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ABSTRACT

This paper presents Kaizen Programming, an evolutionary
tool based on the concepts of Continuous Improvement from
Kaizen Japanese methodology. One may see Kaizen Pro-
gramming as a new paradigm since, as opposed to classical
evolutionary algorithms where individuals are complete so-
lutions, in Kaizen Programming each expert proposes an
idea to solve part of the problem, thus a solution is com-
posed of all ideas together. Consequently, evolution becomes
a collaborative approach instead of an egocentric one. An
idea’s quality (analog to an individual’s fitness) is not how
good it fits the data, but a measurement of its contribu-
tion to the solution, which improves the knowledge about
the problem. Differently from evolutionary algorithms that
simply perform trial-and-error search, one can determine,
exactly, parts of the solution that should be removed or im-
proved. That property results in the reduction in bloat,
number of function evaluations, and computing time. Even
more important, the Kaizen Programming tool, proposed to
solve symbolic regression problems, builds the solutions as
linear regression models - not linear in the variables, but
linear in the parameters, thus all properties and charac-
teristics of such statistical tool are valid. Experiments on
benchmark functions proposed in the literature show that
Kaizen Programming easily outperforms Genetic Program-
ming and other methods, providing high quality solutions
for both training and testing sets while requiring a small
number of function evaluations.

Categories and Subject Descriptors

I.2.2 [Artificial Intelligence]: Automatic Programming,
Program Synthesis, ProgramModification; D.1.2 [Program-
ming Techniques]: Automatic Programming
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Symbolic regression, Linear regression, Evolutionary algo-
rithm, Collaborative problem solving, Genetic programming
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1. INTRODUCTION
Genetic programming (GP) [8] is an evolutionary compu-

tation algorithm, inspired by the Genetic Algorithm (GA) [3],
which evolves computer programs to solve a particular task.
GP has been employed to automatically produce codes to
solve (see [13]): curve-fitting, data modelling, symbolic re-
gression, image and signal processing, financial trading, time
series, industrial process control, bioinformatics, among oth-
ers. Despite its successful application in several domains,
there are some known issues with GP and related algorithms
[11, 7], for instance, bloat, lack of heuristics, slow speed
(large population size), and low success rate.

One of the main reasons for those issues is that the meth-
ods perform blind/random search. The only guide, or at
least the most important, is pressure selection, which selects
the best solutions to be mixed and to continue in the popu-
lation. On the other hand, recombination and mutation are,
in general, simple guesses: select two random sub-trees for
swapping, generate a random sub-tree, generate a random
ephemeral constant. The evolutionary process is done ex-
pecting that a new random solution presents a better fitness
than the current solution. According to Korns [7], these
characteristics make automated design algorithms hard to
be accepted in the industry.

This paper presents a novel approach in order to overcome
some of the presented drawbacks. The purpose of this paper
is to improve the mechanism that guides the search, resulting
in the reduction in bloat, population size, and number of
function evaluations while increasing solution quality. The
proposed method is called Kaizen Programming and is based
on the Japanese methodology of Continuous Improvement of
solutions in a collaborative problem solving approach.

2. RELATED WORKS
Some related works that try to improve tools for symbolic

regression are presented next.
Moraglio et al. [10] presented the geometric crossover that

searches directly the space of the underlying semantics of the
programs. The operator transforms the syntax of an indi-
vidual in order to perform a ball mutation on the seman-
tic space. Consequently, any random improvement moves
the current solution towards the optimum. Thus, as they
pointed out in their paper, all random codes can be used,
resulting in huge black-box solutions.

Korns [6] stated that all current approaches needed serious
improvements. In the last years, he proposed several modifi-
cations in order to increase the quality of Genetic Program-
ming and created an engine where numerical constants are



replaced by abstract constants, which are optimized by con-
tinuous meta-heuristics such as Particle Swarm Optimiza-
tion and Differential Evolution.

Pennachin et. al [12] proposed the improvement of both
performance and robustness of GP by the use of Affine Arith-
metic to estimate the output range of expressions given their
inputs over the training data. Estimated outputs with values
too far from the desired output range are identified and the
corresponding trees are discarded from the solutions. That
strategy avoided extreme errors on the testing data.

The present work may be more related to ensembles of
trees [14], a method in which several models (trees) are in-
dependently evolved, and then combined to provide a better
forecast. The final fused prediction may be the average of
the individual predictions, a weighted average, or another
statistic. However, the technique proposed herein employs
a distinct strategy, as will be presented in the next sections.

All these approaches improve solution quality, but bloat
and the number of evaluations are still high, except for the
works of Korns, who employs user specified goal expressions.
With Kaizen Programming, this can be reduced because it
can identify the contribution of parts of the solution. The
Kaizen methodology is presented next.

3. THE KAIZEN METHODOLOGY
The Japanese word Kaizen means ”Good Change,” and

is adopted as a philosophy of work [4] which means contin-
uous improvement. Kaizen Event is the term given to an
event consisting of a team (of workers and managers) work-
ing together for a brief period to find effective solutions to
identified business problems. In an industry, for instance,
it could be cycle time reduction, waste reduction, speed im-
provement, or any other problem.

Kaizen teams are usually small groups of about five indi-
viduals who spend their time for a few days until a partic-
ular issue is solved or a significant improvement is achieved
according to the mission statement. The individuals are
selected by their knowledge in the area where the issue is
present or because they work elsewhere, but are also im-
pacted by the issue. This way, different aspects of the prob-
lem may be analyzed in order to identify the effects of the
proposed changes.

