 0 f(0, 0, . . . , 0) Definition A10 [19]
P11 Griewank [−600, 600] 0 f(0, 0, . . . , 0) Definition A11 [24]
P12 Generalized Penalized Function 1 [−50, 50] 0 f(−1, −1, . . . , −1) Definition A12 [23]
P13 Generalized Penalized Function 2 [−50, 50] 0 f(1, 1, . . . , 1) Definition A13 [23]

A detailed description of each problem can be found in Appendix A.
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3.3. Portfolio of Operators, Intensification Functions, and Exploration Functions

The experiment uses a set of portfolios composed of operators, intensification func-
tions, and exploration functions. These operators and functions will be used to build by
executing the AutoMH framework intensification instructions (see Equation (3)) and explo-
ration instructions (see Equation (2)). The constructed list of instructions is used to complete
the metaheuristic template τ and obtain a new metaheuristic algorithm. A description of
the portfolios are provided below.

• A portfolio comprising a list of operators identified as O00, O01, O02, O03, and O04.
These operators are described in Table 3.

• A portfolio containing a list of intensification functions is described in Table 4. These
functions are a set of essential mathematical functions. These enhancement functions
are individualised from identifier I01 to identifier I14.

• Two portfolios are composed of a list of exploration functions.

– The first portfolio contains a list of random number generating functions, such as
uniform, beta, and triangular functions. These functions are described in Table 5
and individualised from identifier I100 to identifier I121.

– The second portfolio contains a list of functions that return a constant. These
constants come from The On-Line Encyclopedia of Integer Sequences (OEIS) [25]
and have been chosen considering constants known in the literature. These
functions are individualised in Table 6 from identifier I200 to identifier I212.

Table 3. List of operators.

Identifier Name Math Code

O00 None x← x x = X
O01 Plus x← x + f (x) x = X + f(x)
O02 Subtract x← x− f (x) x = X − f(x)
O03 Multiply x← x ∗ f (x) x = X * f(x)
O04 Divide x← x

f (x) x = X/f(x)

Table 4. List of basic functions.

Identifier Name Function Code

I01 Sine f (x) = sin(x) x = SIN(X)
I02 Cosine f (x) = cos(x) x = COS(X)
I03 Tangent f (x) = tan(x) x = TAN(X)
I04 Inverse Sine f (x) = arcsin(x) x = ARCSIN(X)
I05 Inverse Cosine f (x) = arccos(x) x = ARCCOS(X)
I06 Inverse Tangent f (x) = arctan(x) x = ARCTAN(X)
I07 Absolute f (x) = |x| x = ABS(X)
I08 Square root f (x) =

√
x x = SQRT(X)

I09 Exponential function f (x) = ex x = EXP(X)
I10 Exponential function minus 1 f (x) = ex − 1 x = EXP1(X)
I11 Natural logarithm f (x) = ln(x) x = LN(X)
I12 Base-2 logarithm of x f (x) = log2(x) x = LOG2(X)
I13 Base-10 logarithm of x f (x) = log10(x) x = LOG10(X)
I14 Natural logarithm of one plus f (x) = ln(1 + x) x = LN(1 + X)



Entropy 2022, 24, 957 14 of 44

Table 5. List of random number functions.

Identifier Name Function Code Description

I100 Uniform F1 U f 1 ∼ (l, u) x = UNIFORM1(L, U)
I101 Uniform F2 U f 2 ∼ (l, u) x = UNIFORM2(L, U) u = lb + (ub − lb)/2
I102 Uniform F3 U f 3 ∼ (l, u) x = UNIFORM3(L, U) l = lb + (ub − lb)/2
I103 Uniform F4 U f 4 ∼ (l, u) x = UNIFORM4(L, U) l = lb + (ub − lb)/3

u = lb + (ub − lb)/3*2
I104 Uniform F5 U f 5 ∼ (l, u) x = UNIFORM5(L, U) u = lb + (ub − lb)/4
I105 Uniform F6 U f 6 ∼ (l, u) x = UNIFORM6(L, U) l = lb + (ub − lb)/4

u = lb + (ub − lb)/2
I106 Uniform F7 U f 7 ∼ (l, u) x = UNIFORM7(L, U) l = lb + (ub − lb)/2

u = lb + (ub − lb)/4*3
I107 Uniform F8 U f 8 ∼ (l, u) x = UNIFORM8(L, U) l = lb + (ub − lb)/4*3
I108 Uniform F9 U f 9 ∼ (−1, 1) x = UNIFORM9(−1, 1)
I109 Uniform F10 U f 10 ∼ (0, 1) x = UNIFORM10(0, 1)
I110 Uniform F11 U f 11 ∼ (−1, 0) x = UNIFORM11(−1, 0)
I111 Uniform F12 U f 12 ∼ (0.5, 0.5) x = UNIFORM12(0.5, 0.5)
I112 Beta F1 B f 1 ∼ (0.5, 0.5, 1) x = BETA1(0.5, 0.5, 1)
I113 Beta F2 B f 2 ∼ (5, 1, 1) x = BETA2(5, 1, 1)
I114 Beta F3 B f 3 ∼ (1, 3, 1) x = BETA3(1, 3, 1)
I115 Beta F4 B f 4 ∼ (2, 2, 1) x = BETA4(2, 2, 1)
I116 Beta F5 B f 5 ∼ (2, 5, 1) x = BETA5(2, 5, 1)
I117 Triangular F1 Tf 1 ∼ (lb, m, ub) x = TRIANGULAR1(LB, M, UB) m = lb + (ub − lb)/2
I118 Triangular F2 Tf 2 ∼ (lb, m, ub) x = TRIANGULAR2(LB, M, UB) m = lb + (ub − lb)/4
I119 Triangular F3 Tf 3 ∼ (lb, m, ub) x = TRIANGULAR3(LB, M, UB) m = lb + (ub − lb)/3
I120 Triangular F4 Tf 4 ∼ (lb, m, ub) x = TRIANGULAR4(LB, M, UB) m = lb + ((ub − lb)/4)*3
I121 Triangular F5 Tf 5 ∼ (lb, m, ub) x = TRIANGULAR5(LB, M, UB) m = lb + ((ub − lb)/3)*2

Table 6. List of constants.

ID Name Symbol Value Code

I200 Meissel–Mertens M1 0.26149 72128 47642 78375 54268 38608 69585 A077761( )
I201 Bernstein’s β 0.28016 94990 23869 13303 A073001( )
I202 Gauss–Kuzmin–Wirsing λ 0.30366 30028 98732 65859 74481 21901 55623 A038517( )
I203 Hafner–Sarnak–McCurley σ 0.35323 63718 54995 98454 35165 50432 68201 A085849( )
I204 Omega Ω 0.56714 32904 09783 87299 99686 62210 35554 A030178( )
I205 Euler–Mascheroni γ 0.57721 56649 01532 86060 65120 90082 40243 A001620( )
I206 Twin prime C2 0.66016 18158 46869 57392 78121 10014 55577 A005597( )
I207 Conway’s λc 1.30357 72690 34296 39125 70991 12152 55189 A014715( )
I208 Ramanujan–Soldner µ 1.45136 92348 83381 05028 39684 85892 02744 A070769( )
I209 Golden ratio ϕ 1.61803 39887 49894 84820 45868 34365 63811 A001622( )
I210 Euler’s number e 2.71828 18284 59045 23536 02874 71352 66249 A001113( )
I211 Pi π 3.14159 26535 89793 23846 26433 83279 50288 A000796( )
I212 Reciprocal Fibonacci ψ 3.35988 56662 43177 55317 20113 02918 92717 A079586( )

3.4. Experiment 1: AutoMH Experiment

In this experiment, the AutoMH framework aims to find an algorithm capable of ob-
taining good results solving a set of two groups of continuous optimisation problems.
Table 7 describes the parameters used in the AutoMH experiment, such as AutoMH setting
(T01 to T03), the metaheuristic template τ configuration (T04 to T05), the dimension of
the optimisation problem (T06), the list of initial, exploration, intensification and operator
instructions (T07 to T12), and the restriction of the minimum and the maximum number of
instructions that the generated metaheuristic could have.
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Table 7. Parameters used in the AutoMH experiment.

ID Name Description Value

T01 Evolutionary
Agents

The number of non-intelligent agents in the swarm. agents = 10

T02 Evolutionary
Iterations
(Episode)

The number of times the agents in the swarm have to
repeat the optimisation tests once the structure of their
algorithm is modified by the learning agent.

episodes = 100

T03 Mutation
Selection

The mutation is carried out by randomly choosing an ac-
tion of the type ADD, REPLACE, and REMOVE for the Mod-
ified case.

mutation = random

T04 MH Iteration The maximum number of iterations that the metaheuristic
executes.

iterations = 100

T05 MH Execution The number of times the metaheuristic is executed. executions = 31
T05 MH Probability The probability of choosing intensification or exploration

in the STEP function.
P = 0.5

T06 Dimension The dimension of optimisation problems. D = 100

T07 Operator
Initial

The operators ∆ allowed to modify the metaheuristic tem-
plate in the INITIAL function.

∆ = {O01, O02, O03, O04}

T08 Initial
Functions

The Initial functions h(x) allowed for modifying the meta-
heuristic template in the INITIAL function.

h(x) = {I100, I101, I102, I103, I104, I105,
I106, I107, I108, I109, I110, I111, I112, I113,
I114, I120, I123, I130, I131, I132, I133, I134,
I200, I201, I202, I203, I204, I205, I206, I207,
I208, I209, I210, I211, I212}

T09 Operator
Exploration

The operators ∆ allowed to modify the metaheuristic tem-
plate in the STEP function.

