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Abstract

Tremendous progress has been made in reinforcement learning (RL) over the past
decade. Most of these advancements came through the continual development
of new algorithms, which were designed using a combination of mathematical
derivations, intuitions, and experimentation. Such an approach of creating algo-
rithms manually is limited by human understanding and ingenuity. In contrast,
meta-learning provides a toolkit for automatic machine learning method optimi-
sation, potentially addressing this flaw. However, black-box approaches which
attempt to discover RL algorithms with minimal prior structure have thus far not
outperformed existing hand-crafted algorithms. Mirror Learning, which includes
RL algorithms, such as PPO, offers a potential middle-ground starting point: while
every method in this framework comes with theoretical guarantees, components
that differentiate them are subject to design. In this paper we explore the Mirror
Learning space by meta-learning a “drift” function. We refer to the immediate
result as Learnt Policy Optimisation (LPO). By analysing LPO we gain original
insights into policy optimisation which we use to formulate a novel, closed-form
RL algorithm, Discovered Policy Optimisation (DPO). Our experiments in Brax
environments confirm state-of-the-art performance of LPO and DPO, as well as
their transfer to unseen settings.

1 Introduction

Recent advancements in deep learning have allowed reinforcement learning algorithms [35, RL]
to successfully tackle large-scale problems [36, 34]. As a result, great efforts have been put into
designing methods that are capable of training a neural-network policies in increasingly more complex
tasks [33, 31, 24, 9]. Among the most practical such algorithms are TRPO [31] and PPO [32] which
are known for their performance and stability [2]. Nevertheless, although these research threads
have delivered a handful of successful techniques, their design relies on concepts handcrafted by
humans, rather than discovered in a learning process. As a possible consequence, these methods
often suffer from various flaws, such as the brittleness to hyperparameter settings [31, 12], and a lack
of robustness guarantees.

The most promising alternative approach, algorithm discovery, thus far has been a “tough nut to
crack”. Popular approaches in meta-RL [30, 7, 4] are unable to generalise to tasks that lie outside of
their training distribution. Alternatively, many approaches that attempt to meta-learn more general
algorithms [25, 16] fail to outperform existing handcrafted algorithms and lack theoretical guarantees.
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Recently, Mirror Learning [18], a new theoretical framework, introduced an infinite space of provably
correct algorithms, all of which share the same template. In a nutshell, a Mirror Learning algorithm
is defined by four attributes, but in this work we focus on the drift function. A drift function guides
the agent’s update, usually by penalising large changes. Any Mirror Learning algorithm provably
achieves monotonic improvement of the return, and converges to an optimal policy [18]. Popular RL
methods such as TRPO [31] and PPO [32] are instances of this framework.

In this paper, we use meta-learning to discover a new state-of-the-art (SOTA) RL algorithm within
the Mirror Learning space. Our algorithm thus inherits theoretical convergence guarantees by
construction. Specifically, we parameterise a drift function with a neural network, which we then
meta-train using evolution strategies [29, ES]. The outcome of this meta-training is a specific Mirror
Learning algorithm which we name Learnt Policy Optimisation (LPO).

While having a neural network representation of a novel, high-performing drift function is a great
first step, our next goal is to understand the relevant algorithmic features of this drift function. Out
analysis reveals that LPO’s drift discovered, for example, optimism about actions that scored low
rewards in the past—a feature we refere to as rollback. Building upon these insights we propose a new,
closed-form algorithm which we name —Discovered Policy Optimisation (DPO). We evaluate LPO
and DPO in the Brax [8] continuous control environments, where they obtain superior performance
compared to PPO. Importantly, both LPO and DPO generalise to environments that were not used for
training LPO. To our knowledge, DPO is the first theoretically-sound, scalable deep RL algorithm
that was discovered via meta-learning.

2 Related Work

Over the last few years, researchers have put significant effort into designing and developing algo-
rithmic improvements in reinforcement learning. Fujimoto et al. [9] combine DDPG policy training
with estimates of pessimistic Bellman targets from a separate critic. Hsu et al. [15] stabilise the,
previously unsuccessful [32], KL-penalised version of PPO and improve its robustness through novel
policy design choices. Haarnoja et al. [13] introduce a mechanism that automatically adjusts the
temperature parameter of the entropy bonus in SAC. However, none of these hand-crafted efforts
succeeds in fully mitigating common RL pathologies, such as sensitivity to hyperparameter choices
and lack of domain generalisation [4]. This motivates radically expanding the RL algorithm search
space through automated means [27].

