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ABSTRACT
Evolutionary differential equation discovery proved to be a tool to
obtain equations with less a priori assumptions than conventional
approaches, such as sparse symbolic regression over the complete
possible terms library. The equation discovery field contains two
independent directions. The first one is purely mathematical and
concerns differentiation, the object of optimization and its relation
to the functional spaces and others. The second one is dedicated
purely to the optimizatioal problem statement. Both topics are
worth investigating to improve the algorithm’s ability to handle
experimental data a more artificial intelligence way, without signif-
icant pre-processing and a priori knowledge of their nature. In the
paper, we consider the prevalence of either single-objective opti-
mization, which considers only the discrepancy between selected
terms in the equation, or multi-objective optimization, which addi-
tionally takes into account the complexity of the obtained equation.
The proposed comparison approach is shown on classical model
examples – Burgers equation, wave equation, and Korteweg - de
Vries equation.
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1 INTRODUCTION
The recent development of artificial intelligence has given high
importance to problems of interpretable machine learning. In many
cases, users value models not only for their quality of predicting
the state of the studied system but also for the ability to provide
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some information about its operation. In the case of modeling phys-
ical processes, commonly, the most suitable models have forms of
partial differential equations. Thus many recent studies aimed to
develop the concept of data-driven differential equations discovery.
In the paper, data-driven discovery implies obtaining a differen-
tial equation from a set of empirical measurements, describing the
dynamics of a dependent variable in some domain. Furthermore,
equation-based models can be incorporated into pipelines of au-
tomated machine learning, that can include arbitrary submodels,
with approach, discussed in paper [14].

Initial advances in differential equations discovery were made
with symbolic regression algorithm, as in [1]. The algorithm em-
ploys genetic programming to detect the graph, that represents
differential equation. One of the groups of the most simple yet
practical techniques of equation construction is based on the sparse
linear regression (least absolute shrinkage and selection operator),
introduced in works [11], [15], [16], and other similar projects. This
approach has limited flexibility, having applicability restrictions
in cases of the equation with low magnitude coefficients, being
discovered on noisy data. This issue is addressed by employing
Bayesian interference as in [12] to estimate the coefficients of the
equation, as in work [4]. To account for the uncertainty in the
resulting model, the approximating term library can be biased sta-
tistically [2]. Physics-informed neural networks (PINN) form the
next class of data-driven equation discovery tools, representing
the process dynamics with artificial neural networks. The primary
research on this topic is done in work [13], while recent advances
have been made in incorporating more complex types of neural
networks in the PINNs [3, 17].

In recent studies [7, 10], evolutionary algorithms have proved
to be a rather flexible tool for differential equation discovery, de-
manding only a few assumptions about the process properties. The
problem is stated as the process representation error minimization.
Implementing multi-objective evolutionary optimization, first in-
troduced for DE systems, as in [8], seems to be a feasible way to
improve the quality of the equation search, operating on fewer
initial assumptions and providing higher diversity among the pro-
cessed candidates. Additional criteria can represent other valuable
properties of the constructed models, namely conciseness.

This study compares the performance of single- and multi- objec-
tive optimization. Namely, the hypothesis that the multi-objective
optimization creates and preserves diversity in the population and
thus may achieve a better fitness function values, than that of a
single-objective approach.The theoretical comparison shows that
multi-objective algorithms allow escaping local minima as soon as
the number of objectives is reasonably small [5]. For equation dis-
covery applications, the function landscapes have a more complex
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structure, so increased diversity of the population can benefit the
resulting quality.

2 ALGORITHM DESCRIPTION
The data-driven differential equation identification operates on
problems of selecting a model for dynamics of the variable 𝑢 =

𝑢 (𝑡, x) in a spatio-temporal domain (0,𝑇 )>Ω, that is implicitly
described by differential equation Eq. 1 with corresponding initial
and boundary conditions. It can be assumed, that the order of the
unknown equation can be arbitrary, but rather low (usually of
second or third order).

𝐹 (𝑡, x, 𝑢, 𝜕𝑢
𝜕𝑡

,
𝜕𝑢

𝜕𝑥1
, ...