In a kaizen event, the team of experts meets for instruc-
tions. During the meeting, the experts discuss critical is-
sues, do a brainstorming of ideas to provide solutions for the
problem, and develop action plans. In general, the Plan-Do-
Check-Act (PDCA [2]) methodology is employed to guide
the continuous improvement process.

In PDCA, actions are planned, executed, checked, and
new actions are taken based on the results. The cycle is
repeated until the mission is complete. At each cycle, more
knowledge on the problem is gained and every action can be
evaluated according to its effectiveness in helping solving the
issue. Therefore, at each cycle, the experts have more infor-
mation to avoid bad actions and guide the search towards
the solution. One of the interesting aspects is that complex
actions that do not provide significant improvement may be
discarded, reverting back to old simple yet not so efficient
procedures.

4. KAIZEN PROGRAMMING
Kaizen Programming (KP), proposed herein, is a novel

evolutionary tool based on the concepts of the Kaizen method-
ology. KP is a computational implementation of a Kaizen
event with PDCA.

In usual evolutionary algorithms such as GP, an individual
is a mapping of the problem’s solution (a complete solution),
and different individuals are different solutions for the same
problem. That creates diversity for the search mechanism
and gives the user the possibility of choice among the final
best solutions.

When compared to GP, KPmay be seen as a new paradigm
for automated design of algorithms because KP individuals
are not complete solutions, but part of it. Consequently,
evolution becomes a collaborative approach instead of an
egocentric one.

In KP, a team of experts is formed to propose ideas to
solve a problem, then are joined to become a solution. The
quality of the solution is how good it solves the problem, and
the quality of an idea is a measurement of its contribution
to the solution. Therefore, differently from general GP and
other evolutionary algorithms that perform trial-and-error
search, in KP one can determine, exactly, which parts of
the solution should be removed or improved. Consequently,
KP is a collaborative problem-solving approach and that the
experts have to contribute by providing better ideas at each
cycle. Such property results in a reduction in bloat, smaller
population sizes, and lower number of function evaluations.

Not all experts may provide useful contributions all the
time, but their knowledge is shared with the group to im-
prove everyone’s ideas. Algorithm 1 presents a high-level
KP algorithm, and Figure 1 presents a flowchart.

Algorithm 1 The Kaizen Programming algorithm.

1. Create a team of experts;

2. Define target and set it as not achieved;

3. Do

(a) PLAN: the team performs a brainstorming and each ex-
pert proposes an idea to solve part of the problem;

(b) DO: the current ideas and the new ones (created from the
second iteration) are applied to the problem and joined
to become a complete solution;

(c) CHECK: evaluate the solution then each single idea (old
and new) is analyzed and its contribution to solve the
problem is measured;

(d) ACT: if the solution is improved, then the best ideas are
selected and become the new standard, which is presented
to the team along with each contribution, improving the
knowledge of the problem. Create another kaizen event
with a new team if the current one gets stuck in a local
optimum;

4. Loop while target is not achieved;

5. Return the ideas with significant contribution and the final
solution.

In this paper, KP is employed to solve symbolic regression
problems. As mentioned before, KP will build solutions as
linear regression models, where each variable of the model
is called a regressor. The next subsections explain, in more
detail, the PDCA cycle of KP.

4.1 PLAN
In this phase KP has to generate ideas, which are pro-

posed by the team of experts to solve parts of the problem.



Figure 1: Basic Kaizen Programing flowchart.

Since the problem is new to all experts there are no initial
standard and no initial knowledge. After the first cycle, a
standard is established and the team acquires knowledge on
the problem, improving it over the cycles.

For the symbolic regression problem, an idea from an ex-
pert is a mathematical expression that will be implemented
and transformed into a new regressor (Kj , j = 1, ..., t) of
the model. Therefore, the team size (t) corresponds to
the new number of regressors. If the original problem has
only one regressor (x) and KP is configured with a team of
three experts, then one may have, for example, K1 = x2;
K2 = sin(x); K3 = −x+ 3/x.

4.2 DO
After all experts present their ideas these are individually

applied to the problem (calculated). Therefore, the result
is a matrix TRIALn,w, where n is the number of observa-
tions in the sample dataset used for training and w is the
new number of regressors. The new ideas are joined with
the current standard STDn,t and all of them will be used
to build a new model. The solution quality and the contri-
butions of the current standard can be changed for better
or worse. Below there is an example of regressors matrix
Kn,(t+w), where t and w may have different values as ex-
plained later.

K =









STD11 . . . STD1t

.

.

. . . .
.
.
.

STDn1 . . . STDnt

TRIAL11 . . . TRIAL1w

.

.

. . . .
.
.
.

TRIALn1 . . . TRIALnw









.

4.3 CHECK
In this phase KP creates a linear model using K and the

set of expected outputs for the problem (y), and optimizes
it using Ordinary Least-Squares (OLS). OLS is a statistical
tool that minimizes the sum of the squared residuals, which
are the squared vertical distances between the observed re-
sponses in the sample dataset and the responses predicted
by the linear model. Using the previous example with K1,
K2, and K3, the model is created in the form:

ŷi = β̂1Ki,1 + β̂2Ki,2 + β̂3Ki,3, (1)

where ŷi, i = 1, ..., n is the calculated output for an and β̂1,
β̂2, and β̂3 are the coefficients estimated by OLS using

β̂ = (KTK)−1KT y. (2)

Therefore, it is easy to notice that all models generated
by KP are linear in the parameters since β̂i are never within
the regressors (Ki) generated by the experts. Also, one can
notice that Eq. 1 does not explicitly contain the intercept.
In fact, one of the regressors can be a constant generated by
KP.