Popular approaches in meta-RL have shown that agents can learn to quickly adapt over a pre-specified
distribution of tasks. RL2 equips a learning agent with a recurrent neural network that retains state
across episode boundaries to adapt the agent’s behaviour to the current environment [4]. Similarly, a
MAML agent meta-learns policy parameters which can adapt to a range of tasks with a few steps of
gradient descent [7]. However, both RL2 and MAML usually only meta-learn across narrow domains
and are not expected to generalise well to truly unseen environments.

Xu et al. [40] introduce an actor-critic method that adjusts its hyperparameters online using meta-
gradients that are updated with every few inner iterations. Similarly, STAC [42] uses implementation
techniques from IMPALA [5] and auxiliary loss-guided meta-parameter tuning to further improve on
this approach.

Such advances have inspired extending meta-gradient RL techniques to more ambitious objectives,
including the discovery of algorithms ab initio. Notably, Oh et al. [25] succeeded in meta-learning an
RL algorithm, LPG, that can solve simple tasks efficiently without explicitly relying on concepts such
as value functions and policy gradients. Similarly, Evolved Policy Gradients [14, EPG] meta-trains a
policy loss network function with Evolution Strategies [29, ES]. Although EPG surpasses PPO in
average performance, it suffers from much larger variance [14] and is not expected to perform well
on environments with dynamics that differ greatly from the training distribution. MetaGenRL [17],
instead, meta-learns the loss function for deterministic policies which are inherently less affected
by estimators’ variance [33]. MetaGenRL, however, fails to improve upon DDPG [21] in terms of
performance, despite building up on it. Neither EPG nor MetaGenRL have resulted in the discovery
of novel analytical RL algorithms, perhaps due to the limited interpretability of the loss functions
learnt. Lastly, Co-Reyes et al. [3], Garau et al. [10] and Alet et al. [1] discover and improve standard
RL conventions by evolving, symbolically, algorithms represented as graphs, which leads to improved
performance in simple tasks. However, none of those trained-from-scratch methods inherit correctness
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guarantees, limiting our certainty of the generality of their abilities. In contrast, our method, LPO, is
meta-developed in a Mirror Learning space [18], where every algorithm is guaranteed convergence to
an optimal policy. As a result to this construction, meta-training of LPO is easier than that of methods
that learn “from scratch”, and achieves great performance across environments. Furthermore, thanks
to the clear meta-structure of Mirror Learning, LPO is interpretable, and lets us discover new learning
strategies. This lets us introduce DPO—an efficient algorithm with a closed-form formulation that
exploits the discovered learning concepts.

3 Background

In this section, we introduce the essential concepts required to comprehend our contribution—the
RL and meta-RL problem formulations, as well as the Mirror Learning and Evolution Strategies
frameworks for solving them.

3.1 Reinforcement Learning

Formulation We formulate the reinforcement learning (RL) problem as a Markov decision process
(MDP) [35] represented by a tuple 〈S,A, R, P, γ, d〉 which defines the experience of a learning agent
as follows: at time step t ∈ N, the agent is at state st ∈ S (where s0 ∼ d) and takes an action at ∈ A
according to its stochastic policy π(·|st), which is a member of the policy space Π. The environment
then emits the reward R(st, at) and transits to the next state st+1 drawn from the transition function,
st+1 ∼ P (·|st, at). The agent aims to maximise the expected value of the total discounted return,

η(π) , E[Rγ |π] = Es0∼d,a0:∞∼π,s1:∞∼P

[ ∞∑
t=0

γtR(st, at)
]
. (1)

The agent guides its learning process with value functions that evaluate the expected return conditioned
on states or state-action pairs

Vπ(s) , E[Rγ |π, s0 = s] (the state value function),

Qπ(s, a) , E[Rγ |π, s0 = s, a0 = a] (the state-action value function).

