
Performance Optimization of Multi-
Core Grammatical Evolution Generated

Parallel Recursive Programs

Gopinath Chennupati, R. Muhammad
Atif Azad, and Conor Ryan

1

Programming Multi-Cores

• Multi-cores first appearance 1995

• PCs and even Smart Phones now have multi-cores

• IBM TrueNorth 4096 cores

• SpiNNaker has in excess of a million processors
• Biologically Inspired Massively Parallel Architectures

• “If we simply added more than 16 cores, we would
get diminishing returns, because the threads and
data traffic would not be used properly, so the cores
get in the way of each other. It’s like having too
many cooks in the kitchen.”

• Jerry Bautista, director of Intel’s tera-scale research program.

 2

Why is parallel programming hard?

• Thread scheduling, synchronization, locking
and optimizing the parallelism, etc.

• Efficient parallel programming requires (highly
skilled!) human expertise

• Automatic Native Parallel Code Generation!

3

Human competitive tasks

• Automated the three difficult tasks of humans

– Optimal parallelism for recursion [1], [3].

– Automatic architecture awareness [1].

– Lock-free Programming on multi-cores [2].

[1] Gopinath Chennupati, R. Muhammad Atif Azad, Conor Ryan., (2015) Performance Optimization of Multi-
Core Grammatical Evolution Generated Parallel Recursive Programs. In Proceedings of Genetic and
Evolutionary Computation Conference (GECCO), edited by Anna I Esparcia Alcázar et al., ACM. In Press.

[2] Gopinath Chennupati, R. Muhammad Atif Azad, Conor Ryan., (2015) A Multi-Core Grammatical Evolution
Based Automatic Lock-Free Programming in OpenMP. In Proceedings of the International Conference on
Parallel Computing (ParCO), edited by Gerhard R. Joubert et al., IOS Press. In Press.

[3] Gopinath Chennupati, R. Muhammad Atif Azad, Conor Ryan, (2015) Automatic Evolution of Parallel
Recursive Programs in Proceedings of EuroGP'15, pages 167 -- 178, Springer.

 4

Criteria

• D: The result is publishable in its own right as a new
scientific result independent of the fact that the result
was mechanically created.
– [1], [2], [3]

• E: The result is equal to or better than the most recent

human-created solution to a long-standing problem for
which there has been a succession of increasingly
better human-created solutions.

• G: The result solves a problem of indisputable difficulty
in its field.

5

Recursive Problems

6

Problem Type Local
Variables

Range

Input Output

1 Sum-of-N int int 3 [1, 1000]

2 Factorial int unsigned
long long

3 [1, 60]

3 Fibonacci int unsigned
long long

3 [1, 60]

4 Binary-Sum int [], int, int int 2 [1, 1000]

5 Reverse int [], int, int void 2 [1, 1000]

6 Quicksort int [], int, int void 3 [1, 1000]

Why Recursion? – Easy to express but takes longer to execute.

Excessive Parallelism

7

Human Program [7]

 int i, j;

 if (n <= 2) {

 return n;

}

else

{

 #pragma omp parallel sections \

 shared(i, j)

 {

 #pragma omp section

 {

 i = fib(n−1);

 }

 #pragma omp section

 {

 j = fib(n−2);

 }

 }

 return (i+j);

 }

Maximizing
Parallelism 2(n+1) threads

n

[7] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. (2009) Introduction to
Algorithms, 3rd Edition. MIT Press.

Optimizing Parallelism

8

 if (n <= 2) {

 temp = n;

 res += temp;

}

else if (n <= 39) {

 temp = fib(n-1)+fib(n-2);

 res += temp;

}

else {

 #pragma omp parallel sections \

 private (a) shared(n, temp, res)

 {

 #pragma omp section

 {

 a = fib(n−1);

 #pragma omp atomic

 res += temp+a;

 }

 #pragma omp section

 {

 a = fib(n−2);

 #pragma omp atomic

 res += temp+a;

 }

 }

 } return res;

MCGE-II Program

Optimal
Parallelism

2(c+1) threads

C

Satisfies D, G

Human Competitive

0

5

10

15

20

25

30

35

40

45

50

Human MCGE-II

Efficiency

17.45%

9

Satisfies E

Automatic Architecture Awareness

10

Get it done in 8.35 hours rather waiting forever
for humans to figure out!