∆ = {O01, O02, O03, O04}

T10 Exploration
Functions

The exploration instructions g(x) allowed for modifying
the metaheuristic template in the STEP function.

g(x) = {I100, I101, I102, I103, I104, I105,
I106, I107, I108, I109, I110, I111, I112, I113,
I114, I120, I123, I130, I131, I132, I133, I134,
I200, I201, I202, I203, I204, I205, I206, I207,
I208, I209, I210, I211, I212}

T11 Operator
Intensification

The operators ∆ allowed to modify the metaheuristic tem-
plate in the STEP function.

∆ = {O01, O02, O03, O04}

T12 Intensification
Functions

The intensification functions h(x) allowed for the modifi-
cation of the metaheuristic template in the STEP function.

h(x) = {I01, I02, I03, I04, I05, I06, I07, I08,
I09, I10, I11, I12, I13, I14}

T13 Initial quantity Minimum and maximum number of operators allowed in
the generated metaheuristic

minvalue = 1 maxvalue = 5.

T14 Exploration
quantity

Minimum and maximum amount of exploration instruc-
tions allowed in the generated metaheuristic

minvalue = 1 maxvalue = 10.

T15 Intensification
quantity

Minimum and maximum amount of intensification instruc-
tions allowed in the generated metaheuristic

minvalue = 1 maxvalue = 10.

Experiment Results

During the execution of the experiment using the AutoMH framework, 403,000 exe-
cutions were performed (10 agents × 100 episodes × 31 executions × 13 problems), and
40,300,000 evaluations of objective functions were performed (10 agents × 100 episodes ×
31 executions × 13 problems × 100 iterations). The Action Process during the 100 episodes
has executed the standard case a total of 94 times, consequently the alternative case has been
executed a total of 6 times.

Figure 8 shows the evolution of fitness during the execution of AutoMH framework.
The y-axis indicates the continuous optimisation problem, and the x-axis indicates the
AutoMH episode. Each column indicates the results of the best agent in that episode,
in which each cell indicates the mean value of the 31 executions carried out by that agent
for a continuous optimisation problem. According to Figure 8, a set of relevant information
can be extracted. During the initial episode (episode 0), AutoMH framework has initialised
with one problem with a global fitness value and two problems with a fitness less than
0.4. By episode 10, AutoMH has already obtained a global fitness value for problems F1,
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F2, F3, F4, F6, F7, F9, F10, and F11, giving a total of eight, and problem F10 with a lower
fitness value to 0.0001. From episode 20 to episode 80, there are no improvements for
new problems, maintaining the eight problems with global fitness, however, attempts to
improve problems F8, F12, and F13 can be observed. Finally, for the episodes from 90 to
100, an improvement has been achieved in the F12 problem with a fitness lower than 0.3.

Figures 9 and 10 show variations in the number of instructions used in the algorithm
generated by the best agent in the episode. The y-axis indicates the episode, and the x-axis
indicates the instructions used. Figure 9a indicates the number of initial instructions used
in the INITIAL function. The number of instructions used in the generated algorithms
ranges from 1 to 5, using the maximum number of instructions at episode 30, and ending
at episode 100 with a single initial instruction. Figure 9b indicates the number of steps
and scan instructions used in the STEP function. The number of instructions used in the
generated algorithms is 7 to 16, using 16 instructions in episode 100. The 16 instructions
are divided into 10 intensification instructions and 6 exploration instructions visualised in
Figure 10.
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Figure 8. The Figure showing the evolution of fitness during the 100 episodes of execution of AutoMH
framework. The figure summarises the episodes 10 by 10.
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Figure 9. (a) Shows the number of instructions used in the INITIAL function. (b) Shows the number
of instructions used in the STEP function.
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(a) Intensification
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Figure 10. (a) Shows the number of intensification instructions used by the STEP function. (b) Shows
the number of exploration instructions used by the STEP function.

The metaheuristic algorithm generated by the AutoMH framework can be extracted as a
result at the end of episode 100 in the best ranked non-intelligent agent of the swarm. As a
note, this algorithm is generated in episode 95 and has remained in the best ranking without
another algorithm generated exceeding it. From the output of this agent, the following
instruction tuple sequences can be extracted:

Initial (〈O00, I110〉).
Intensification (〈O01, I07〉, 〈O01, I06〉, 〈O04, I01〉, 〈O03, I06〉, 〈O01, I14〉, 〈O01, I03〉,

〈O02, I09〉, 〈O04, I03〉〈O02, I07〉, 〈O02, I04〉).
Exploration (〈O00, I100〉, 〈O04, I201〉, 〈O03, I212〉, 〈O04, I202〉, 〈O01, I110〉,

〈O02, I112〉).

These instructions are the code fragments with which the metaheuristic algorithm
is generated as output from the AutoMH framework. The equivalent pseudocode of the
three sequences can be seen in Figure 11. During the rest of the manuscript, the generated
metaheuristic algorithm of Figure 11 will be referred to as AMH.

def Initial(P=0.5): 
 # Exploration instruction. 
 x = uniform_f11(-1, 0)      # <O00, I110> 

def Step(): 
     if random_number < P: 
         # Exploration instructions. 
         x = uniform_f1(L, U)      # <O00, I100> 
  x = x / A073001()      # <O04, I201> 
  x = x * A079586()      # <O03, I212> 
  x = x / A038517()      # <O04, I202> 
  x = x + uniform_f11(-1, 0)    # <O01, I110> 
  x = x - beta_05_05(a=0.5, b=0.5, size=1) # <O02, I112> 
 else:
         # Intensification instructions. 
         x = x + abs(x)             # <O01, I07> 
         x = x + arctan(x)              # <O01, I06> 
  x = x / sin(x)               # <O04, I01> 
  x = x * arctan(x)              # <O03, I06> 
  x = x + log(1+x)              # <O01, I14> 
  x = x + tan(x)               # <O01, I03> 
  x = x - exp(x)               # <O02, I09> 
  x = x / tan(x)               # <O04, I03> 
  x = x - abs(x)             # <O02, I07> 
  x = x - arcsin(x)             # <O02, I04> 

def End(x): 
     # Return fitness, solution, and historical fitness. 
     return fitness(x), x, historical()

Figure 11. Best algorithm found when running the AutoMH framework.
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3.5. Experiment 2: Comparison with Other Metaheuristic Algorithms

The objective of Experiment 2 is to carry out tests comparing the performance of
the AMH algorithm obtained when executing Experiment 1. Two experiments will be
conducted:

• Experiment A: The first group of tests comprises a set of unimodal optimisation prob-
lems. These problems are described in Table 1 and numbered as P1, P2, P3, P4, P5, P6,
and P7. The results of this experiment are developed in Section 3.6.

• Experiment B: The second group of tests comprises a set of multimodal optimisation
problems. These problems are described in Table 2 and numbered as P8, P9, F10, P11,
P12, and P13. The results of this experiment are developed in Section 3.7.

The conditions of the experiment are indicated below:

• Experiments A and B will carry out the execution of 15 metaheuristic algorithms.
These algorithms are listed below:

– AMH, which is the algorithm that automatically generates the AutoMH framework
through Experiment 1 in Section 3.4.

– Bat Algorithm (BAT) [26,27].
– Cuckoo Search (CS) [28,29].
– Differential Evolution (DE) [30].
– FireFly Algorithm (FFA) [31].
– Genetic Algorithm (GA) [32].
– Grey Wolf Optimiser (GWO) [33].
– Harris Hawks Optimization (HHO) [34].
– Jaya algorithm (JAYA) [35].
– Moth-Flame Optimization (MFO) [36].
– Multi-Verse Optimiser (MVO) [37].
– Particle Swarm Optimisation (PSO) [38].
– Sine Cosine Optimization Algorithm (SCA) [39].
– Salp Swarm Algorithm (SSA) [40].
– Whale Optimization Algorithm (WOA) [41].

• Each algorithm is performed 31 times for each optimisation problem in Experiment A
and Experiment B.

• As a termination condition, each algorithm is stopped after completing 100 iterations.
• The parameters of each algorithm are the default values from the Evolopy frame-

work [42]. A population value of 6 has been used for the swarm intelligence algorithms,
except for the AMH algorithm, which is a single population.

• It is considered that an algorithm has managed to reach the optimal global value when
during the iterations or at the end of them, the fitness values are less than the tolerance
value 1.00× 10−8.

Each experiment will arrange the results through various perspectives.
A summary of descriptive statistics results: The results are described by means of a table

that shows the quantitative performance indicators of mean fitness and standard deviation.
This summary describes the results obtained by each metaheuristic algorithm for each
optimisation problem. Complementary results that include a nonparametric multiple
comparisons test are described in the Appendix B.

A set of box plots: The purpose is to visualise the fitness results of each algorithm in
each optimisation problem. The visualisation of the results of each metaheuristic algorithm
will be conditioned to appear in the visualisation if the total sum of its fitness is less than
the value of 1.00× 1010; otherwise, they will not be considered in the box plot.

A run-time summary: A summary of the execution times that the algorithms have taken
to solve each optimisation problem’s executions.