The function that the agent is concerned about most is the advantage function, which computes
relative values of actions at different states,

Aπ(s, a) , Qπ(s, a)− Vπ(s). (2)

Policy Optimisation In fact, by updating its policy simply to maximise the advantage function at
every state, the agent is guaranteed to improve its policy, η(πnew) ≥ η(πold) [35]. This fact, although
requiring a maximisation operation that is intractable in large state-space settings tackled by deep
RL (where the policy πθ is parameterised by weights θ of a neural network), has inspired a range
of algorithms that perform it approximately. For example, A2C [24] updates the policy by a step of
policy gradient (PG) ascent

θk+1 = θk +
α

B

B∑
b=1

Aπθk (sb, ab)∇θ log πθk(ab|sb), α ∈ (0, 1), (3)

estimated from a batch of B transitions. Nevertheless, such simple adoptions of generalized policy
iteration [35, GPI] suffer from large variance and instability [43, 33, 32]. Hence, methods that
constrain (either explicitly or implicitly) the policy update size are preferred [31]. Among the most
popular, as well as successful ones, is Proximal Policy Optimization [32, PPO], inspired by trust
region learning [31], which updates its policy by maximising the PPO-clip objective,

πk+1 = arg max
π∈Π

Es∼ρπk ,a∼πk

[
min

( π(a|s)
πk(a|s)

Aπk(s, a), clip
( π(a|s)
πk(a|s)

, 1± ε
)
Aπk(s, a)

)]
, (4)

where the clip(·, 1 ± ε) operator clips (if necessary) the input so that it stays within [1 − ε, 1 + ε]
interval. In deep RL, the maximisation oracle in Equation (4) is approximated by a few steps of
gradient ascent on policy parameters.
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Meta-RL The above approaches to policy optimisation rely on human-possessed knowledge, and
thus are limited by humans’ understanding of the problem. The goal of meta-RL is to instead
optimise the learning algorithm using machine learning. Formally, suppose that an RL algorithm
algφ, parameterised by φ, trains an agent for K iterations. Meta-RL aims to find the meta-parameter
φ = φ∗ such that the expected return of the output policy, E[η(πK)|algφ], is maximised.

3.2 Mirror Learning

A Mirror Learning agent [18], in addition to value functions, has access to the following operators:
the drift function Dπk(π|s) which, intuitively, evaluates the significance of change from policy πk
to π at state s; the neighbourhood operator N (πk) which forms a region around the policy πk; as
well as sampling and drift distributions βπk(s) and νππk(s) over states. With these defined, a Mirror
Learning algorithm updates an agent’s policy by maximising the mirror objective

πk+1 = arg max
π∈N (πk)

Es∼βπk

[
Aπk(s, a)

]
− Es∼νππk

[
Dπk(π|s)

]
. (5)

If, for all policies π and πk, the drift function satisfies the following conditions:

1. It is non-negative everywhere and zero at identity Dπk(π|s) ≥ Dπk(πk|s) = 0,

2. Its gradient with respect to π is zero at π = πk,

then the Mirror Learning algorithm attains the monotonic improvement property, η(πk+1) ≥ η(πk),
and converges to the optimal return, η(πk)→ η(π∗), as k →∞ [18]. A Mirror Learning agent can
be implemented in practice by specifying functional forms of the drift function and neighbourhood
operator, and parameterising the policy of the agent with a neural network, πθ. As such, the agent
approximates the objective in Equation (5) by sample averages, and maximises it with an optimisation
method, like gradient ascent. PPO is a valid instance of Mirror Learning, with the drift function:

DPPO
πk

(π|s) , Ea∼πk

[
ReLU

([ π(a|s)
πk(a|s)

− clip
( π(a|s)
πk(a|s)

, 1± ε
)]
Aπk(s, a)

)]
. (6)

While it is possible to explicitly constrain the neighbourhood of policy update [31], some algorithms
do it implicitly. For example, as maximisation oracle of PPO (see Equation (4)) has a form of N
steps of gradient ascent with learning rate α and gradient clipping threshold c, it implicitly employs a
neighbourhood of an Euclidean ball or radius Nαc around θk.