The linear model is used not only to perform the lin-
ear scaling and evaluate the solution, but also to guide the
search for better ideas. Hence, it is important to be clear
that the estimated parameters are not included in the solu-
tion during the search, only in the final solution.

In order to guide the search one must check the contribu-
tion of each regressor to the model, that is, the contribution
of each idea to the solution. Hence, the quality of an idea
(fitness) is not the sum of residuals.

The contribution is measured as the p−value of the regres-
sor, calculated using p = 2 ∗ (1 − T (df, |t|)), where T is the

cumulative distribution of the studentâĂŹs t-distribution,
df is the residual degrees of freedom, and |t| is the absolute
value of the observed t-statistic. If p−value is not signifi-
cant (p−value > α), then the idea was not useful to solve
the problem and may be discarded in the next cycle. Fur-
thermore, if the p−value of a regressor Kj is significant,

but the absolute value of the corresponding coefficient β̂j is
lower than a predefined threshold θ, then Kj is considered

not significant because β̂jKj ≈ 0. Thus, Kj is penalized and
set to 1.0. The penalty also applies to duplicated ideas, for
which OLS calculates the coefficient as NA.

The use of the contribution is a very important character-
istic of the method to automatically act as bloat control. On
the other hand, if an idea is improved it can automatically
replace the old one.

contrib(Kj) =



















1.0, if p−value(Kj) = NA

1.0, if p−value(Kj) > α

1.0, if ˆ|βj| < θ

p−value(Kj), otherwise

. (3)

The solution (model) quality is given by a goodness of fit
measure by comparing how much the initial variation in the
sample dataset can be reduced by regressing onto K. In
statistics, the coefficient of determination R2 is the propor-
tion of variability in the dataset that is accounted for by a
statistical model. While R2 is a goodness of fit measure, ad-
justed R2 is a comparative measure of suitability of models
with distinct sets of regressors. R2 may increase just because
the number of regressors increased. On the other hand, ad-
justed R2 increases only if the new regressor improves the
model more than would be expected by chance. Since KP
generates distinct models with different number of regres-
sors (selected according to their contribution) each cycle,
adjusted R2 can be used to compare the models and select
the one that presents higher value without being mistaken
by the number of regressors. Adjusted R2 is calculated as
follows, where p is the number of regressors:

Adj.R
2
= 1 − (1 − R

2
)

n − 1

n − p − 1
= R

2
− (1 − R

2
)

p

n − p − 1
, (4)



Adjusted R2, which was used to stop the search, can be
easier to interpret than RMSE, for instance, because it is
scale-free, w.r.t. the response values of the problem, and the
result of this statistic is in the range [0, 1] where 1 means
a perfect fit. Actually, negative values may occur but are
not expected and correspond to a very low-quality model.
The corresponding algorithm of this phase is presented in
Algorithm 2.

Algorithm 2 The Check phase of KP.

Input: K, y, α, θ, MAXVALUE //the penalty
Output: Fit, Contrib //the Contributions

1. Build the model

2. Calculate the contribution of the regressors

3. If there are no significant regressors

(a) Set Fit as MAXVALUE and the Contrib as in Eq. 3

4. Else

(a) Build a new model using only the significant regressors

(b) Calculate the contribution of the regressors

(c) Calculate Fit as the goodness-of-fit (Adjusted R2)

4.4 Act
In this stage, the experts will propose new ideas to solve

the problem, based on the knowledge acquired in the Check
phase due to the contributions of the current ideas in the
standard. The new solution replaces the standard only if it
is better.

To generate a new idea, the expert may combine his cur-
rent idea with the idea proposed by another expert, and then
improve the combined solution with another new informa-
tion. However, not all experts have to present new ideas
every cycle. That procedure works in a similar fashion as
crossover and mutation of a GP algorithm.

An additional characteristic of KP is that it uses a small
number of experts and works as a hill-climbing method.
Thus, it is necessary to use a restarting procedure to escape
from a local optimum if the standard is stagnated (remains
the same) for a period defined by the user. That means that
the investigated issue was underestimated and it is neces-
sary to create a new Kaizen event with a different and larger
team. Hence, the restart procedure saves the current stan-
dard, increases the number of experts by EF (expansion
factor), and generates new random ideas ignoring the old
ones. The method restarts the PDCA cycle until some stop-
ping criterion is achieved. The best standard discovered out
of all restarts is returned as the final solution.

4.5 Resulting solution
The resulting solution (standard) is an additive function

that approximates the regressors on the response variable. It
is not expected that the exact function which generated the
response will be found (because KP generates a composite
function). For instance, take the following example function:

f(x0,x1, x2, x3, x4) = −5.41 + 4.9
x3 − x0 +

x1

x4

3x4

, (5)

where xi = U(−50, 50). The best solution found by a KP
is shown in Figure 2.

ffound(x0, x1, x2, x3, x4) =
(0.261141430577

∗(−1 ∗ ((1/((−1 ∗ (((1/(−1 ∗ (x0)))
∗(1/ − 6.2545928837239835))))
∗(−1 ∗ (x4)))))))

+(−1.63333333333
∗(−1 ∗ ((1/((−1 ∗ (((1/(x4 ∗ x3)) ∗ x4)))
∗(−1 ∗ (x4)))))))

+(−1.63333333333
∗(−1 ∗ ((1/((−1 ∗ (((1/x1) ∗ x4)))
∗(−1 ∗ (x4)))))))

+(0.6446225282
∗(−1 ∗ ((1/(1/8.3925084267666)))))

fsimplified(x0,x1, x2, x3, x4) =
−1.6333333333324 ∗

x0

x4

+1.63333333333 ∗
x1

x2
4

+1.63333333333 ∗
x3

x4

−5.41000000000209

(a) (b)

Figure 2: (a) the best solution found by a KP run;
(b) the simplified expression.