𝜕𝑢

𝜕𝑥𝑛
) = 0 (1)

Both multi-objective and single-objective approaches have the
same core of "graph-like" representation of a differential equation
(encoding) and similar evolutionary operators that will be described
further.

2.1 Differential equation representation
To represent the candidate differential equation the computational
graph structure is employed. A fixed three-layer graph structure is
employed to avoid the infeasible structures, linked to unconstrained
graph construction and overtraining issues, present in symbolic
regression. The lowest level nodes contain tokens, middle nodes
and the root are multiplication and summation operations. The
data-driven equations take the form of a linear combination of
product terms, represented by the multiplication of derivatives,
other functions and a real-valued coefficient Eq. 2.{

𝐹 ′ (𝑡, x, 𝑢, 𝜕𝑢𝜕𝑡 ,
𝜕𝑢
𝜕𝑥1

, ... 𝜕𝑢
𝜕𝑥𝑛

) = ∑
𝑖 𝛼𝑖

∏
𝑗 𝑓𝑖 𝑗 = 0

𝐺 ′ (𝑢) |Γ = 0
(2)

Here, the factors 𝑓𝑖 𝑗 are selected from the user-defined set of
elementary functions, named tokens. The problem of an equation
search transforms into the task of detecting an optimal set of tokens
to represent the dynamics of the variable 𝑢 (𝑡, x), and forming the
equation by evaluating the coefficients 𝛼 = (𝛼1, ... 𝛼𝑚).

During the equation search, we operate with tensors of token
values, evaluated on grids 𝑢𝛾 = 𝑢 (𝑡𝛾 , x𝛾 ) in the processed domain
(0,𝑇 )>Ω.

Sparsity promotion in the equation operates by filtering out
nominal terms with low predicting power and is implemented with
LASSO regression. For each individual, a term (without loss of
generality, we can assume that it is the𝑚-th term) is marked to be a
"right-hand side of the equation" for the purposes of term filtering
and coefficient calculation. The terms 𝑇𝑖 =

∏
𝑗 𝑓𝑖 𝑗 are paired with

real-value coefficients obtained from the optimization subproblem
of Eq. 3. Finally, the equation coefficients are detected by linear
regression.

𝛼 ′ = argmin
𝛼

( | |
∑︁

𝑖, 𝑖≠𝑚

𝛼 ′𝑖
∏
𝑗

𝑓𝑖 𝑗 −
∏
𝑗

𝑓𝑚𝑗 | |2 + 𝜆 | |𝛼 ′ | |1) (3)

In the initialization of the algorithm equation graphs are ran-
domly constructed for each individual from the sets of user-defined
tokens with a number of assumptions about the structures of the
“plausible equations”.

2.2 Mechanics of implemented evolutionary
operators

To direct the search for the optimal equations, standard evolution-
ary operators of mutation and cross-over have been implemented.
While the mechanics of single- and multi-objective optimization
in the algorithm differ, they work similarly on the stage of apply-
ing equation structure-changing operators. With the graph-like
encoding of candidate equations, the operators can be represented
as changes, introduced into its subgraphs.

The algorithm properties to explore structures are provided by
mutation operators, which operate by random token and term ex-
changes. The number of terms to change has no strict limits. For
tokens with parameters (𝑝𝑘+1, ... 𝑝𝑛) ∈ R𝑛−𝑘 , such as a para-
metric representation of an unknown external dependent variable,
parameters are also optimized: the mutation is done with a random
Gaussian increment.

In order to combine structural elements of better equations,
the cross-over operator is implemented. The interactions between
parent equations are held on a term-level basis. The sets of terms
pairs from the parent equation are divided into three groups: terms
identical in both equations, terms that are present in both equations
but have different parameters or only a few tokens inside of them
are different, and the unique ones. The cross-over occurs for the two
latter groups. For the second group it manifests as the parameter
exchange between parents: the new parameters are selected from
the interval between the parents’ values.

Cross-over between unique terms works as the complete ex-
change between them. The construction of exchange pairs between
these tokens works entirely randomly.

2.3 Optimization of equation quality metric
The selection of the optimized functional distinguishes multiple
approaches to the differential equation search. First of all, a more
trivial optimization problem can be stated as in Eq. 4, where we
assume the identity of the equation operator 𝐹 ′ (𝑢) = 0 to zero as
in Eq. 2.