Different Mirror Learning algorithms can differ in multiple aspects such as sample complexity and
wall-clock time efficiency [18]. Depending on the setting, different properties may be desirable. In
this paper, we optimise for the return of the K th iterate, η(πK).

3.3 Evolution Strategies

Evolution Strategies [28, 29, ES] is a backpropagation-free approach to function optimisation. At
their core lies the following identity, which holds for any continuously differentiable function F of φ,
and any positive scalar σ

∇φEε∼N(0,I)[F (φ+ σε)] =
1

σ
Eε∼N(0,I)[F (φ+ σε)ε], (7)

where N(0, I) denotes the standard multivariate normal distribution. By taking the limit σ → 0, the
gradient on the left-hand side recovers the gradient of ∇φF (φ). These facts inspire an approach of
optimising F with respect to φ without estimating gradients with backpropagation—for a random
sample ε1, . . . , εn ∼ N(0, I), the vector 1

nσ

∑n
i=1 F (φ + σεi)εi is an unbiased gradient estimate.

To reduce variance of this estimator, antithetic sampling is commonly used [26]. In the context of
meta-RL, where φ is the meta-parameter of an RL algorithm algφ, the role of F (φ) is played by the
average return after the training, F (φ) = E[η(πK)|φ]. As oppose to the meta-gradient approaches
described in Section 2, ES does not require backpropagation of the gradient through the whole training
episode—a cumbersome procedure which, often approximated by the truncated backpropagation,
introduces bias [38, 39, 25, 6, 23].
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(a) (b)

Figure 1: PPO objective visualisation: (a) is the heat map of the ratio derivative of the PPO objective,
and (b) shows its slices for fixed advantage values. The algorithm encourages updates towards actions
with positive values of the ratio derivative.

4 Methods

Our overall approach is to meta-learn a drift function to perform policy optimisation over a fixed
episode length K. Hence, our meta-objective is the expected final return,

F (φ) = E[η(πK)|φ].

4.1 Drift Function Network

The drift function that we learn takes form Dπk(π|s) = Ea∼πk [fφ(x)|s], where fφ(x) is a fully-
connected neural network parameterised by φ. Our drift network is a function of the probability ratio
between a candidate and the old policy, r = π(a|s)/πk(a|s), and of the advantage A = Aπk(s, a)
(which we assume to be normalised across each batch). To ease learning complicated mappings,
we include non-linear transformations of these arguments (we perform ablations in E), ultimately
forming the following input

xr,A = [(1− r), (1− r)2, (1− r)A, (1− r)2A, log(r), log(r)2, log(r)A, log(r)2A] .

In order to guarantee that the neural network is a valid drift function, it must be the case that
fφ(xr,A) = 0 and ∇rfφ(xr,A) = 0 whenever r = 1, and fφ(xr,A) ≥ 0 everywhere. As in our
model, xr,A = 0 whenever r = 1, the former condition is guaranteed by excluding bias terms from
the network architecture. To meet the latter two conditions, we apply the ReLU activation at the last
layer with a slight shift, x 7→ ReLU(x− ξ), where ξ = 10−6.

To alleviate the difficulty of the meta-training, the main variant of our implementation initialises
the drift function near the PPO one. That is, before we pass the last layer’s output to shifted ReLU,
we add to it the PPO drift function (more precisely, the input of the expectation in Equation 6).
We have found that this operation leads to a better performance and generalisation across different
environments. Furthermore, such a setting directly tests for the optimality of the drift function of
PPO. If PPO was optimal, the network could simply learn the zero mapping.

In principle, the drift function is not restricted to operate with probability ratios and advantages
only; it could also accept other arguments, such as algorithm hyperparameters, statistics measuring
the progress of training, or even task information. However, many of these vary greatly in the
dimensionality or scale across different instances or types of environments. Furthermore, a large
number of arguments would impede the analysis of the learnt drift function, and comparison to PPO,
which are also goals of our work. Hence, we work with simple and transferable ratios and normalised
advantage estimates. Nevertheless, for specific applications, it may be beneficial to consider other,
possibly domain-specific, information.