That set of ideas can be plot with random xi values as in
Figure 3(a), whereas the final calculated outputs ŷ and the
expected real outputs are shown in Figure 3(b). The calcu-
lated output (dashed line) is exactly inside the expected out-
put (solid line), meaning that the exact function was found
besides in a different form.
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Figure 3: (a) Plot of significant ideas; (b) Expected
(Eq. 5) and calculated (Fig 2(b)).

Next section presents experimental results of Kaizen Pro-
gramming to solve symbolic regression problems.

5. EXPERIMENTAL RESULTS
This next section presents a comparison of Kaizen Pro-

gramming against related methods in solving a set of well-
known symbolic regression benchmark functions.

5.1 Benchmark functions
The functions tested in this work, whose definitions one

can see in Table 1, were taken from [9]. The description of
the table, as shown in [9] is: variable names are, in order, x,
y, z. Some benchmarks intentionally omit variables from the
function. U[a,b,c] is c uniform random samples drawn from
a to b, inclusive, for the variable. E[a,b,c] is a grid of points
evenly spaced (for this variable) with an interval of c, from
a to b inclusive. Testing and training sets are independent.

In order to compare to other methods, tests were also
performed in the well-known Nguyen benchmark functions
shown in Table 2

5.2 Implementation and configuration of the
algorithms

GP was implemented using DEAP (Distributed Evolu-
tionary Algorithms in Python, [1]), an evolutionary compu-
tation framework for rapid prototyping and testing of ideas.



Table 1: Symbolic regression functions (Keijzer
functions) and the datasets as proposed in [9].

Function Training data Testing data

keijzer1(x) = 0.3xsin(2πx) E[-1, 1, 0.1] E[-1, 1, 0.001]
keijzer2(x) = 0.3xsin(2πx) E[-2, 2, 0.1] E[-2, 2, 0.001]
keijzer3(x) = 0.3xsin(2πx) E[-3, 3, 0.1] E[-3, 3, 0.001]

keijzer4(x) = x3e−xcos(x)sin(x)(sin2(x)cos(x)− 1) E[0, 10, 0.05] E[0.05, 10.05, 0.05]

keijzer5(x) = (30xz)/((x− 10)y2) x ,y : U[-1, 1, 1000]
z : U[1, 2, 1000]

x ,y : U[-1, 1, 10000]
z : U[1, 2, 10000]

keijzer6(x) =
∑x

i
1/i E[1, 50, 1] E[1, 120, 1]

keijzer7(x) = lnx E[1, 100, 1] E[1, 100, 0.1]
keijzer8(x) =

√
x E[1, 100, 1] E[1, 100, 0.1]

keijzer9(x) = arcsinh(x) E[1, 100, 1] E[1, 100, 0.1]
keijzer10(x) = xy U[0, 1, 100] E[0, 1, 0.1]

keijzer11(x) = xy + sin((x− 1)(y − 1)) U[-3, 3, 20] E[-3, 3, 0.01]

keijzer12(x) = x4 − x3 + y2/2− y U[-3, 3, 20] E[-3, 3, 0.01]
keijzer13(x) = 6sin(x)cos(y) U[-3, 3, 20] E[-3, 3, 0.01]

keijzer14(x) = 8/(2 + x2 + y2) U[-3, 3, 20] E[-3, 3, 0.01]

keijzer15(x) = x3/5 + y3/2− y − x U[-3, 3, 20] E[-3, 3, 0.01]

Table 2: Symbolic regression functions (Nguyen
functions) and the datasets as proposed in [9].

Function Training/Testing data

nguyen1(x) = x3 + x2 + x x : U[-1, 1, 20]

nguyen2(x) = x4 + x3 + x2 + x x : U[-1, 1, 20]

nguyen3(x) = x5 + x4 + x3 + x2 + x x : U[-1, 1, 20]

nguyen4(x) = x6 + x5 + x4 + x3 + x2 + x x : U[-1, 1, 20]

nguyen5(x) = sin(x2)cos(x)− 1 x : U[-1, 1, 20]

nguyen6(x) = sin(x) + sin(x+ x2) x : U[-1, 1, 20]

nguyen7(x) = log(x+ 1) + log(x2 + 1) x : U[0, 2, 20]
nguyen8(x) =

√
x x : U[0, 4, 20]

nguyen9(x) = sin(x) + sin(y2) x , y: U[-1, 1, 100]
nguyen10(x) = 2sin(x)cos(y) x , y: U[-1, 1, 100]

DEAP provides a complete GP implementation, with several
operators and flexibility for improvements.

KP was also implemented using GP modules from DEAP.
Therefore, the same modules used in the GP implementation
were used in KP, which means that KP was not privileged
by a better implementation of the genetic operators. The
statistical parts of KP (the OLS method, Adjusted R2, p−
values, among others) used the lm (linear model) function
from R programming language. The connection between
Python and R was performed by the Rpy2 Python package.