A ranking summary: A visual summary shows a ranking of the algorithms when solving
the portfolio of problems. This ranking considers the indicators of mean and execution
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time. The ranking summary is represented by the matrix R = (rij) (see Equation (21)),
where i ∈ {1, . . . , m}; j ∈ {1, . . . , n}, m is the total number of optimisation problems, and
n is the total number of the metaheuristic algorithms. Each row indicates the ranking for a
single optimisation problem.

R =

A1 A2 · · · An


P1 r1,1 r1,2 · · · r1,n
P2 r2,1 r2,2 · · · r2,n
...

...
...

. . .
...

Pm rm,1 rm,2 · · · rm,n

(21)

In order to obtain the results of the matrix R, the data must be obtained and grouped
into a data matrix D. Formally, the data matrix can be defined as D = (〈F; T〉i,j) (see
Equation (22)), where F is the mean value of the fitness value of the 31 runs of an optimisa-
tion problem using a metaheuristic algorithm, T is the sum of the times of the 31 executions
of an optimisation problem using a metaheuristic algorithm, i ∈ {1, . . . , m}; j ∈ {1, . . . , n},
m is the total number of optimisation problems, and n is the total number of the metaheuris-
tic algorithms.

D =

A1 A2 · · · An


P1 〈F; T〉1,1 〈F; T〉1,2 · · · 〈F; T〉1,n
P2 〈F; T〉2,1 〈F; T〉2,2 · · · 〈F; T〉2,n
...

...
...

. . .
...

Pm 〈F; T〉m,1 〈F; T〉m,2 · · · 〈F; T〉m,n

(22)

An example of the ranking calculation for a problem can be seen in the Equation (23),
where:

• Step 0: The data are available in the matrix D.
• Step 1: A first ranking is performed by ordering the algorithms considering the best

fitness mean among the results of all the algorithms.
• Step 2: In the case of a tie in the value of the mean fitness between two or more

algorithms, it should be considered that the algorithms are ordered according to the
time in which the algorithms managed to execute the 31 executions of an optimisation
problem. The algorithm with the shorter time will receive the best ranking, and the
algorithm with the longer time will receive the worse ranking.

• Step 3: Finally, the ranking by mean and time is obtained.

Step 0 A1 A2 A3 A4
[ ]D = P1 〈0.5; 8.34〉 〈0.3; 7.64〉 〈0.6; 9.77〉 〈0.3; 7.22〉

Step 1 A1 A2 A3 A4
[ ]D = P1 〈0.5; 8.34〉 〈0.3; 7.64〉 〈0.6; 9.77〉 〈0.3; 7.22〉

rank by mean A1 A2 A3 A4
[ ]R = P1 2 1 3 1

Step 2 A1 A2 A3 A4
[ ]D = P1 〈0.5; 8.34〉 〈0.3; 7.64〉 〈0.6; 9.77〉 〈0.3; 7.22〉

rank by time A1 A2 A3 A4[ ]
R = P1 2 1 3 1

(longer time) (shorter time)

Step 3 rank by
mean & time A1 A2 A3 A4

[ ]R = P1 3 2 4 1

(23)
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A set of Convergence Graphs: The idea is to visualise how the algorithms improve the
fitness value during each iteration; in this way, it is possible to make a visual comparison of
the convergence between several algorithms. Convergence graphs are built from the fitness
results generated by each algorithm at each iteration. The construction of the convergence
in this research is carried out through a numerical matrix of fitness. A numerical example
of three runs is described in matrix (24). Each row represents a single run, and each column
represents a single iteration. The executions are numbered as {E1, E2, E3} and the iterations
are numbered as {I1, . . . , I8}.

I1 I2 I3 I4 I5 I6 I7 I8 E1 10 4 4 3 2 0 0 0
E2 8 3 3 3 2 1 0 0
E3 9 8 7 4 2 1 1 0

max 9 8 7 4 2 1 1 0
average 9 5 4.7 3.3 2 0.7 0.3 0

min 8 3 3 3 2 0 0 0

(24)

The three executions have eight iterations, starting at iteration I1, which corresponds
to the worst fitness until reaching iteration I8, which corresponds to the best fitness. Using
the matrix of fitness values, they are performed to determine the maximum fitness value,
the mean fitness, and the minimum fitness for each column in the matrix. The maximum
and minimum values plot the area of convergence, and the mean fitness indicates the mean
convergence using a single array of values.

A set of Search Trajectory Networks (STN): An STN is a directed graph defined as
STN = G(N, E), where N is a node set and E is an edge set [43]. The purpose of the STN
is to visualise the solutions generated by the optimisation algorithms in each iteration
through a directed graph. Each node in the STN represents a location. A location represents
a solution defined by a fitness value of the objective function. Each edge is directed to and
connects two consecutive locations on the search path.

In this investigation, the STN is visualised through the deployment of a Fruchterman–
Reingold design of force-directed graphs. The STN visualisation integrates the AMH
algorithm by default, and two algorithms are chosen according to each experiment’s
ranking. If the AMH algorithm is not displayed in a standard view, a subplot of the
nodes with fitness values in the upper 25% percentile for the AMH algorithm is visible.
For the visualisation of the STN, five executions have been taken as a sample for each
metaheuristic algorithm.

3.6. Experiment 2 Results: Experiment A—Unimodal Optimisation Problems

This section describes and analyses the results of Experiment A. These results in-
clude statistical results and a view of these results from various perspectives such as
box plots, runtime and fitness-based rankings, convergence plots, and Search Trajectory
Networks plots.

3.6.1. Statistical Results

Table 8 shows the results of Experiment A based on the quantitative indicators of mean
and standard deviation.
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Table 8. Experiment A: Statistical Summary.

Metaheuristic Type P1 P2 P3 P4 P5 P6 P7

AMH mean 0.00 0.00 0.00 0.00 9.90 × 101 0.00 0.00
std 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BAT mean 1.74 × 105 1.54 × 1047 2.16 × 106 8.67 × 101 5.51 × 108 1.80 × 105 7.56 × 102

std 6.19 × 104 7.53 × 1047 1.43 × 106 1.02 × 101 3.27 × 108 7.11 × 104 4.60 × 102

CS mean 6.98 × 104 1.65 × 1014 1.79 × 105 6.46 × 101 1.13 × 108 6.98 × 104 1.73 × 102

std 1.18 × 104 8.53 × 1014 5.26 × 104 6.19 3.21 × 107 1.20 × 104 5.06 × 101

DE mean 1.64 × 105 4.39 × 1021 4.11 × 105 8.57 × 101 5.48 × 108 1.65 × 105 9.00 × 102

std 2.56 × 104 2.21 × 1022 1.72 × 105 6.55 1.73 × 108 2.64 × 104 2.49 × 102

FFA mean 1.19 × 105 4.06 × 1026 3.80 × 105 8.59 × 101 2.72 × 108 1.18 × 105 3.63 × 102

std 1.71 × 104 2.20 × 1027 9.36 × 104 4.49 6.18 × 107 1.59 × 104 1.15 × 102

GA mean 2.04 × 105 1.04 × 1037 5.52 × 105 9.25 × 101 7.43 × 108 2.02 × 105 1.18 × 103

std 1.61 × 104 3.78 × 1037 1.45× 105 1.84 9.78× 107 1.32× 104 1.62× 102

GWO mean 2.27× 103 2.60× 101 1.29× 105 5.55× 101 1.31× 106 2.45× 103 1.25
std 5.16× 102 4.58 2.59× 104 5.68 7.54× 105 7.15× 102 8.56× 10−1

HHO mean 1.96 × 10−11 2.16× 10−6 7.94× 102 1.99× 10−6 1.12× 101 0.00 1.65 × 10−28

std 1.03× 10−10 8.77× 10−6 4.35× 103 7.53× 10−6 2.41× 101 0.00 7.75× 10−28

JAYA mean 5.60× 104 1.81× 102 5.53× 105 9.60× 101 1.84× 108 5.37× 104 2.58× 102

std 1.45× 104 5.05× 101 1.37× 105 2.58 5.24× 107 1.50× 104 7.45× 101

MFO mean 1.67× 105 7.86× 1016 3.80× 105 9.22× 101 5.85× 108 1.67× 105 8.41× 102

std 1.57× 104 4.30× 1017 8.00× 104 1.87 9.61× 107 1.45× 104 1.20× 102

MVO mean 8.40× 104 9.47× 1036 2.70× 105 8.78× 101 1.85× 108 8.18× 104 2.54× 102

std 1.17× 104 3.42× 1037 4.96× 104 3.51 5.35× 107 1.21× 104 8.73× 101

PSO mean 2.16× 104 9.87× 1018 1.46× 105 4.14× 101 2.04× 107 1.98× 104 1.38× 103

std 5.94× 103 5.41× 1019 5.32× 104 4.12 1.97× 107 3.99× 103 2.52× 102

SCA mean 5.81× 104 6.49× 101 5.84× 105 9.68× 101 5.46× 108 5.80× 104 7.76× 102

std 2.62× 104 2.97× 101 2.06× 105 1.37 1.94× 108 2.58× 104 3.11× 102

SSA mean 1.07× 104 8.05× 101 4.93× 104 2.57× 101 2.62× 106 1.11× 104 3.85
std 1.45× 103 7.33 2.43× 104 2.33 8.43× 105 1.52× 103 1.15

WOA mean 8.15× 10−2 7.91× 10−3 2.21× 106 8.23× 101 7.14× 102 1.58 1.49× 10−3

std 1.74× 10−1 3.68× 10−2 1.49× 106 1.84× 101 2.62× 103 2.64 7.43× 10−3

If the mean value of the fitness is less than the tolerance value 1.00× 10−8, these values will be marked in bold.