4.2 Meta-Training the Drift Function Network

The meta-objective we optimise is the performance of the learner policy at the end of training:
F (φ) = E

[
η(πθK )|algφ], where θK is the K th (last) iterate of the RL training under the Mirror
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(a) (b)

Figure 2: Visualisation of the LPO-Zero (learning from scratch) objective: (a) is the heat map of the
ratio derivative of the LPO-Zero objective, and (b) shows its slices for fixed advantage values. The
algorithm encourages updates towards actions with positive values of the ratio derivative.

(a) (b)

Figure 3: Visualisation of the LPO objective: (a) is the heat is the heat map of the ratio derivative of
the LPO objective, and (b) shows its slices for fixed advantage values. The algorithm encourages
updates towards actions with positive values of the ratio derivative.

Learning algorithm algφ. The expectation is taken over the randomness of the initial parameter θ0

and stochasticity of the environment. We solve this problem using ES with antithetic sampling. At
each generation (outer loop iteration), we sample a batch of perturbations of φ, initialise the policy
parameters θ0, and then train the policy under algφ, using the drift function’s parameter φ, for K
iterations. At the end of the inner-loop training, we estimate the return of the final policy φθK , and
use it to estimate the gradient of∇φF (φ) as in Equation (7).

We meta-learn the drift function and evaluate policies trained by it in the Brax [8] physics simulator
environments. Brax is designed to take advantage of parallel computation on accelerators, allowing us
to roll out thousands of episodes in parallel, and train entire RL agents within minutes. Thus, it is well
suited for this type of optimisation problem. Furthermore, we increase its efficiency by vectorising
the policy optimisation algorithm itself, which lets us train hundreds of RL agents per minute using
accelerators. We implement our method on top of the Brax version of PPO, which provides a
Mirror Learning-friendly code template, keeping the policy architecture and training hyperparameters
unchanged. For meta-training we use both evosax [19] and the Learned_optimization [22] libraries.
For full details of meta-training see Appendix A.

5 Empirical Studies

We consider two different meta-training setups. First, as described in Subsection 5.1 we attempt to
learn a drift function completely from scratch to investigate how similar it is to existing algorithms
like PPO. Second, in Subsection 5.2 we ask whether we can learn a drift function that successfully
generalises to multiple environments, if it is initialised near PPO.
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5.1 Learning drift functions from scratch

In this setting, fφ is a neural network with two hidden layers of size 256 and a ReLU activation
function. We meta-train it across 5 Brax environments. We name the resulting algorithm LPO-Zero,
and visualise it in Figure 2.

Interestingly, LPO-Zero appears to have learnt a few PPO-like features, as can be observed on Figure
2. For example, it appears to have learnt to clip the update incentive at a specific ratio threshold,
much like PPO; however, it only does so for negative advantages. Nevertheless, LPO-Zero largely
underperforms with respect to LPO, and possibly requires much more training to catch up. We present
figures with performance evaluation of LPO-Zero in Appendix B.

5.2 Learning with the PPO Initialisation

In this setting, fφ is a small neural network, with a single hidden layer with 128 neurons, with bias
terms removed, and a tanh activation function. Here, we add PPO to the output of the last hidden
layer, before passing it to the shifted ReLU,

fφ(xr,A) = ReLU
(
f̃φ(xr,A)− ξ + ReLU ((r − clip(r, 1± ε)) ·A)

)
, (8)

where f̃φ(xr,A) is the output of the last hidden layer of the drift network. As such, the resulting drift
function similar to that of PPO at initialisation.

Surprisingly, we have found that meta-training in a single environment is sufficient to generate drift
functions whose abilities transfer to unseen tasks. Moreover, we found that the learnt drifts generally
display similar characteristics. For readability, we chose the drift function that was trained on Ant,
whose induced algorithm we refer to as Learnt Policy Optimisation (LPO). Visualisations and results
for drift functions trained on other environments can be found in the Appendix C.

The results on Figure 6 show that LPO, trained only on Ant, outperforms PPO in unseen environ-
ments. Furthermore, the Brax PPO implementation uses different hyperparameters, such as the
number of update epochs and the total number of timesteps, for each of the tasks. This means
that LPO, which was trained on Ant with hyperparameters associated to it, is robust not only
against new environments, but also against new hyperparameters. We visualise the derivative
of the LPO loss in Figure 3, which enables us to derive an analytical version of it in Section 6.