For the tests using Keijzer functions, the methods were
configured as shown in Table 3 with the function set pro-
posed in [9].

Table 3: Run and evolutionary parameter values for
Keijzer functions.

Parameter Value
(KP/GP50/GP500)

Initial Experts/Population
size

8/50/500

Ideas/Population generator GP Ramped
Generations 2000/500/50
Stagnation 25% of the generations

Factor (EF ) to increase
experts/population

ceiling (10% of popsize)

Tournament Selection 1/3/3
Crossover probability 1.0/0.9/0.9

Idea combinator/crossover
operator

One-point

Mutation probability 1.0/0.05/0.05
Idea improver/mutation

operator
90% GP Uniform

Mutation
10% GP ERC Mutation

Max. depth 2/15/15
Non-terminals +, ×, 1

n
, −n,

√
n,

Terminals x, Constants (ERC) are
random values from
N(µ = 0, σ = 5).

Solution quality/fitness AdjustedR2/R2/R2

Value-to- reach (VTR) 1− fitness < 1e− 5
Trials 50

θ (for KP Check) 1e− 4
α (for KP Check) 0.05

For the test using Nguyen functions, KP was configured
as shown in Table 4 with the function set proposed in [5].

Table 4: Modified run and evolutionary parameter
values for Nguyen functions. The configuration of
the other parameters are in Table 3.

Parameter Value (KP)
Maximum number of
node evaluations

100,000

Stagnation 25% of the generations
Max. depth 8

Non-terminals +, ×, −, /(protected), sin,
cos, exp, log(protected)

Terminals x , Constant 1 (nguyen1 to
nguyen8 ), y (nguyen9 and

nguyen10 )
Hit when the solution has an

absolute error < 1e-2 on a
fitness case

Successful run when the solution scores
hits on all fitness cases

Trials 100

5.3 Evaluation
A descriptive analysis of the results obtained in the ex-

periments is presented with the median best values for each
benchmark function and statistical comparison between KP
and GP50 (GP with popsize of 50 individuals), and KP and
GP500 (GP with popsize of 500 individuals). The Wilcoxon
Mann-Whitney test at a significance level α = 0.01% was
performed using the RMSE Testing results of 50 trials. No
statistical comparison was performed for the Training re-
sults.

5.4 Results
Regarding theKeijzer benchmark functions, Table 5 presents

the results of the training set whereas Table 6 presents the
results of the testing set.

The Nguyen benchmark functions use the same interval
for training and testing, but the sets of points are distinct.
For these tests, it was employed the same methodology pre-
sented by Karaboga et al. in [5]. The descriptive analysis is
shown in Table 7 and the comparison with other methods is
shown in Table 8.

5.5 Discussion
One can notice in Table 3 that, as suggested in [9], not

all operators employed in the benchmark functions (see Ta-
ble 1) are available in the function set. Therefore, the exact
solution can be hard or impossible to find. Thus, it is ex-
pected that KP fails for some runs.

In this work, the generation of ideas is performed using the
same well-known evolutionary operators employed by GP:
population initialization, crossover, mutation, and selection.
KP guides the search by identifying the partial solutions to
be improved, but the search is still random as in GP.

Given that both methods can restart when stagnation is
detected, i.e the best solution does not change during a pe-
riod, the number of function evaluations (NFEs) can vary.
For KP, at each cycle the current ideas have to be reeval-
uated because they will be part of a new solution with the
new ideas. Therefore, at each generation there are 16 evalu-
ations instead of 8. However, the number of generations was
set to provide similar NFEs as presented in Table 5. GP was
configured with populations 50 and 500 as commonly used
in related works in the literature.



Table 5: Training Results using Keijzer benchmark functions (descriptive analysis).
KP GP50 GP500

Function Statistic Adj.R2 RMSE NFEs R2 RMSE NFEs R2 RMSE NFEs

Min 9.996e-01 1.926e-06 328 1.404e-01 4.833e-02 25050 4.123e-01 8.001e-02 26700

keijzer1 Median 1.000e+00 2.210e-04 9492 4.144e-01 8.969e-02 25050 4.144e-01 8.969e-02 30450

Max 1.000e+00 2.279e-02 32260 8.300e-01 1.087e-01 25050 5.340e-01 8.985e-02 32170

Min 1.252e-01 5.419e-04 2880 3.439e-02 1.031e-01 25050 5.502e-02 2.174e-01 28460

keijzer2 Median 8.994e-01 6.747e-02 32190 1.957e-01 2.159e-01 25050 1.392e-01 2.234e-01 30550

Max 1.000e+00 2.194e-01 32380 8.165e-01 2.366e-01 25050 1.844e-01 2.341e-01 32310

Min 1.259e-01 9.983e-02 32100 0.000e+00 2.469e-01 25050 3.263e-02 3.346e-01 28300

keijzer3 Median 3.830e-01 2.654e-01 32170 1.064e-01 3.437e-01 25050 7.050e-02 3.506e-01 30300

Max 9.132e-01 3.359e-01 32260 5.389e-01 3.636e-01 25050 1.530e-01 3.576e-01 31950

Min 5.120e-01 3.533e-02 32180 0.000e+00 2.517e-01 25050 0.000e+00 3.155e-01 25500

keijzer4 Median 7.408e-01 1.631e-01 32330 7.186e-03 3.164e-01 25050 1.489e-03 3.174e-01 25500