P1 Problem (Details in Definition A1): The optimal value was obtained by the AMH
algorithm, with a mean value and standard deviation of 0.00 ± 0.00. The HHO algorithm
displays a mean value and standard deviation of 1.96× 1011 ± 1.03× 1010. The BAT, CS,
DE, FFA, GA, GWO, JAYA, MFO, MVO, PSO, SCA, SSA, and WOA algorithms have not
performed well. These results can be visualised in Figure 12a, where it is observed that
the algorithms closest to the optimal global value are the AMH and HHO algorithms.
In addition, it is observed that these algorithms have a low dispersion in the data.

P2 Problem (Details in Definition A2): Visually, Figure 12b shows that the algorithms
closest to the global optimum are AMH, WOA, and HHO. In addition, it is observed
that these algorithms have a low dispersion in the data. If we consider the results of
Table 8, the algorithm demonstrating better performance is the AMH algorithm, with a
mean value of its fitness and a standard deviation of 0.00 ± 0.00. In a complementary way,
the algorithms PSO, GA, BAT, FFA, MVO, MFO, CS, DE are not considered in Figure 12b,
because the total sum of their fitness is greater than 1.00× 1010.
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Figure 12. The box plots for problems P1, P2, P3, P4, P5, P6, and P7.

P3 Problem (Details in Definition A3): Although Figure 12c visually shows that the
algorithms closest to the global optimum are AMH, SSA, and HHO, the algorithm with
better performance, however, is the AMH algorithm, with a mean fitness value of 0.00.
Additionally, according to the data in Table 8, no other algorithm, except for AMH, achieved
a fitness close to the global optimum or less than 1.00.
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P4 Problem (Details in Definition A4): The algorithm with better performance is the
AMH algorithm, with a mean fitness value of 0.00. The remaining algorithms did not reach
good optimal values. These observations can be contrasted in Figure 12d.

P5 Problem (Details in Definition A5): In this problem, no algorithm demonstrated
a mean fitness value less than the tolerance value 1.00× 10−8. These observations can be
contrasted in Figure 12e.

P6 Problem (Details in Definition A6): The algorithms that obtained an optimal value
were the AMH and HHO algorithms, with a mean value and a standard deviation of 0.00.
The BAT, CS, DE, FFA, GA, GWO, JAYA, MFO, MVO, PSO, SCA, SSA, and WOA algorithms
did not perform well. These results can be contrasted in Figure 12f, where it can be seen
that the algorithms closest to the optimal global value are the AMH and HHO algorithms.

P7 Problem (Details in Definition A7): The algorithms have managed to obtain an
optimal value have been the AMH and HHO algorithms. The AMH algorithm has obtained
an mean fitness value and a standard deviation of 0.00 ± 0.00, and the HHO algorithm has
obtained an mean fitness value and a standard deviation of 1.65× 10−28 ± 7.75× 10−28.
The BAT, CS, DE, FFA, GA, GWO, JAYA, MFO, MVO, PSO, SCA, SSA, and WOA algorithms
have not performed well. These results can be seen in Figure 12g, where it can be seen that
the algorithms closest to the optimal global value are the AMH and HHO algorithms.

3.6.2. Execution Time

Figure 13 summarises the execution time in which each algorithm solved experiment A.
It can be seen that the AMH algorithm obtained the best time with 69.49 s, the second-best
time was obtained by the GA algorithm with 79.58 s, while the HHO algorithm obtained
the third-best time with 86.75 s.
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Figure 13. A summary of the execution times of Experiment A. The figure is composed of a matrix
and a vector of values that represent a measurement in seconds. The matrix represents the results
by a set of cells. The cells indicate the duration of the 31 executions in which each metaheuristic
algorithm executed each optimisation problem. The vector represents the total sums for each column
of values in the matrix. The calculation is performed by adding together the times of the problems P1,
P2, P3, P4, P5, P6, and P7.

3.6.3. Ranking

The ranking determines the position of the algorithm based on the indicators of the
best mean fitness values and the shortest execution time. These results are displayed in
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Figure 14. If we only consider the algorithms that have obtained a ranking of 1, 2 or 3, we
can extract the following observations:

• The AMH algorithm obtained five problems in rank 1 and two in rank 2.
• The HHO algorithm obtained two problems in rank 1 and five problems in rank 2.
• The WOA algorithm obtained five problems in rank 3.
• The SSA algorithm obtained two problems in rank 3.

From this information, we can deduce that the algorithm in first place with regard
to the ranking is the AMH algorithm, the second algorithm in the ranking is the HHO,
and the third algorithm in the ranking is the WOA.

AMH BAT CS DE FFA GA GWO HHO JAYA MFO MVO PSO SCA SSA WOA
Metaheuristic
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Figure 14. Summary of a ranking matrix between the algorithms in solving optimisation problems,
considering mean fitness and execution time indicators. Each row represents the ranking among the
15 algorithms, ordered according to their performance at solving a problem P1, P2, P3, P4, P5, P6,
or P7.

3.6.4. Search Trajectory Networks

The AMH, HHO, and WOA algorithms were chosen as they were the first three
algorithms in the ranking described in Figure 14.

P1 Problem: In Figure 15a, it can be seen that the trajectories of the AMH and HHO
algorithms end in the best location (triangle node). In contrast, the WOA algorithm paths
end at a different location.

P2 Problem: In Figure 15b, the five trajectories of the AMH algorithm have managed
to reach the best location (triangle node), ending their location with a mean and standard
deviation of 0.00 ± 0.00. The trajectory of the HHO and WOA algorithms have managed
to approach a good location (square end node) with a mean and standard deviation of
2.16× 10−6 ± 8.77× 10−6 for the HHO algorithm and 7.91× 10−3 ± 3.68× 10−2 for the
WOA algorithm; however, this location is insufficient with regard to acceptability as a good
solution. It can also be seen that the HHO and WOA algorithms share several nodes in
their trajectory.
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(a) P1
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(b) P2

Start End Best Shared AMH HHO WOA

(b) STN for problem P2

(c) P3

Start End Best Shared AMH HHO WOA

(c) STN for problem P3
(d) P4

Start End Best Shared AMH HHO WOA

(d) STN for problem P4
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Start End Best Shared AMH HHO WOA

(e) STN for problem P5
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(f) STN for problem P6 - Zoomed (Top 25%)
(g) P7
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(g) STN for problem P7

Figure 15. Figures (a–g) show the Search Trajectory Networks of the AMH, HHO, and WOA algo-
rithms for problems P1, P2, P3, P4, P5, P6, and P7, respectively. The squares indicate the start and
end locations of the algorithm executions. The triangle node is the best-found solution.The circles
represent the nodes of algorithms AMH, HHO, and WOA. Each algorithm has a default colour for
each circular node. If a circular node is shared by more than one algorithm, it is depicted in light grey.
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P3 Problem: Figure 15c shows that the trajectories of the AMH algorithms end up
in the best location (triangle node), with a mean and standard deviation of 0.00 ± 0.00.
Regarding the HHO algorithm, two trajectories have failed to find a suitable solution,
and three have managed to reach the best location (triangle node). For the WOA algorithm,
it is observed that the five trajectories have performed an exploration in the search space
but have not reached the best location.

P4 Problem: In Figure 15d, the five trajectories of the AMH algorithm have managed
to reach the best location (triangle node), ending their location with a mean and standard
deviation of 0.00 ± 0.00. The trajectory of the HHO algorithm visually also manages to
reach the best location; however, when reviewing the values of the mean and standard
deviation of 1.99× 10−6 ± 7.53× 10−6, it does not reach a better fitness at tolerance value
1.00× 10−8. The five trajectories of the WOA algorithm have failed to come close to the
best location.

P5 Problem: In this problem, no algorithm has managed to demonstrate a mean that
represents values with the best fitness; therefore, the trajectories displayed in Figure 15e do
not converge in the best location (triangle node).

P6 Problem: The trajectories of the AMH, HHO, and WOA algorithms are depicted
in an enlarged display in Figure 15f. The trajectories of the AMH and HHO algorithms
end in the best location (triangle node), with a mean and standard deviation of 0.00 ± 0.00.
The HHO and WOA algorithms present two shared solutions (grey circle node). Two WOA
trajectories reach the best location (triangle node); however, the other three do not reach
a good position (large grey node). This observation can be contrasted with the mean and
standard deviation with the obtained values of 1.58 ± 1.58.

P7 Problem: In Figure 15g, the trajectories of the AMH and HHO algorithms end
in the best location (triangle node). This observation does not mean that the AMH and
HHO algorithms have the same results, but rather that both are sufficient according to
the tolerance value The trajectories of the AMH 1.00× 10−8. The mean and standard
deviation obtained for AMH was 0.00 ± 0.00, and 1.65× 10−28 ± 7.75× 10−28 for HHO.
The WOA algorithm was close to reaching the tolerance value 1.00× 10−8, but still not
enough, and achieved a close position (square node); this can be verified because its mean
value and standard deviation are 1.49× 10−3 ± 7.43× 10−3. Finally, there are six solutions
shared by the HHO and WOA algorithms.