𝑄𝑜𝑝 (𝐹 ′ (𝑢)) = | |𝐹 ′ (𝑢) | |𝑛 = | |
∑︁
𝑖

𝛼𝑖

∏
𝑗

𝑓𝑖 𝑗 | |𝑛 −→ min
𝛼𝑖 𝑡𝑖 𝑗

(4)

An example of a more complex optimized functional is the norm
of a discrepancy between the input values of the modelled variable
and the solution proposed by the algorithm differential equation,
estimated on the same grid. Classical solution techniques can not
be applied here due to the inability of a user to introduce the par-
titioning of the processed domain, form finite-difference schema
without a priori knowledge of an equation, proposed by evolution-
ary algorithm. An automatic solving method for candidate equation
(viewed as in Eq. 6) quality evaluation is introduced in [9] to work
around this issue.

𝑄𝑠𝑜𝑙 (𝐹 ′ (𝑢)) = | |𝑢 − 𝑢 | |𝑛 −→ min
𝛼𝑖 𝑡𝑖 𝑗

(5)

𝐹 ′ (𝑢) = 0 : 𝐹 ′ (𝑢) =
∑︁
𝑖

𝛼𝑖

∏
𝑗

𝑓𝑖 𝑗 = 0 (6)
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While both quality metrics Eq. 4 and Eq. 5 in ideal conditions
provide decent convergence of the algorithm, in the case of the
noisy data, the errors in derivative estimations can make differential
operator discrepancy from the identity (as in problem in Eq. 4) an
unreliable metric. Applying the automatic solving algorithm has
high computational cost due to training a neural network to satisfy
the discretized equation and boundary operators.

As the single-objective optimization method for the study, we
have employed a simple evolutionary algorithmwith a strategy that
minimizes one of the aforementioned quality objective functions.
Due to the purposes of experiments on synthetic noiseless data, the
discrepancy-based approach has been adopted.

2.4 Multi-objective optimization application
As we stated earlier, in addition to process representation, the
conciseness is also a valuable for regulating the interpretability
of the model. Thus the metric of this property can be naturally
introduced as Eq. 7, with an adjustment of counting not the total
number of active terms but the total number of tokens (𝑘𝑖 for 𝑖 − 𝑡ℎ

term).

𝐶 (𝐹 ′ (𝑢)) = #(𝐹 ′) =
∑︁
𝑖

𝑘𝑖 ∗ 1𝛼𝑖≠0 (7)

In addition to evaluating the quality of the proposed solution
from the point of the equation simplicity, multi-objective enables
the detection of systems of differential equations, optimizing quali-
ties of modeling of each variable.

While there are many evolutionary multi-objective optimiza-
tion algorithms, MOEADD (Multi-objective evolutionary algorithm
based on dominance and decomposition) [6] algorithm has proven
to be an effective tool in applications of data-driven differential
equations construction.We employ baseline version of theMOEADD
from the aforementioned paper with the following parameters: PBI
penalty factor 𝜃 = 1.0, probability of parent selection inside the
sector neighbourhood 𝛿 = 0.9 (4 nearest sector are considered as
“neighbouring”) with 40% of individuals selected as parents. Evo-
lutionary operator parameters are: crossover rate (probability of
affecting individual terms): 0.3 and mutation rate of 0.6.The result
of the algorithm is the set of equations, ranging from the most sim-
plistic constructions (typically in forms of 𝜕𝑛𝑢

𝜕𝑥𝑛
𝑘

= 0) to the highly
complex equations, where extra terms probably represents the noise
components of the dynamics.

3 EXPERIMENTAL STUDY
This section of the paper is dedicated to studying equation dis-
covery framework properties. As the main object of interest, we
designate the difference of derived equations between single- and
multi-objective optimization launches. The validation was held
on the synthetic datasets, where modelled dependent variable is
obtained from solving an already known and studied equation.