Max 9.887e-01 2.658e-01 32540 3.725e-01 3.186e-01 25050 1.383e-02 4.051e-01 26550

Min 1.000e+00 8.122e-04 368 5.197e-02 1.918e-02 25050 8.050e-01 8.048e-02 28760

keijzer5 Median 1.000e+00 1.524e-03 2180 8.988e-01 1.756e-01 25050 8.582e-01 2.036e-01 32020

Max 1.000e+00 9.060e-03 27180 9.987e-01 5.428e-01 25050 9.797e-01 2.417e-01 32740

Min 1.000e+00 6.985e-16 56 1.000e+00 9.899e-01 51 1.000e+00 9.899e-01 501

keijzer6 Median 1.000e+00 9.216e-16 56 1.000e+00 9.899e-01 51 1.000e+00 9.899e-01 501

Max 1.000e+00 1.179e-14 14510 1.000e+00 9.899e-01 51 1.000e+00 9.899e-01 501

Min 1.000e+00 2.964e-06 56 9.391e-01 6.074e-02 25050 9.955e-01 1.049e-01 28590

keijzer7 Median 1.000e+00 4.613e-04 80 9.978e-01 1.747e-01 25050 9.977e-01 1.813e-01 30660

Max 1.000e+00 1.776e-02 224 9.997e-01 9.258e-01 25050 9.992e-01 2.512e-01 32480

Min 1.000e+00 7.911e-16 56 1.000e+00 0.000e+00 51 1.000e+00 0.000e+00 501

keijzer8 Median 1.000e+00 3.499e-15 56 1.000e+00 0.000e+00 51 1.000e+00 0.000e+00 501

Max 1.000e+00 1.340e-02 160 1.000e+00 0.000e+00 101 1.000e+00 0.000e+00 501

Min 1.000e+00 9.773e-06 56 9.479e-01 8.466e-02 25050 9.694e-01 1.118e-01 25500

keijzer9 Median 1.000e+00 1.587e-03 88 9.985e-01 1.714e-01 25050 9.991e-01 1.354e-01 30300

Max 1.000e+00 2.912e-02 248 9.996e-01 1.006e+00 25050 9.994e-01 7.704e-01 32050

Min 1.000e+00 2.057e-03 2616 9.361e-01 4.198e-02 25050 9.297e-01 9.039e-02 30760

keijzer10 Median 1.000e+00 2.998e-03 32210 9.565e-01 1.562e-01 25050 9.575e-01 1.526e-01 32870

Max 1.000e+00 1.946e-02 32330 9.968e-01 1.887e-01 25050 9.863e-01 1.917e-01 32870

Min 9.709e-01 8.244e-02 32090 8.980e-01 3.121e-01 25050 8.862e-01 4.060e-01 31930

keijzer11 Median 9.936e-01 1.934e-01 32160 9.577e-01 6.452e-01 25050 9.597e-01 6.359e-01 32680

Max 9.985e-01 4.542e-01 32230 9.906e-01 7.936e-01 25050 9.899e-01 7.766e-01 32870

Min 9.999e-01 3.960e-15 328 8.275e-01 1.028e+00 25050 8.650e-01 1.373e+00 30220

keijzer12 Median 1.000e+00 2.628e-02 2692 9.751e-01 3.527e+00 25050 9.802e-01 3.565e+00 31190

Max 1.000e+00 7.772e-01 32220 9.985e-01 1.204e+01 25050 9.981e-01 9.722e+00 32300

Min 8.947e-01 8.033e-02 32120 1.926e-01 6.009e-01 25050 1.368e-01 1.645e+00 28340

keijzer13 Median 9.765e-01 3.482e-01 32190 4.064e-01 2.217e+00 25050 3.895e-01 2.261e+00 31190

Max 9.990e-01 8.525e-01 32310 9.626e-01 3.090e+00 25050 6.765e-01 2.889e+00 32870

Min 9.890e-01 2.354e-03 7976 6.821e-01 8.574e-02 25050 6.858e-01 2.988e-01 28860

keijzer14 Median 9.984e-01 5.319e-02 32180 8.358e-01 5.821e-01 25050 7.935e-01 6.968e-01 30890

Max 1.000e+00 1.294e-01 32310 9.955e-01 1.031e+00 25050 9.333e-01 9.405e-01 32740

Min 1.000e+00 8.585e-16 272 4.192e-01 4.882e-01 25050 4.722e-01 9.975e-01 29910

keijzer15 Median 1.000e+00 3.923e-15 2732 7.752e-01 1.520e+00 25050 7.609e-01 1.705e+00 32200

Max 1.000e+00 3.308e-02 11000 9.804e-01 2.387e+00 25050 9.398e-01 2.542e+00 32870

The stopping criteria are the maximum number of gener-
ations or the value-to-reach (VTR). VTR was set as a high-
quality model (R2 > 0.99999) instead of a small RMSE be-
cause R2 is scale-free with a maximum value of 1.0. KP uses
Adj.R2 because the number of regressors can change during
the process because only the significant ideas are used to
build the model. Also, Adj.R2 tends to be lower than R2,
thus a high Adj.R2 can be better than a high R2.

For the 15 functions, the training results show that KP
achieved the highest values of R2 for 12 functions, with two
ties (keijzer6 and 8), but the RMSE value of KP in keijzer6
is largely better. KP found very high-quality models (me-
dian Adj.R2 > 0.99) for 11 functions, whereas GP50 and
GP500 achieved such quality for only four functions.