3.6.5. Convergence

Figure 16 shows a comparison of the AMH algorithm with the HHO algorithm.
The AMH and HHO algorithms were chosen as they were the first and second algorithms
in the ranking described in Figure 14. Based on the mean fitness value, it can be seen in
Figure 16a,c,e,g,i,k,m that under 100 iterations, the AMH algorithm has a faster conver-
gence compared to the HHO algorithm.
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Figure 16. (Plots a,c,e,g,i,k,m) describe the convergence curves of the AMH and HHO algorithms
for problems P1, P2, P3, P4, P5, P6, and P7; (Plots b,d,f,h,j,l,n) describe an enlarged view of the
convergence curve from iteration 1 to 10. The x-axis indicates the number of iterations, and the
y-axis indicates fitness. The areas represent the minimum and maximum fitness values obtained in
each iteration for each algorithm. The lines represent the mean fitness value of each iteration. The
information of the 31 executions is included.

When considering the area of fitness for problems P1, P2, P3, P4, P5, and P6, the area of
the AMH algorithm tends to be much smaller than the area of fitness of the HHO algorithm;
providing partial evidence that the AMH algorithm tends to be much more robust than the
HHO algorithm on this set of problems. The reason for this observation is because visually
in each iteration, the minimum and maximum value of the fitness of the AMH algorithm
tends to be lower in contrast to the minimum and maximum values of the fitness of the
HHO algorithm. This robust observation is also observed between the first 10 iterations of
Figure 16b,d,f,h,j,l. In the problem P7 of Figure 16m,n, the AMH algorithm tends to lose
robustness but maintains a fast convergence according to the area.

3.7. Experiment 2 Results: Experiment B-Multimodal Optimisation Problems

This section describes and analyses the results of Experiment B. These results include
statistical results and a view of these results from various perspectives such as box plots, run-
time and fitness-based rankings, convergence plots, and Search Trajectory Networks plots.

3.7.1. Statistical Results

Table 9 shows the results of Experiment B based on the quantitative indicators of mean
and standard deviation.
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Table 9. Experiment B: Statistical Summary.

Metaheuristic Type P8 P9 P10 P11 P12 P13

AMH mean 3.12 × 104 0.00 4.44 × 10−16 0.00 2.31× 10−1 1.00× 101

std 4.39× 102 0.00 0.00 0.00 5.47× 10−2 0.00

BAT mean 3.73× 104 1.39× 103 1.98× 101 1.57× 103 1.20× 109 2.44× 109

std 1.74× 103 1.46× 102 3.23× 10−1 5.59× 102 9.25× 108 1.60× 109

CS mean 3.15× 104 9.75× 102 1.80× 101 6.29× 102 1.20× 108 3.43× 108

std 6.87× 102 4.50× 101 6.16× 10−1 1.06× 102 6.18× 107 1.33× 108

DE mean 3.03× 104 1.12× 103 1.99× 101 1.48× 103 1.14× 109 2.36× 109

std 1.57× 103 9.65× 101 3.07× 10−1 2.30× 102 5.17× 108 8.72× 108

FFA mean 3.30× 104 1.06× 103 1.94× 101 1.07× 103 4.04× 108 9.92× 108

std 1.81× 103 7.41× 101 2.94× 10−1 1.54× 102 1.40× 108 3.03× 108

GA mean 3.30× 104 1.39× 103 2.06× 101 1.84× 103 1.53× 109 3.04× 109

std 1.42× 103 4.60× 101 1.23× 10−1 1.44× 102 2.53× 108 4.04× 108

GWO mean 3.35× 104 6.98× 102 7.04 2.14× 101 1.05× 105 9.72× 105

std 2.94× 103 1.15× 102 8.72× 10−1 4.65 2.32× 105 1.05× 106

HHO mean 7.82× 103 1.60 × 10−11 2.97× 10−8 1.18 × 10−9 2.58× 10−3 1.34× 10−1

std 6.32× 103 6.68× 10−11 6.58× 10−8 6.47× 10−9 3.73× 10−3 2.17× 10−1

JAYA mean 3.38× 104 1.06× 103 1.81× 101 5.05× 102 3.60× 108 6.95× 108

std 1.34× 103 1.08× 102 9.71× 10−1 1.30× 102 1.61× 108 2.23× 108

MFO mean 2.56× 104 1.17× 103 2.02× 101 1.50× 103 1.25× 109 2.44× 109

std 1.32× 103 6.57× 101 9.02× 10−2 1.41× 102 2.32× 108 4.66× 108

MVO mean 2.83× 104 1.26× 103 2.06× 101 7.57× 102 2.81× 108 6.41× 108

std 1.29× 103 6.05× 101 2.03× 10−1 1.09× 102 9.98× 107 2.32× 108

PSO mean 3.75× 104 1.37× 103 1.50× 101 4.57× 102 1.23× 106 1.17× 107

std 9.52× 102 7.13× 101 1.33 8.26× 101 1.19× 106 1.06× 107

SCA mean 3.67× 104 5.56× 102 1.92× 101 5.24× 102 1.63× 109 2.52× 109

std 5.64× 102 2.26× 102 2.28 2.36× 102 4.14× 108 8.83× 108

SSA mean 2.76× 104 5.39× 102 1.17× 101 9.70× 101 4.86× 103 1.27× 106

std 1.34× 103 3.33× 101 7.38× 10−1 1.30× 101 9.64× 103 7.12× 105

WOA mean 1.47× 104 7.30 1.60× 10−2 1.56× 10−1 2.11× 101 1.53× 102

std 5.29× 103 3.57× 101 3.01× 10−2 2.85× 10−1 6.84× 101 4.38× 102

If the mean value of the fitness is less than the tolerance value 1.00× 10−8, these values will be marked in bold.

P8 Problem (Details in Definition A8): In this problem, no algorithm achieved a
value lower than the tolerance value 1.00× 10−8. These data can be visually contrasted in
Figure 17a.

P9 Problem (Details in Definition A9): The algorithms that have obtained an op-
timal value are the AMH algorithms with a mean fitness value and standard devia-
tion of 0.00 ± 0.00, and the HHO algorithm with a mean and standard deviation of
1.60× 10−11 ± 6.68. The BAT, CS, DE, FFA algorithms, GA, GWO, JAYA, MFO, MVO,
PSO, SCA, SSA, and WOA did not perform well. These results can be visualised in
Figure 17b, where it is observed that the algorithms closest to the global optimal value are
the AMH and HHO algorithms. In addition, it is observed that these algorithms have a
low dispersion in the data.
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Figure 17. The box plots for problems P8, P9, P10, P11, P12, and P13.

P10 Problem (Details in Definition A10): In this problem, the AMH algorithm obtained
an optimal value with a mean and standard deviation of 4.44× 1016 ± 0.00. The other
algorithms did not demonstrate good performance. These results can be visualised in
Figure 17c.

P11 Problem (Details in Definition A11): Figure 17d shows that the algorithms closest
to the global optimum are AMH and HHO. In addition, it is observed that these algorithms
have a low dispersion in the data. However, considering the results of Table 9, the AMH
algorithm is the better performing algorithm with a fitness and a standard deviation of
0.00 ± 0.00. In contrast, the HHO algorithm obtained a fitness and a standard deviation of
1.18× 109 ± 6.47× 109.

P12 Problem (Details in Definition A12): In this problem, no algorithm achieved a
value lower than the tolerance value 1.00× 10−8. These data can be visually contrasted in
Figure 17e. In a complementary manner, the algorithms GA, BAT, FFA, MFO, SCA, JAYA,
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and DE are not considered in Figure 17e because the total sum of their fitness is greater
than 1.00× 1010.

P13 Problem (Details in Definition A13): In this problem, no algorithm achieved a
result less than the tolerance value 1.00× 10−8. These data can be contrasted visually in
Figure 17f. In a complementary manner, the algorithms GA, BAT, FFA, MVO, MFO, CS,
SCA, JAYA, and DE are not considered in Figure 17f because the total sum of their fitness is
greater than 1.00× 1010.

3.7.2. Execution Time

Figure 18 summarises the execution time in which each algorithm solved Experiment B.
It can be seen that the AMH algorithm obtained the best time with 62.77 s, the second-best
time was obtained by the GA algorithm with 118.58 s, while the DE algorithm obtained the
third-best time with 157.41 s.
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Figure 18. A summary of the execution times of Experiment B. The figure is composed of a matrix
and a vector of values that represent a measurement in seconds. The matrix represents the results by a
set of cells. The cells indicate the duration of the 31 executions in which each metaheuristic algorithm
executed each optimisation problem. The vector represents the total sum for each column of values
in the matrix. The calculation is performed by adding together the time values of the problems P8,
P9, P10, P11, P12, and P13.

3.7.3. Ranking

The ranking determines the position of the algorithm based on the indicators of the
best mean fitness values and the shortest execution time. These results are displayed in
Figure 19. If we only consider the algorithms that have obtained a ranking of 1, 2 or 3, we
can extract the following observations:

• The AMH algorithm obtained three problems at rank 1, two problems at rank 2,
and one problem at rank 7.

• The HHO algorithm obtained three problems in rank 1, and three problems in rank 2.
• The WOA algorithm obtained five problems in rank 3, and one in rank 2.
• The MFO algorithm obtained one problem in rank 3.

With this information, we can deduce that the HHO algorithm ranks first place, AMH
second place, and WOA third place.



