Constructing low star discrepancy point sets with genetic algorithms

François-Michel De Rainville, Carola Doerr,
Christian Gagné, Michael Gnewuch,
Denis Laurendeau, Olivier Teytaud, Magnus Wahlström

Numerical Integration

- One of the most challenging questions in numerical analysis: compute $\int f(x) dx$ for a (possibly complicated) function $f: \mathbb{R}^d \to \mathbb{R}$
- FAR from being a purely academic problem: applications in financial derivate pricing, scenario reduction, computer graphics, pseudorandom number generators, stochastic programming...
- One of the oldest problems in mathematics

Monte Carlo Integration

- Instead of computing $\int f(x)dx$, evaluate f in random samples
- Approximate the integral by the mean value $\frac{1}{n}\sum_{i=1}^{n}f(x^{i})$
- How good is this approximation?

Approximation error can be measured by $V(f)d_{\infty}^{*}(x^{1},...,x^{n})$, where

- V(f) depends only on f
- $d_{\infty}^*(x^1,...,x^n)$ depends only on $x^1,...,x^n$

Low Star Discrepancy Point Sets

Idea of Quasi-Monte Carlo integration: evaluate f in low discrepancy point sets

(Pseudo) Random

Quasi Random

Low Star Discrepancy Point Sets

- Idea of Quasi-Monte Carlo integration: evaluate f in low discrepancy point sets
- 2 Main Problems:
 - Where to place the points? (high-dimensional problem!)
 - Computation of star discrepancies is provably hard (NP-hard and W[1]-hard in the dimension, cf. [GSW09,GKWW12])

Human-Competitiveness 1/5

Criterion (B): The results are **equal to or better than a result that was accepted as a new scientific result** at the time when it was published in a peer-reviewed scientific journal

- Our algorithms clearly outperform all previous works
 - Exponential performance increase for our evaluation algorithm (previous work includes [WF97, Th01a, Th01b, Sh12])
 - Computed point sets are better by 36% on average when compared to results in [Th01a, Th01b, DGW10]

Human-Competitiveness 2/5

Criterion (D): The results are **publishable in its own right** as new scientific results independent of the fact they were mechanically created

- We have published our papers in the most prestigious journals of the field: ACM Transactions on Modeling and Computer Simulation & SIAM Journal on Numerical Analysis
- We have as well presented them in the relevant conferences of the different communities: GECCO 2009, MCQMC 2008, MCM 2011, UDT2012, MCQMC 2012, GECCO 2013, and at various relevant workshops

Human-Competitiveness 3/5 & 4/5

Criterion (E): The results are equal to or better than the most recent human-created solution to a long-standing problem for which there has been a succession of increasingly better human-created solutions Criterion (F): The results are equal to or better than a result that was considered an achievement in its field at the time it was first discovered

- There has been a long sequence of previous works on both problems (computing the discrepancy of a given point set and creating low discrepancy point configurations, respectively) [e.g., Nie72, De86, BZ93, DEM96, WF97, Th00, Th01a, Th01b, DGW10, and many more]
- Our algorithm is suited also for computing inverse star discrepancies (i.e., for given dimension d and constant δ , what is the smallest n such that there exists $x^1, ..., x^n$ in $[0,1)^d$ with $d_{\infty}^*(x^1, ..., x^n) \leq \delta$?)

Human-Competitiveness 3/5 & 4/5, cont.

Criterion (E): The results are equal to or better than the most recent human-created solution to a long-standing problem for which there has been a succession of increasingly better human-created solutions Criterion (F): The results are equal to or better than a result that was considered an achievement in its field at the time it was first discovered

Our algorithm is also much faster than previous approaches:

	Our algorithm		Thiémard Th01b	
Instance	Time	Result	Time to get same result	Result at same time
Faure-12-169	25s	0.2718	1s	0.2718
Sobol'-12-128	20s	0.1885	7.6m	0.1463
Sobol-12-256	35s	0.1110	1.6d	0.0873
Faure-20-1500	4.7m	0.0740	>4d	None
GLP-20-1619	5.2m	0.0844	>5d	None
Sobol-50-4000	42m	0.0665	9h	None
GLP-50-4000	42m	0.1201	>5d	None

Human-Competitiveness 5/5

Criterion (G): The result solves a problem of **indisputable difficulty** in its field