For several functions KP required a much lower NFEs
(median) than GP (see keijzer1, 5, 9, 12, 15). In fact, KP
is much faster in finding good models, but the final adjust-
ments can take time because it uses the same random evo-
lutionary procedures employed by GP. Lower quality mod-
els (Adj.R2 > 0.95) were found by KP using just hundreds
of evaluations.

In the first experiment, the goal was to verify if KP could
outperform GP, thus the statistic tests were carried out as
KPxGP50, and KPxGP500. With respect to the testing re-
sults (see Table 6), one can see that KP showed statistically
inferior quality results for functions keijzer3, 8, 11, 13, and
14. For the functions with very large values (say > 1e5) it
was detected that the solution found by KP included the
operator 1

n
. When n approaches zero, the result increases

exponentially. If the training dataset does not include small
values for n, then KP can not treat this extreme behavior,
thus resulting in an over-fitted model.

For functions keijzer1, 2, 5, 6, 7, 10, and 15, KP errors
were smaller by one order of magnitude or more. GP50 and
GP500 presented similar results to each other, with GP500
having smaller variance.

The second experiment, using Nguyen benchmark func-
tions, provides the comparison of KP against state-of-the-art
techniques recently presented in the literature [5]. For these
problems, the method has to perform curve-fitting where the
maximum absolute error for any of the points (fitness cases)
is lower than 0.01, therefore, resulting in a successful run.



Table 6: Testing Results using Keijzer benchmark
functions. KP x GP50 and KP x GP500. Signal “=”
means that the results of KP and GP are statistically
equal, “<” that the results of GP are statistically
better, and “>” that are statistically worse.

Function Statistic KP GP50 GP500
Min 1.067e-05 4.528e-02 7.876e-02

keijzer1 Median 4.360e-04 8.260e-02 8.199e-02
Max 5.737e+06 2.423e+03 1.304e+00
P-value - > >
Min 6.858e-04 1.729e-01 2.089e-01

keijzer2 Median 6.849e-02 2.391e-01 2.217e-01
Max 8.229e+00 2.345e+01 1.002e+00
P-value - > >
Min 9.673e-02 2.950e-01 3.412e-01

keijzer3 Median 2.065e+00 3.889e-01 3.526e-01
Max 9.984e+01 9.999e+08 2.710e+00
P-value - = <
Min 3.541e-02 2.516e-01 3.155e-01

keijzer4 Median 1.612e-01 3.165e-01 3.174e-01
Max 2.656e-01 9.736e+00 5.835e+00
P-value - > >
Min 8.298e-04 1.946e-02 7.827e-02

keijzer5 Median 1.604e-03 1.928e-01 2.076e-01
Max 1.042e-02 2.236e+08 2.327e-01
P-value - > >
Min 5.490e-16 9.958e-01 9.958e-01

keijzer6 Median 8.808e-16 9.958e-01 9.958e-01
Max 8.030e-14 9.958e-01 9.958e-01
P-value - > >
Min 3.888e-04 7.352e-02 1.063e-01

keijzer7 Median 1.272e-02 2.040e-01 1.711e-01
Max 4.491e+02 9.995e+09 5.502e+08
P-value - > >
Min 1.232e-15 0.0 0.0

keijzer8 Median 6.077e-15 0.0 0.0
Max 1.628e+00 0.0 0.0
P-value - < <
Min 4.739e-03 1.452e-01 1.393e-01

keijzer9 Median 1.026e-01 3.650e-01 1.513e-01
Max 3.823e+09 9.995e+08 Inf
P-value - > >
Min 2.000e-03 3.179e-02 2.375e-01

keijzer10 Median 5.642e-02 3.492e-01 3.480e-01
Max 1.496e+01 3.570e-01 3.574e-01
P-value - > >
Min 8.528e-01 6.091e-01 5.943e-01

keijzer11 Median 1.223e+13 6.425e-01 6.749e-01
Max 8.597e+41 4.624e+26 1.016e+13
P-value - < <
Min 7.485e-15 1.024e+00 1.123e+00

keijzer12 Median 1.274e-01 1.342e+01 4.010e+00
Max 2.037e+13 7.184e+42 1.895e+01
P-value - > >
Min 9.516e-01 1.985e+00 1.834e+00

keijzer13 Median 4.634e+12 8.184e+00 4.693e+00
Max 1.319e+43 5.658e+42 1.572e+42
P-value - < <
Min 1.269e-01 9.317e-01 1.064e+00

keijzer14 Median 1.455e+13 2.094e+01 1.242e+00
Max 2.578e+41 1.803e+28 4.805e+13
P-value - < <
Min 1.084e-15 8.889e-01 1.409e+00

keijzer15 Median 1.481e-02 3.559e+00 3.098e+00
Max 5.055e+13 5.868e+13 9.610e+13
P-value - > >

The results of KP, shown in Table 7, are averaged over 100
trials. One can observe that the maximum average error is
lower than 0.01 for all problems, the raw fitness (sum of the
absolute errors for all fitness cases) is low considering the
number of points (see Table 4), RMSE for the training is
also very low, and RMSE for testing is not too high. There-
fore, one can conclude that the fitted curve is close to the
real curve.