Entropy 2022, 24, 957 32 of 44

AMH BAT CS DE FFA GA GWO HHO JAYA MFO MVO PSO SCA SSA WOA
Metaheuristic

P9

P8

P13

P12

P11

P10

Pr
ob

le
m

1 14 7 10 8 15 6 2 9 11 12 13 5 4 3

7 14 8 6 9 10 11 1 12 3 5 15 13 4 2

2 13 7 11 10 15 4 1 9 12 8 6 14 5 3

2 12 7 11 10 14 5 1 9 13 8 6 15 4 3

1 14 9 12 11 15 4 2 7 13 10 6 8 5 3

1 11 7 12 10 14 4 2 8 13 15 6 9 5 3

1
3
5
7
9
11
13
15

Ra
nk

Figure 19. Summary of a ranking matrix between the algorithms in solving optimisation problems,
considering mean fitness and execution time indicators. Each row represents the ranking among the
15 algorithms ordered by efficiency in solving a problem P8, P9, P10, P11, P12, and P13.

3.7.4. Search Trajectory Networks

The AMH, HHO, and WOA algorithms were chosen as they were the first three
algorithms in the ranking described in Figure 19.

P8 Problem: No algorithm achieved good fitness results; therefore, the trajectories
displayed in Figure 20a do not converge at the best location (triangle node). The HHO
and WOA algorithms share a solution (grey circle node). Finally, it can be seen that all the
algorithms have explored new solutions.

P9 Problem: In Figure 20b, in general, the five trajectories of the AMH and HHO
algorithms have managed to reach the best location (triangle node), ending their location
with a mean and standard deviation of 0.00± 0.00 for the AMH algorithm and 1.60× 10−11

± 6.68× 10−11 for the HHO algorithm. There are three solutions shared by the HHO and
WOA algorithms (grey circle node).

P10 Problem: In Figure 20c, in general, the trajectories of the AMH and HHO algo-
rithms have managed to reach the best location (triangle node), ending their location with
a mean and standard deviation of 0.00 ± 0.00 for the AMH algorithm and 2.97× 10−8 ±
6.58× 10−8 for the HHO algorithm. There are six solutions shared by the HHO and WOA
algorithms (grey circle node). The WOA algorithm has visually managed to reach close to
the best location, this observation can be contrasted by verifying that the mean value and
standard deviation bear a value of 1.60× 10−2 ± 3.01× 10−2.

P11 Problem: In Figure 20d, in general, the trajectories of the AMH and HHO algo-
rithms have managed to obtain the best location (triangle node), ending their location with
a mean and standard deviation of 0.00 ± 0.00 for the AMH algorithm and 1.18× 10−9 ±
6.47× 10−9 for the HHO algorithm. The algorithm WOA has not reached the best location
(triangle node); however, it shares three solutions with the HHO algorithm.
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Figure 20. (a–f) Search Trajectory Networks of the AMH, HHO, and WOA algorithms for problems
P8, P9, P10, P11, P12, and P13, respectively. The squares indicate the start and end locations of the
algorithm executions. The triangle node is the best-found solution. The circles represent the nodes of
algorithms AMH, HHO, and WOA. Each algorithm has a default colour for each circular node. If a
circular node is shared by more than one algorithm, it is depicted in light grey.

P12 Problem: In this problem, no algorithm achieved a value lower than the tolerance
value 1.00× 10−8. The AMH algorithm does not have a trajectory and can be seen in the
upper right part of the figure (black square node). The HHO and WOA algorithms have
searched the entire search space.

P13 Problem: In this problem, no algorithm achieved value a lower than the toler-
ance value 1.00× 10−8. The AMH algorithm has a short trajectory. The HHO and WOA
algorithms have searched the entire search space.

3.7.5. Convergence

Figure 21 describes a comparison between the AMH algorithm and the HHO algo-
rithm. The AMH and HHO algorithms were chosen as they were the first and second
ranking algorithms described in Figure 19. Considering the fitness area for problems P9,
P10, and P11, based on the mean fitness value, it can be seen in Figure 21c,e,g that under
100 iterations, the AMH algorithm has a faster convergence compared to the HHO algo-
rithm.

Considering the area of fitness for problems P9, P10, and P11, the area of the AMH
algorithm tends to be much smaller than the area of fitness of the HHO algorithm. Fur-
thermore, the minimum and maximum values in each iteration of the fitness of the AMH
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algorithm tend to be smaller in contrast to the minimum and maximum values of the fitness
of the HHO algorithm. This observation is also observed between the first 10 iterations in
Figure 21d,f,h.

Concerning other observations, in problem P8 of Figure 21a,b, the AMH algorithm
loses convergence according to the area. For problems P12 and P13, in Figure 21i–l, it can
be seen that the AMH algorithm has a fast convergence compared to the HHO algorithm.

0 20 40 60 80 100
0

1

2

3

4
×104 (a) P8

1 2 3 4 5 6 7 8 9 10
1.0
1.5
2.0
2.5
3.0
3.5
4.0

×104 (b) P8 Zoomed

0 20 40 60 80 100
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

×103 (c) P9

1 2 3 4 5 6 7 8 9 10
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

×103 (d) P9 Zoomed

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0
×101 (e) P10

1 2 3 4 5 6 7 8 9 10
0.0

0.5

1.0

1.5

2.0
×101 (f) P10 Zoomed

0 20 40 60 80 100
0.0
0.5
1.0
1.5
2.0
2.5
3.0

×103 (g) P11

1 2 3 4 5 6 7 8 9 10
0.0
0.5
1.0
1.5
2.0
2.5
3.0

×103 (h) P11 Zoomed

Figure 21. Cont.
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Figure 21. (Plots a,c,e,g,i,k) describe the convergence curves of the AMH and HHO algorithms for
problems P1, P2, P3, P4, P5, P6, and P7; (Plots b,d,f,h,j,l) describe an enlarged view of the convergence
curve from iteration 1 to 10. The x-axis indicates the number of iterations, and the y-axis indicates
fitness. The areas represent the minimum and maximum fitness values obtained in each iteration for
each algorithm. The lines represent the mean fitness value of each iteration. Information regarding
the 31 executions is included.

4. Discussion

This section describes an overview of the AutoMH framework performance, a resume
of the comparative experiments, final comments and guidelines for future work of this re-
search.

Performance: In the experimental tests, the optimisation problems were considered to
have a dimension D of 100, which is the maximum dimension described in the competition
of the Congress of Evolutionary Computation CEC 2014 [44] and CEC 2015 [45]. In the
CEC competition, the optimisation problems tests are conducted with dimensions 10, 30,
50 and 100. In addition, the smallest possible time variable was considered; therefore, as a
termination criterion of the algorithms, the maximum number of iterations used in the tests
was 100. This number contrasts with the CEC competition in that iterations are calculated
with the formula MaxFES = 10,000 ∗ D, giving 1,000,000 iterations. The restriction of 100
iterations included in this research forces the AutoMH framework to find evolutionary
metaheuristic algorithms capable of solving the portfolio of optimisation problems in a
stress scenario.

According to the results obtained in experiments A and B, the AMH algorithm gener-
ated by the AutoMH framework managed to reach the optimal global value for 9 of the
13 optimisation problems listed as P1, P2, P3, P4, P6, P7, P9, P10, and P11. The results
show that the HHO metaheuristic algorithm performed second best, finding the optimal
global value for problems P1, P6, P7, P9, and P11. None of the algorithms reached the
optimal global value for problems P8, P12, and P13. These results were observed through
a ranking perspective choosing the indicators of average fitness and shorter execution
time. The AMH algorithm obtained eight problems solved in ranking 1 and four solved in
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ranking 2. The next best algorithm was the HHO algorithm with five problems in ranking
1 and eight problems in ranking 2, followed by the WOA algorithm with one problem in
ranking 2, and 10 problems in ranking 3; finally, the other 12 algorithms tested did not
demonstrate noteworthy results. These observations provide supporting evidence that the
AMH algorithm generated by the AutoMH framework has a performance equal to or better
than algorithms reported in the literature.

Considering the Search Trajectory Network graphs, the trajectory of the AMH algo-
rithm is short, with two or three nodes. The trajectory visually tends to be more directed,
focusing on solution intensification rather than space exploration, in contrast to the trajec-
tories of the HHO and WOA algorithms that perform more exploration of the search space.
This observation can be extended if the convergence of the algorithms is considered for this
point. The AMH algorithm visually tends to demonstrate a fast and robust convergence
compared to the HHO algorithm.

Remarks: This research has fully contributed to the field of machine learning optimi-
sation, specifically in the integration of reinforcement learning for solving optimisation
problems. Based on reinforcement learning, the design of the AutoMH framework has al-
lowed, through an online evolution process, the automatic generation of viable evolutionary
metaheuristic algorithms that are capable of solving a portfolio of optimisation problems
posed by the user. The algorithm generated by the AutoMH framework has proven to be
capable of solving optimisation problems with equal or superior performance compared to
the 14 metaheuristic algorithms considered in this study.

Future Work: There are several lines to consider for future work, such as integrating
new operators or new indivisible functions of intensification and exploration. In such a
way, the variety of new metaheuristic algorithms that can be found is enriched. A starting
point is to extend the AutoMH framework library by considering new number sequences
from the On-Line Encyclopedia of Integer Sequences [25]. Another topic is to use a more
considerable number of non-intelligent agents to increase the options of having a more
significant number of proposed algorithms that solve the set of entered problems and
perhaps include new optimisation problems. Finally, another line of research consists
of deepening various strategies in the Action Process of the AutoMH framework. These
strategies could focus on methods that generate the ranking of non-intelligent agents in the
environment, such as standard competition ranking, modified competition ranking, dense
ranking, ordinal ranking, and fractional ranking. Various methods to perform the partition
in the Action Process additionally warrant further research.
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Abbreviations
The following abbreviations are used in this manuscript:

BAT Bat Algorithm
CS Cuckoo Search
DE Differential Evolution
FFA FireFly Algorithm
GA Genetic Algorithm
GWO Grey Wolf Optimiser
HHO Harris Hawks Optimization
JAYA Jaya algorithm
MFO Moth-Flame optimisation
MVO Multi-Verse Optimiser
PSO Particle Swarm Optimisation
SCA Sine Cosine optimisation Algorithm
SSA Salp Swarm Algorithm
WOA Whale Optimization Algorithm

Appendix A. Benchmark

The appendix contains details of the continuous optimisation dataset for P01 to P13
functions. Problems P01 to P07 correspond to unimodal functions, and problems P08 to
P13 correspond to multimodal functions.