- The addressed problems are provably (!) difficult and subject to the curse of dimensionality
- Great interest by scientific and industrial researchers and engineers: we have started several new projects that build on our algorithms
- We could solve some open problems posed in the literature (e.g., open problem 42 in [NW10])

Achievements

✓ New genetic algorithms for

- computing low discrepancy point sets
- evaluating star discrepancy values
- computing inverse star discrepancies
- ✓ Our results clearly outperform previous results by a large margin, both in terms of quality and speed
- ✓ All computed point sets are available online:
 http://qrand.gel.ulaval.ca/
 (idea: maintain a database with low star discrepancy point sets)
- ✓ Great interest from different communities: several new projects with further applications have been launched (both with mathematicians and engineers)

Full References of Our Papers

- Carola Doerr, François-Michel De Rainville
 Constructing low star discrepancy point sets with genetic algorithms
 In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO '13
 Association for Computing Machinery (ACM), 2013. To appear
- François-Michel De Rainville, Christian Gagné, Olivier Teytaud, Denis Laurendeau Evolutionary optimization of low-discrepancy sequences
 In: ACM Transactions on Modeling and Computer Simulation, 22(2):9:1--9:25
 Association for Computing Machinery (ACM), 2012
- Michael Gnewuch, Magnus Wahlström, Carola Winzen
 A new randomized algorithm to approximate the star discrepancy based on threshold accepting

In: SIAM Journal on Numerical Analysis, 50:781--807 Society for Industrial and Applied Mathematics (SIAM), 2012

Other References 1/4

P. Bundschuh, Y. Zhu
 A method for exact calculation of the discrepancy of low-dimensional point sets (I)
 In: Abhandlungen aus dem Mathematischen Seminar der Univ. Hamburg, 63(1):115--133
 Springer, 1993

L. De Clerck

A method for exact calculation of the star-discrepancy of plane sets applied to the sequence of Hammersley

In: Monatshefte für Mathematik, 101(4):261--278 Springer, 1986

- David P. Dobkin, David Eppstein, Don P. Mitchell
 Computing the discrepancy with applications to supersampling patterns
 In: ACM Transactions on Graphics, 15(4):354--376
 Association for Computing Machinery (ACM), 1996
- Benjamin Doerr, Michael Gnewuch, Magnus Wahlström
 Algorithmic construction of low discrepancy point sets via dependent randomized rounding
 In: Journal of Complexity, 26:490--507
 Elsevier, 2010

Other References 2/4

 Panos Giannopoulos, Christian Knauer, Magnus Wahlström, Daniel Werner Hardness of discrepancy computation and epsilon-net verification in high dimension In: Journal of Complexity, 28(2):162--176 Elsevier, 2012

 Michael Gnewuch, Anand Srivastav, Carola Winzen
 Finding optimal volume subintervals with k points and calculating the star discrepancy are NP-hard problems

In: Journal of Complexity, 25(2):115--127 Elsevier, 2009

Harald Niederreiter
 Methods for estimating discrepancy
 In: Applications of Number Theory to Numerical Analysis, 203--236
 Academic Press, 1972

Erich Novak and Henryk Wozniakowski
 Standard Information for Functionals
 In: Tractability of Multivariate Problems, vol. 2
 EMS Tracts in Mathematics, European Mathematical Society, 2010

Other References 3/4

Manan Shah

A genetic algorithm approach to estimate lower bounds of the star discrepancy

In: Monte Carlo Methods and Applications, 16(3-4):379--398

De Gruyter, 2010

Eric Thiémard

Computing bounds for the star discrepancy

In: Computing 65(2):169--186

Springer, 2000

Eric Thiémard

An algorithm to compute bounds for the star discrepancy

In: Journal of Complexity, 17(4):850--880

Elsevier, 2001

Eric Thiémard

Optimal volume subintervals with k points and star discrepancy via integer programming

In: Mathematical Methods of Operations Research, 54(1):21--45

Springer, 2001

Other References 4/4

Peter Winker and Kai-Tai Fang
 Applications of threshold-accepting to the evaluation of the discrepancy of a set of points
 In: SIAM Journal on Numerical Analysis, 34:2028--2042
 Society for Industrial and Applied Mathematics (SIAM), 1997