Figure 4: Entropy comparison, throughout training
on Ant, between PPO (blue), LPO (orange), and
DPO (green, see Section 7) across 10 seeds. Error
bars denote standard error. While the entropy of all
methods decrease throughout training, the entropy
of policy learned by both LPO and DPO remain
significantly higher than that of PPO.

6 Analysis of LPO

In this section, we analyse the two key features
that are consistently learnt and contribute most
to LPO’s performance. We then interpret their
effect on policy entropy, and the update asymme-
try discovered by LPO, through which it differs
largely from PPO (recall Figure 3 for visualisa-
tion).

Rollback for negative advantage. In the
bottom-left quadrant of the heat map, which
corresponds to A < 0 and r < 1 (negative
advantage and decrease in action probability),
we observe that the ratio derivative of the LPO
objective is positive in a large region, roughly
corresponding to r < 1 − ε. This implies that
actions which fall into this quadrant, although
seemingly not appealing, are encouraged to be
taken by the agent, which can be interpreted as
a form of rollback [37]. Hence, LPO learns to
decrease r down to 1− ε, but unlike PPO, encourages r to stay precisely around that value. By doing
so, LPO prevents the agent from giving up on actions that appear poor at the moment, and encourages
it to keep exploring them at a moderate frequency.
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(a) (b)

Figure 5: Visualisation of the DPO objective: (a) is the heat is the heat map of the ratio derivative
of the DPO objective, and (b) shows its slices for fixed advantage values. Positive values of the
derivative encourage updates towards the action.

Cautious optimism for positive advantage. The upper-right quadrant corresponds to A > 0 and
r > 1 (positive advantage and increase in action probability), which is induced by actions that seem
the most appealing to update to. Nevertheless, LPO is cautious in doing so, gradually decreasing the
pace of its update towards them, and eventually abstaining from chasing the most extreme advantage
values—these may come from critic errors. We would like to highlight that this view of LPO on
positive advantages in much more sophisticated than that of PPO, which simply removes any incentive
from updating towards actions with r > 1 + ε, and thus can be viewed as optimistic relative to PPO.

Implicit entropy maximisation. Together, these two central features of LPO encourage the agent
to spread its policy probability mass moderately over all actions, thus leading to larger entropy and
allowing for richer exploration. Thus, LPO has implicitly discovered entropy maximisation, which
we demonstrate in Figure 4. We would like to highlight that LPO achieved this with its drift function
only, without artificially augmenting the original RL objective with an entropy bonus [11, 12]

Update asymmetry. LPO learns asymmetric features that respect a natural asymmetry of behaviour
change in RL: increasing r for positive advantage A may encourage exploration of a newly-found
action or strengthen a dominant action, whereas decreasing r for negative A will always discourage
exploration of that action and strengthen a dominant action. In this context, the two discussed features
of LPO make it completely unlike PPO, which clips the update incentives symmetrically around the
origin.

Secondary Features. LPO, but not LPO-Zero, appears to consistently learn objectives with gradient
spikes around r = 1 in the upper left and lower right quadrants. Nevertheless, adding them to our
analytic model of LPO did not improve performance. We speculate, therefore, that these spikes are
mostly artifacts of the network parameterisation.

7 Discovered Policy Optimisation: A New RL Algorithm Inspired By LPO

In this section, building upon concepts that LPO has discovered, we introduce a novel algorithm—
Discovered Policy Optimization (DPO).