Definition A1. P01—Sphere. The Sphere function is defined by the objective function (A1).
The function is defined and evaluated in the input domain xi ∈ [−100, 100] for all i = {1, 2, . . . , d}.
The function has one global minimum at fmin(x∗) = 0 with x∗ = [0, 0, . . . , 0].

f (x) =
d

∑
i=1

x2
i (A1)

Definition A2. P02—Schwefel 2.22. The Schwefel 2.22 function is defined by the objective
function (A2). The function is defined and evaluated in the input domain xi ∈ [−10, 10] for all
i = {1, 2, . . . , d}. The function has one global minimum at fmin(x∗) = 0 with x∗ = [0, 0, . . . , 0].

f (x) =
d

∑
i=1
|xi|+

d

∏
i=1
|xi| (A2)

Definition A3. P03—Schwefel 1.2. The Schwefel 1.2 function is defined by the objective function (A3).
The function is defined and evaluated in the input domain xi ∈ [−100, 100] for all i = {1, 2, . . . , d}.
The function has one global minimum at fmin(x∗) = 0 with x∗ = [0, 0, . . . , 0].

f (x) =
d

∑
i=1

(
i

∑
j=1

xj

)2

(A3)

Definition A4. P04—Schwefel 2.21. The Schwefel 2.21 function is defined by the objective
function (A4). The function is defined and evaluated in the input domain xi ∈ [−100, 100] for all
i = {1, 2, . . . , d}. The function has one global minimum at fmin(x∗) = 0 with x∗ = [0, 0, . . . , 0].

f (x) = max
i=1,...,d

|xi| (A4)
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Definition A5. P05—Rosenbrock’s. The Rosenbrock’s function is defined by the objective
function (A5). The function is defined and evaluated in the input domain xi ∈ [−30, 30] for all
i = {1, 2, . . . , d}. The function has one global minimum at fmin(x∗) = 0 with x∗ = [1, 1, . . . , 1].

f (x) =
d−1

∑
i=1

[100(xi+1 − x2
i )

2 + (1− xi)
2] (A5)

Definition A6. P06—Step. The Step function is defined by the objective function (A6). The func-
tion is defined and evaluated in the input domain xi ∈ [−100, 100] for all i = {1, 2, . . . , d}.
The function has one global minimum at fmin(x∗) = 0 with x∗ = [x1, x2, . . . , xd], xi ∈ [−0.5, 0.5).

f (x) =
d

∑
i=1

(bxi + 0.5c)2 (A6)

Definition A7. P07—Noisy Quartic. The Noisy Quartic function is defined by the objective
function (A7). The function is defined and evaluated in the input domain xi ∈ [−1.28, 1.28] for
all i = {1, 2, . . . , d}. The function has one global minimum at fmin(x∗) = 0 + ∑d

i=1 ηi with
x∗ = [0, 0, . . . , 0]. Where, η is a random number bounded between [0, 1).

f (x) =
d

∑
i=1

(ix4
i + ηi) (A7)

Definition A8. P08—Schwefel Function 2.26. The Schwefel function 2.26 is defined by the objec-
tive function (A8). The function is defined and evaluated in the input domain xi ∈ [−500, 500]
for all i = {1, 2, . . . , d}. The function has one global minimum at fmin(x∗) = 0 with
x∗ = [4.209687462275036e + 002, 4.209687462275036e + 002, . . . , 4.209687462275036e + 002].

f (x) = 4.189828872724338e + 002× d−
d

∑
i=1

xisin(
√
|xi|) (A8)

Definition A9. P09—Rastrigin Function. The Rastrigin function 2.26 is defined by the objective
function (A9). The function is defined and evaluated in the input domain xi ∈ [−5.12, 5.12] for all
i = {1, 2, . . . , d}. The function has one global minimum at fmin(x∗) = 0 with x∗ = [0, 0, . . . , 0].

f (x) =
d

∑
i=1

[x2
i + 10(1− cos(2πxi))] (A9)

Definition A10. P10—Ackley Function. The Ackley function is defined by the objective func-
tion (A10). The function is defined and evaluated in the input domain xi ∈ [−32, 32] for all
i = {1, 2, . . . , d}. The function has one global minimum at fmin(x∗) = 0 with x∗ = [0, 0, . . . , 0].

f (x) = −a exp

−b

√√√√1
d

d

∑
i=1

x2
i

− exp

(
1
d

d

∑
i=1

cos(cxi)

)
+ a + exp(1)

a = 20

b = 0.2

c = 2π

(A10)
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Definition A11. P11—Griewank function. The Griewank function is defined by the objective
function (A11). The function is defined and evaluated in the input domain xi ∈ [−600, 600] for all
i = {1, 2, . . . , d}. The function has one global minimum at fmin(x∗) = 0 with x∗ = [0, 0, . . . , 0].

f (x) =
1

4000

d

∑
i=1

x2
i −

d

∏
i=1

cos
(

xi√
i

)
+ 1 (A11)

Definition A12. P12—Generalized Penalized Function 1. The Generalized Penalized function 1
is defined by the objective function (A12). The function is defined and evaluated in the input domain
xi ∈ [−50, 50] for all i = {1, 2, . . . , d}. The function has one global minimum at fmin(x∗) = 0
with x∗ = [−1,−1, . . . ,−1].

f (x) =
π

d
×
{

10 sin2(πy1) +
d−1

∑
i=1

[(yi − 1)2(1 + 10 sin2(πyi+1))] + (yd − 1)2

}
+

d

∑
i=1

u(xi, a, k, m)

yi = 1 +
1
4
(xi + 1) u(xi, a, k, m) =


k(xi − a)m if xi > a
0 if − a ≤ xi ≤ a
k(−xi − a)m if xi < −a

a = 10

k = 100

m = 4

(A12)

Definition A13. P13—Generalized Penalized Function 2. The Generalized Penalized function 2
is defined by the objective function (A13). The function is defined and evaluated in the input domain
xi ∈ [−50, 50] for all i = {1, 2, . . . , d}. The function has one global minimum at fmin(x∗) = 0
with x∗ = [1, 1, . . . , 1].

f (x) = 0.1×
{

sin2(3πx1) +
d−1

∑
i=1

[(xi − 1)2(1 + sin2(3πxi+1))]+

[(xn − 1)2(1 + sin2(2πxn))]

}
+

d

∑
i=1

u(xi, a, k, m)

yi = 1 +
1
4
(xi + 1) u(xi, a, k, m) =


k(xi − a)m if xi > a
0 if − a ≤ xi ≤ a
k(−xi − a)m if xi < −a

a = 5

k = 100

m = 4

(A13)

Appendix B. Complementary Statistical Test

This section shows complement statistical results demonstrating the significant dif-
ferences between the AMH, BAT, CS, DE, FFA, GA, GWO, HHO, JAYA, MFO, MVO, PSO,
SCA, SSA, and WOA. The results employ the nonparametric multiple test procedure for
many-to-one comparisons [46,47]. The results of the p-values of the tests are described in
Tables A1 and A2.

The test requires checking for normality of the samples using the Kolmogorov–
Smirnov test [48]. The Kolmogorov–Smirnov test conditions are as follows:
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• H0 : Null hypothesis assumes that the population is normally distributed.
• HA : Alternative hypothesis assumes that the population is not-normally distributed.
• Reject the null hypothesis H0 if p < 0.05

The Kolmogorov–Smirnov Test results are described in Tables A3 and A4.

Table A1. Nonparametric multiple test—Experiment A p-values.

ID Comparison P1 P2 P3 P4 P5 P6 P7

1 F(BAT)-F(AMH) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 F(CS)-F(AMH) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 F(DE)-F(AMH) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 F(FFA)-F(AMH) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5 F(GA)-F(AMH) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 F(GWO)-F(AMH) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
7 F(HHO)-F(AMH) 0.0000 0.0000 0.0000 0.0000 0.0000 NA 1 0.0000
8 F(JAYA)-F(AMH) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
9 F(MFO)-F(AMH) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 F(MVO)-F(AMH) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
11 F(PSO)-F(AMH) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
12 F(SCA)-F(AMH) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
13 F(SSA)-F(AMH) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
14 F(WOA)-F(AMH) 0.0000 0.0000 0.0000 0.0000 0.0114 0.0002 0.0000

1 NA (Not Applicable). All 31 runs of the AMH and HHO algorithms have the same results. The results correspond
to a fitness value of 0.00.

Table A2. Nonparametric multiple test—Experiment B p-values.