Satisfies
D, G

 if (n <= 2) {

 temp = n;

 res += temp;

}

else if (n <= 39) {

 temp = fib(n-1)+fib(n-2);

 res += temp;

}

else {

 #pragma omp parallel sections \

 private (a) shared(n, temp, res)

 {

 #pragma omp section

 {

 a = fib(n−1);

 #pragma omp atomic

 res += temp+a;

 }

 #pragma omp section

 {

 a = fib(n−2);

 #pragma omp atomic

 res += temp+a;

 }

 }

 } return res;

Lock-Free Parallel Programs

11

#pragma omp parallel

Lock the shared

resources

Satisfies D, G

• Locks guarantee mutual exclusion.
• But, they degrade the performance.
• Even programming gurus often write wrong lock-free

programs [6].

• Automatic lock-free parallel programming [2]

[6] Shane V. Howley and Jeremy Jones. (2012) A non-blocking internal binary search tree. In Proceedings of the
24th annual ACM symposium on Parallelism in algorithms and architectures (SPAA '12), pages 161--171. ACM

Lock-Free Results

0

10

20

30

40

50

60

Human MCGE-II (Lock-Free) MCGE-II

Efficiency

25.21% 9.41%

12

Satisfies E

Potential Impact

• Software

– Faster to execute parallel code

– Faster to generate parallel code

• Hardware

– Better able to utilise multi-core processors

– Hardware progress (increase in number of cores)
less hindered by software limitations

13

Why we are the best?

• MCGE-II fulfils the original intention of GP as
general purpose programming tool

• There is an urgent and pressing need in the
parallel community for precisely this tool

• The work has been published in a field outside
of GP

• This is the first attempt for the synthesis of
native parallel programs.

14

References
[1] Gopinath Chennupati, R. Muhammad Atif Azad, Conor Ryan., (2015) Performance Optimization of Multi-Core
Grammatical Evolution Generated Parallel Recursive Programs. In Proceedings of Genetic and Evolutionary
Computation Conference (GECCO), edited by Anna I Esparcia Alcázar et al., ACM. In Press.

[2] Gopinath Chennupati, R. Muhammad Atif Azad, Conor Ryan., (2015) A Multi-Core Grammatical Evolution Based
Automatic Lock-Free Programming in OpenMP. In Proceedings of the International Conference on Parallel Computing
(ParCO), edited by Gerhard R. Joubert et al., IOS Press. In Press.

[3] Gopinath Chennupati, R. Muhammad Atif Azad, Conor Ryan, (2015) Automatic Evolution of Parallel Recursive
Programs in Proceedings of EuroGP'15, pages 167 -- 178, Springer.

[4] Gopinath Chennupati, Jeannie Fitzgerald, Conor Ryan, (2014) On The Efficiency of Multi-core Grammatical
Evolution (MCGE) Evolving Multi-Core Parallel Programs in Proceedings of Sixth World Congress on Nature and
Biologically Inspired Computing (NaBIC), pages 238 -- 243, IEEE.

[5] Gopinath Chennupati, R. Muhammad Atif Azad, Conor Ryan, (2014) Multi-core GE: Automatic Evolution of CPU
Based Multi-core Parallel Programs in Proceedings of GECCO Comp '14, pages 1041 -- 1044, ACM.

[6] Shane V. Howley and Jeremy Jones. (2012) A non-blocking internal binary search tree. In Proceedings of the 24th
annual ACM symposium on Parallelism in algorithms and architectures (SPAA '12), pages 161--171. ACM

[7] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. (2009) Introduction to Algorithms, 3rd
Edition. MIT Press.

15