The tests were held on three cases: wave, Burgers and Korteweg-
de Vries equations due to unique properties of each equation. The
algorithms were tested in the following pattern: 64 evolutionary
iterations for the single-objective optimization algorithm and 8
iterations of multi-objective optimization for the populations of 8
candidate equations, which resulted in roughly similar resource

consumption.10 independent runs are conducted with each setup.
The main equation quality indicator in our study is the statistical
analysis of the objective functionmean (𝜇 = 𝜇 (𝑄 (𝐹 ′))) and variance
𝜎2 = (𝜎 (𝑄 (𝐹 ′)))2 among the different launches.

The first equation was the wave equation as on Eq. 8 with the
necessary boundary and initial conditions. The equation is solved
with the Wolfram Mathematica software in the domain of (𝑥, 𝑡) ∈
[0, 1]>[0, 1] on a grid of 101

>
101. Here, we have employed

numerical differentiation procedures.

𝜕2𝑢

𝜕𝑡2
= 0.04

𝜕2𝑢

𝜕𝑥2
(8)

The algorithm’s convergence due to the relatively simple struc-
ture was ensured in the case of both algorithms: the algorithm
proposes the correct structure during the initialization or in the
initial epochs of the optimization. However, such a trivial case can
be a decent indicator of the “ideal” algorithm behaviour. The values
of examined metrics for this experiment and for the next ones are
presented on Tab. 1.

Table 1: Results of the equation discovery

metric method wave Burgers KdV

𝜇 single-objective 5.72 2246.38 0.162
multi-objective 2.03 1.515 16.128

𝜎2 single-objective 18.57 4.41 ∗ 107 8.9 ∗ 10−3
multi-objective 0 20.66 ≈ 10−13

The statistical analysis of the algorithm performance on each
equation is provided in Fig. 1.

Another examination was performed on the solution of Burgers’
equation, which has a more complex, non-linear structure. The
problem was set as in Eq. 9, for a case of a process without viscosity,
thus omitting term 𝜈 𝜕2𝑢

𝜕𝑡2
. As in the previous example, the equation

was solved with the Wolfram Mathematica toolkit.

𝜕𝑢

𝜕𝑡
+ 𝑢 𝜕𝑢

𝜕𝑥
= 0 (9)

Derivatives used during the equation search were computed
analytically due to the function not being constant only on small
domain.

The presence of other structures that have relatively low opti-
mized function values, such as 𝑢′𝑥𝑢′𝑡 = 𝑢′′𝑡𝑡 , makes this case of data
rather informative. Thus, the algorithm has a local optimum that is
far from the correct structure from the point of error metric.

The final set-up for an experiment was defined with a non-
homogeneous Korteweg-de Vries equation, presented in Eq. 10.
The presence of external tokens in separate terms in the equation
makes the search more difficult.

𝜕𝑢

𝜕𝑡
+ 6𝑢

𝜕𝑢

𝜕𝑥
+ 𝜕3𝑢

𝜕𝑥3
= cos 𝑡 sin 𝑡 (10)

The experiment results indicate that the algorithm may detect
the same equation in multiple forms. Each term of the equation
may be chosen as the “right-hand side” one, and the numerical error
with different coefficient sets can also vary.
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Figure 1: Resulting quality objective function value, introduced as Eq. 6, for single- and multi-objective approaches for (a) wave
equation, (b) Burgers equation, and (c) Korteweg-de Vries equation

4 CONCLUSION
This paper examines the prospects of using multi-objective opti-
mization for the data-driven discovery of partial differential equa-
tions. While initially introduced for handling problems of deriving
systems of partial differential equations, the multi-objective view
of the problem improves the overall quality of the algorithm. The
improved convergence, provided by higher candidate individual
diversity, makes the process more reliable in cases of equations
with complex structures, as was shown in the examples of Burgers’
and Korteweg-de Vries equations.

The previous studies have indicated the algorithm’s reliability,
converging to the correct equation, while this research has proposed
a method of improving the rate at which the correct structures are
identified. This property is valuable for real-world applications
because incorporating large and complete datasets improves the
noise resistance of the approach.

The further development of the proposed method involves intro-
ducing techniques for incorporating expert knowledge into the
search process. This concept can help generate preferable can-
didates or exclude infeasible ones even before costly coefficient
calculation and fitness evaluation procedures.

5 CODE AND DATA AVAILABILITY
The numerical solution data and the Python scripts, that reproduce
the experiments, are available at the GitHub repository 1.
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