ID Comparison P8 P9 P10 P11 P12 P13

1 F(BAT)-F(AMH) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 F(CS)-F(AMH) 0.0560 0.0000 0.0000 0.0000 0.0000 0.0000
3 F(DE)-F(AMH) 0.0499 0.0000 0.0000 0.0000 0.0000 0.0000
4 F(FFA)-F(AMH) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5 F(GA)-F(AMH) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 F(GWO)-F(AMH) 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000
7 F(HHO)-F(AMH) 0.0000 0.0031 0.0000 0.0000 0.0000 0.0000
8 F(JAYA)-F(AMH) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
9 F(MFO)-F(AMH) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 F(MVO)-F(AMH) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
11 F(PSO)-F(AMH) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
12 F(SCA)-F(AMH) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
13 F(SSA)-F(AMH) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
14 F(WOA)-F(AMH) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0387

Table A3. Kolmogorov–Smirnov Normality Test for Experiment A.

MH Problem w p-Value H0 MH Problem w p-Value H0

AMH P1 5.00× 10−1 1.08× 10−7 Rejected JAYA P1 1.00 0.00 Rejected
P2 5.00× 10−1 1.08× 10−7 Rejected P2 1.00 0.00 Rejected
P3 5.00× 10−1 1.08× 10−7 Rejected P3 1.00 0.00 Rejected
P4 5.00× 10−1 1.08× 10−7 Rejected P4 1.00 0.00 Rejected
P5 1.00 0.00 Rejected P5 1.00 0.00 Rejected
P6 5.00× 10−1 1.08× 10−7 Rejected P6 1.00 0.00 Rejected
P7 5.00× 10−1 1.08× 10−7 Rejected P7 1.00 0.00 Rejected
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Table A3. Cont.

MH Problem w p-Value H0 MH Problem w p-Value H0

BAT P1 1.00 0.00 Rejected MFO P1 1.00 0.00 Rejected
P2 1.00 0.00 Rejected P2 1.00 0.00 Rejected
P3 1.00 0.00 Rejected P3 1.00 0.00 Rejected
P4 1.00 0.00 Rejected P4 1.00 0.00 Rejected
P5 1.00 0.00 Rejected P5 1.00 0.00 Rejected
P6 1.00 0.00 Rejected P6 1.00 0.00 Rejected
P7 1.00 0.00 Rejected P7 1.00 0.00 Rejected

CS P1 1.00 0.00 Rejected MVO P1 1.00 0.00 Rejected
P2 1.00 0.00 Rejected P2 1.00 0.00 Rejected
P3 1.00 0.00 Rejected P3 1.00 0.00 Rejected
P4 1.00 0.00 Rejected P4 1.00 0.00 Rejected
P5 1.00 0.00 Rejected P5 1.00 0.00 Rejected
P6 1.00 0.00 Rejected P6 1.00 0.00 Rejected
P7 1.00 0.00 Rejected P7 1.00 0.00 Rejected

DE P1 1.00 0.00 Rejected PSO P1 1.00 0.00 Rejected
P2 1.00 0.00 Rejected P2 1.00 0.00 Rejected
P3 1.00 0.00 Rejected P3 1.00 0.00 Rejected
P4 1.00 0.00 Rejected P4 1.00 0.00 Rejected
P5 1.00 0.00 Rejected P5 1.00 0.00 Rejected
P6 1.00 0.00 Rejected P6 1.00 0.00 Rejected
P7 1.00 0.00 Rejected P7 1.00 0.00 Rejected

FFA P1 1.00 0.00 Rejected SCA P1 1.00 0.00 Rejected
P2 1.00 0.00 Rejected P2 1.00 0.00 Rejected
P3 1.00 0.00 Rejected P3 1.00 0.00 Rejected
P4 1.00 0.00 Rejected P4 1.00 0.00 Rejected
P5 1.00 0.00 Rejected P5 1.00 0.00 Rejected
P6 1.00 0.00 Rejected P6 1.00 0.00 Rejected
P7 1.00 0.00 Rejected P7 1.00 0.00 Rejected

GA P1 1.00 0.00 Rejected SSA P1 1.00 0.00 Rejected
P2 1.00 0.00 Rejected P2 1.00 0.00 Rejected
P3 1.00 0.00 Rejected P3 1.00 0.00 Rejected
P4 1.00 0.00 Rejected P4 1.00 0.00 Rejected
P5 1.00 0.00 Rejected P5 1.00 0.00 Rejected
P6 1.00 0.00 Rejected P6 1.00 0.00 Rejected
P7 1.00 0.00 Rejected P7 9.92× 10−1 6.67× 10−66 Rejected

GWO P1 1.00 0.00 Rejected WOA P1 5.00× 10−1 1.08× 10−7 Rejected
P2 1.00 0.00 Rejected P2 5.00× 10−1 1.08× 10−7 Rejected
P3 1.00 0.00 Rejected P3 1.00 0.00 Rejected
P4 1.00 0.00 Rejected P4 1.00 0.00 Rejected
P5 1.00 0.00 Rejected P5 1.00 0.00 Rejected
P6 1.00 0.00 Rejected P6 5.00× 10−1 1.08× 10−7 Rejected
P7 6.55× 10−1 1.44× 10−13 Rejected P7 5.00× 10−1 1.08× 10−7 Rejected

HHO P1 5.00× 10−1 1.08× 10−7 Rejected
P2 5.00× 10−1 1.08× 10−7 Rejected
P3 5.00× 10−1 1.08× 10−7 Rejected
P4 5.00× 10−1 1.08× 10−7 Rejected
P5 5.11× 10−1 4.74× 10−8 Rejected
P6 5.00× 10−1 1.08× 10−7 Rejected
P7 5.00× 10−1 1.08× 10−7 Rejected
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Table A4. Kolmogorov–Smirnov Normality Test for Experiment B.

MH Problem w p-Value H0 MH Problem w p-Value H0

AMH P8 1.00 0.00 Rejected JAYA P8 1.00 0.00 Rejected
P9 5.00× 10−1 1.08× 10−7 Rejected P9 1.00 0.00 Rejected

P10 5.00× 10−1 1.08× 10−7 Rejected P10 1.00 0.00 Rejected
P11 5.00× 10−1 1.08× 10−7 Rejected P11 1.00 0.00 Rejected
P12 5.58× 10−1 1.26× 10−9 Rejected P12 1.00 0.00 Rejected
P13 1.00 0.00 Rejected P13 1.00 0.00 Rejected

BAT P8 1.00 0.00 Rejected MFO P8 1.00 0.00 Rejected
P9 1.00 0.00 Rejected P9 1.00 0.00 Rejected

P10 1.00 0.00 Rejected P10 1.00 0.00 Rejected
P11 1.00 0.00 Rejected P11 1.00 0.00 Rejected
P12 1.00 0.00 Rejected P12 1.00 0.00 Rejected
P13 1.00 0.00 Rejected P13 1.00 0.00 Rejected

CS P8 1.00 0.00 Rejected MVO P8 1.00 0.00 Rejected
P9 1.00 0.00 Rejected P9 1.00 0.00 Rejected

P10 1.00 0.00 Rejected P10 1.00 0.00 Rejected
P11 1.00 0.00 Rejected P11 1.00 0.00 Rejected
P12 1.00 0.00 Rejected P12 1.00 0.00 Rejected
P13 1.00 0.00 Rejected P13 1.00 0.00 Rejected

DE P8 1.00 0.00 Rejected PSO P8 1.00 0.00 Rejected
P9 1.00 0.00 Rejected P9 1.00 0.00 Rejected

P10 1.00 0.00 Rejected P10 1.00 0.00 Rejected
P11 1.00 0.00 Rejected P11 1.00 0.00 Rejected
P12 1.00 0.00 Rejected P12 1.00 0.00 Rejected
P13 1.00 0.00 Rejected P13 1.00 0.00 Rejected

FFA P8 1.00 0.00 Rejected SCA P8 1.00 0.00 Rejected
P9 1.00 0.00 Rejected P9 1.00 0.00 Rejected

P10 1.00 0.00 Rejected P10 1.00 0.00 Rejected
P11 1.00 0.00 Rejected P11 1.00 0.00 Rejected
P12 1.00 0.00 Rejected P12 1.00 0.00 Rejected
P13 1.00 0.00 Rejected P13 1.00 0.00 Rejected

GA P8 1.00 0.00 Rejected SSA P8 1.00 0.00 Rejected
P9 1.00 0.00 Rejected P9 1.00 0.00 Rejected

P10 1.00 0.00 Rejected P10 1.00 0.00 Rejected
P11 1.00 0.00 Rejected P11 1.00 0.00 Rejected
P12 1.00 0.00 Rejected P12 1.00 0.00 Rejected
P13 1.00 0.00 Rejected P13 1.00 0.00 Rejected

GWO P8 1.00 0.00 Rejected WOA P8 1.00 0.00 Rejected
P9 1.00 0.00 Rejected P9 5.00× 10−1 1.08× 10−7 Rejected

P10 1.00 2.15× 10−242 Rejected P10 5.00× 10−1 1.08× 10−7 Rejected
P11 1.00 0.00 Rejected P11 5.00× 10−1 1.08× 10−7 Rejected
P12 1.00 0.00 Rejected P12 5.77× 10−1 2.57× 10−10 Rejected
P13 1.00 0.00 Rejected P13 1.00 3.07× 10−205 Rejected

HHO P8 9.56× 10−1 1.67× 10−42 Rejected
P9 5.00× 10−1 1.08× 10−7 Rejected

P10 5.00× 10−1 1.08× 10−7 Rejected
P11 5.00× 10−1 1.08× 10−7 Rejected
P12 5.00× 10−1 1.08× 10−7 Rejected
P13 5.01× 10−1 1.05× 10−7 Rejected
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