7.1 The Discovered Drift Function Model

Combining the key features identified in Section 6, we construct a closed-form model of LPO that
can easily be implemented with just a few lines of code on top of an existing PPO implementation.
We name the new algorithm Discovered Policy Optimisation (DPO) because we have not derived
it—it was instead discovered in the meta-learning process. DPO is a Mirror Learning algorithm,
with a drift function that takes different functional forms, depending on the sign of advantage A, as
dictated by the update asymmetry principle from the previous section. Specifically, we have found
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(a) Grasp (b) Ant (c) Fetch

(d) Reacher (e) Humanoid (f) ur5e

(g) HalfCheetah (h) Walker2d

Figure 6: Performance comparison between PPO (blue), LPO (orange), and DPO (green) in Brax
environments. The curves represent mean evaluation return across 10 random seeds, with error bars
showing standard error of the mean. Both LPO and DPO beat PPO across most environments even
though they were only meta-trained on Ant, and make use of no hyper parameter tuning. Furthermore,
both LPO and DPO are more consistent across runs.

that the (parameter-free) drift function

f(r,A) =

{
ReLU

(
(r − 1)A− α tanh((r − 1)A/α)

)
A ≥ 0

ReLU
(

log(r)A− β tanh(log(r)A/β)
)

A < 0
(9)

faithfully reproduces the key features of LPO (cautious optimism and rollback) for appropriate
constants α = 2, β = 0.6 (see Appendix D for verification of the drift conditions). We visualise DPO
in Figure 5 and note that even the “crossing-over” of gradient slices of LPO on Figure 3 is faithfully
reproduced.

7.2 Results

We compare DPO to PPO and LPO on a variety of Brax environments in Figure 6. We use the PPO
implementation provided by Brax, with an addition of advantage normalisation as we observed it
to improve the method’s performance across the majority of the environments. Our methods also
use this implementation technique. We further demonstrate on out-of-distribution performance by
evaluating performance on the Minatar environments [20, 41] in Figure 7.

While evaluating DPO, similarly to LPO, we do not re-tune any hyperparameters that were originally
selected for PPO in Brax. The results on Figure 6 show that DPO matches the performance of LPO
and outperforms PPO on the evaluated environments, despite being a two-line analytic model of LPO
based on two key features. This enables RL practitioners to implement DPO as easily as PPO with a
performance on par with our best learnt drift function.
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(a) Breakout-Minatar (b) Asterix-Minatar

(c) Freeway-Minatar (d) SpaceInvaders-Minatar

Figure 7: Performance of PPO, DPO, and LPO on the Minatar environments [20, 41]. We tuned the
hyperparameters for PPO and re-used those tuned hyperparameters for DPO and LPO. The curves
represent mean evaluation return across 10 random seeds, with error bars showing standard error of
the mean.

8 Conclusion

In this paper, we approached the problem of algorithm discovery by restricting our meta-learning to the
space of valid Mirror Learning algorithms. Specifically, we optimised a drift function parameterised
by a neural network, which we trained with Evolution Strategies. We consider this work to be
an example of the new, promising paradigm of RL algorithm discovery. Namely, our strategy
was to develop a high-performing RL algorithm by combining theoretical insights with large-scale
computational techniques. As a result of the training, we obtained a theoretically sound method
that we named Learnt Policy Optimisation (LPO), which outperforms a state-of-the-art baseline
(PPO) in unseen environments, and with unseen hyperparameter settings. After analysing the learned
features discovered by LPO, we introduced Discovered Policy Optimisation (DPO)—a closed-form
approximation to LPO. Our experimental results show that DPO matches LPO in performance and
robustness to hyperparameter settings. However, a possible weakness of this approach is that it could
overfit to specific code-level details of the implementation. For example, LPO is built on Brax’s
PPO implementation, which makes numerous design decisions to optimise for wall-clock time rather
than sample efficiency. In the future, we plan to expand the variety of inputs to the learnt drift
function, as well as to parameterise and meta-learn other attributes of Mirror Learning. We expect
these advancements to provide more insights into policy optimisation, ultimately resulting in more
robust and better performing RL algorithms.
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A Meta-Training Details

A.1 LPO-Zero

Our LPO-zero implementation was implemented on top of the learned_optimization library [22].
The drift function is parameterised by a one layer fully connected network with 1 hidden layer
and 256 hidden units. Meta-training is done in a distributed fashion using batched, async meta-
updates across 350 workers each of which with one TPUv4i accelerator. On a centralized learner
process we accumulate gradients from these workers until 350 gradients are computed (using a
single perturbation from an antithetic ES based gradient estimator). Once this number is reached, we
perform one outer-iteration with Adam using a learning rate of 0.006.