The other important analyses are the number of objective
function and node evaluations. For functions nguyen1-8,
the average number of function evaluations was lower than
100. That number corresponds to less than 12 generations

(starting with 8 experts, but not all ideas may be included in
the final solution) to find a model with the desired accuracy.
The number of node evaluations is also small, which means
that the ideas generated to compose the final solutions used
few functions and, more importantly, the mechanism the KP
uses to guide the search was extremely effective.

Just for the sake of comparison, the results shown in [5]
used the limit of 15 × 106 node evaluations as stopping cri-
terion to terminate the methods. That number is four to
five orders of magnitude higher than the average required
by KP to achieve the expected solution quality. In fact,
this number is ever higher when one analyses the number of
successful runs shown in Table 8. Not only KP required a
substantially smaller number of function evaluations to dis-
cover high-quality models, but also did this for all runs and
all problems, easily outperforming all methods used in the
comparison.

Another important issue is the comparison against ensem-
bles of trees [14]. Ensembles usually rely on the model per-
formance, therefore, the best models are selected to generate
a fused prediction. That means that all models must have a
high-quality prediction and thus similar behavior. That also
means that one can not expect that the models complement
each other, that is, that a model is evolved to fill the gaps left
by the other models. That behavior is exactly the opposite
of what KP does. One of KP’s strengths is that it fuses high-
quality models (for example, f(x) = x4 and f(x) = x3+x2)
with poor quality models (for instance, f(x) = x) to com-
pose the correct model (f(x) = x4 + x3 + x2 + x).

6. SUMMARY AND CONCLUSIONS
Kaizen Programming (KP) proposed in this work is an

evolutionary algorithm that uses a collaborative problem
solving approach in which partial solutions are joined to
result in a complete solution. The partial solutions are cre-
ated by the experts, that generate ideas based on knowledge
obtained from the problem during the improvement process.
The knowledge increases because the ideas have their contri-
bution to the problem measured when a complete solution is
evaluated. Thus, one can know, exactly, which ideas are use-
ful for the next improvement cycle. With this approach, the
guessing, and consequently the bloat, are decreased when
compared to Genetic Programming (GP), making KP less
art and more science.

The search used by KP showed effective, but the creation
of new ideas is still random, which limits KP’s performance.
Besides that, KP was significantly superior in the tested
benchmark functions when compared to the results of GP
and other methods.

Given that KP returns a solution in the form of a linear
regression model, it can be easier to interpret than a solution
found by GP. One can separately investigate the behavior
of each component of the solution because it is an additive
function. Moreover, the model is based on strong mathemat-
ical and statistical foundations, it is largely described and
employed in the literature and also to solve real world prob-
lems. The linear model allows the posterior use of several
other statistical tools such as model selection (AIC, BIC,
among other), calculate prediction and confidence intervals,
perform residual analysis, among others. Therefore, KP is
a promising tool to be used in computer science, statistics,
engineering, and any other field of study that make use of
linear models.



Table 7: Results of KP (averaged of 100 trials) using Nguyen benchmark functions as in [5]. The raw fitness
is the sum of absolute error on all fitness cases.

Problem Maximum Error Raw Fitness RMSE Training Func. Eval. Node Eval. RMSE Testing Succ. Runs

nguyen1 0.00168 0.01256 0.00075 62.72 148.98 0.11654 100

nguyen2 0.00256 0.02013 0.00117 71.44 183.57 0.01779 100

nguyen3 0.00268 0.01992 0.00119 78.80 216.17 0.01753 100

nguyen4 0.00284 0.02211 0.00130 90.00 246.35 0.01988 100

nguyen5 0.00211 0.01613 0.00095 66.80 160.09 0.01863 100

nguyen6 0.00311 0.02356 0.00139 75.44 190.91 0.10314 100

nguyen7 0.00138 0.01037 0.00062 59.04 146.23 0.98138 100

nguyen8 0.00301 0.02075 0.00126 76.56 199.86 0.29934 100

nguyen9 0.00777 0.17801 0.00235 1,792.27 10,682.74 0.00437 100

nguyen10 0.00588 0.04586 0.00271 1,178.51 5,461.95 0.03762 100

Table 8: Number of successful runs using Nguyen

benchmark functions (F1-F10) as in [5].
Method F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

KP 100 100 100 100 100 100 100 100 100 100

ABCP 89 50 22 12 57 87 58 37 33 21

SC 48 22 7 4 20 35 35 16 7 18

NSM 48 16 4 4 19 36 40 28 4 17

SAC2 53 25 7 4 17 32 25 13 4 4

SAC3 56 19 6 2 21 23 25 12 3 8

SAC4 53 17 11 1 20 23 29 14 3 8

SAC5 53 17 11 1 19 27 30 12 3 8

CAC1 34 19 7 7 12 22 25 9 1 15

CAC2 34 20 7 7 13 23 25 9 2 16

CAC4 35 22 7 8 12 22 26 10 3 16

SBS31 43 15 9 6 31 28 31 17 13 33

SBS32 42 26 7 8 36 27 44 30 17 27

SBS34 51 21 10 9 34 33 46 25 26 33

SBS41 41 22 9 5 31 34 38 25 19 33

SBS42 50 22 17 10 41 32 51 24 24 33

SBS44 40 25 16 9 35 43 42 28 33 34

SSC8 66 28 22 10 48 56 59 21 25 47

SSC12 67 33 14 12 47 47 66 38 37 51

SSC16 55 39 20 11 46 44 67 29 30 59

SSC20 58 27 10 9 52 48 63 26 39 51
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