In this experiment, we meta-train over a uniform mixture of the ant, walker2d, halfcheetah and fetch
environments. We take the default hparams for PPO from Brax for each implementation except for
the number of epochs trained which we set to 183 to match what was done with the ant environment.
In each worker, for a particular environment, we perform a full PPO training for both a positive, and
negative perturbation of the underlying meta-parameters. At the end of each training, we evaluate
10240 rollouts on the environment with the resulting policy and use these as our fitness function.

Meta-training was done over the course of 2 days and performed approximately 400 outer-updates.
We find though performance still increases with increased meta-training time.

A.2 LPO

Our LPO implementation was implemented on top of the evosax library [19]. The drift function
is parameterised by a one layer fully-connected network with 1 hidden layer and 128 hidden units.
Meta-training was only done on a single machine with 4 V100 GPU’s with synchronous updates.
Meta-training was done over the course of 2 days and performed approximately 700 outer-updates.
We find though performance still increases with increased meta-training time.

Table 1: Important parameters for Training LPO
Parameter Value
Population Size 32
Number of Hidden Layers 1
Size of Hidden Layer 128
Number of Generations 672
ES Sigma Init 0.04
ES Sigma Decay 0.999
ES Sigma Limit 0.01
Number of Timesteps 30000000
Unroll Length 5
Number of Minibatches 32
Number of Update Epochs 4
Learning Rate 0.0003
Number of Environments 2048
Batch Size 1024
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B LPO-Zero Results

(a) Grasp (b) Ant

(c) Fetch (d) Humanoid

(e) ur5e (f) HalfCheetah

(g) Walker2d

Figure 8: Performance comparison between PPO (blue), LPO (orange), DPO (green), and LPO-Zero
(red) in Brax environments. The curves represent mean evaluation return across 10 random seeds,
with error bars showing standard error.
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C Visualisations of LPO

Figure 9: Visualisation of the learned objectives trained on different environments: (a) is the heat is
the heat map of the ratio derivative of the LPO objective, and (b) shows its slices for fixed advantage
values. Positive values of the derivative encourage updates towards the action.
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D DPO Drift Verification

The DPO drift function is given by

f(r,A) =

{
ReLU

(
(r − 1)A− α tanh((r − 1)A/α)

)
A ≥ 0

ReLU
(

log(r)A− β tanh(log(r)A/β)
)

A < 0 .

The first condition for a valid drift is that f be non-negative everywhere, which trivially holds since
ReLU(x) ≥ 0 for all x ∈ R.

The second condition is that f be zero at π = πold. Now r = π/πold = 1 implies r − 1 = 0 and
log r = 0, which combined with tanh(0) = 0 imply that f = 0 as required.

The final condition is that the gradient of f with respect to π be zero at π = πold. This is equivalent
to having zero gradient with respect to r = π/πold at r = 1 since the gradients are equal up to a
constant. Now writing

f+ = (r − 1)A− α tanh((r − 1)A/α) and f− = log(r)A− β tanh(log(r)A/β)

for A ≥ 0 and A < 0 respectively, we have

∂f+

∂r
= A−A cosh−2((r − 1)A/α) and

∂f−

∂r
=
A

r
− A

r
cosh−2(log(r)A/β)

which both evaluate to 0 at r = 1, since cosh(0) = 1. This implies for A ≥ 0 that

∂f

∂r
=
∂ReLU(f+)

∂r
=

{
∂f+

∂r if f+ ≥ 0

0 if f+ < 0
= 0

at r = 1 and for A < 0 that

∂f

∂r
=
∂ReLU(f−)

∂r
=

{
∂f−

∂r if f− ≥ 0

0 if f− < 0
= 0

at r = 1. Taken together we conclude, for all A, that f has zero gradient at r = 1.
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E Ablations on Drift Inputs

(a) Ant (b) Grasp

(c) Fetch (d) Humanoid

(e) ur5e (f) HalfCheetah

(g) Walker2d

Figure 10: Performance comparison between different inputs to the meta-training of the drift function.
Note that due to computational constraints, the meta-training was only trained for 208 generations
instead of 672. The results show that the meta-trained drift function performs well with respect to
multiple possible input parameterisations.
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