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Abstract—In this paper, a multi-objective approach for the
design of composite data-driven mathematical models is pro-
posed. It allows automating the identification of graph-based
heterogeneous pipelines that consist of different blocks: machine
learning models, data preprocessing blocks, etc. The implemented
approach is based on a parameter-free genetic algorithm (GA)
for model design called GPComp@Free. It is developed to be part
of automated machine learning solutions and to increase the effi-
ciency of the modeling pipeline automation. A set of experiments
was conducted to verify the correctness and efficiency of the
proposed approach and substantiate the selected solutions. The
experimental results confirm that a multi-objective approach to
the model design allows us to achieve better diversity and quality
of obtained models. The implemented approach is available as a
part of the open-source AutoML framework FEDOT.

Index Terms—AutoML, evolutionary algorithms, multi-
objective optimization, model design, composite models

I. INTRODUCTION

The design of data-driven mathematical models is an actual
research direction in modern data science [1]. The internal
structure of the model depends on the type of the learning
algorithm, so complex data-driven models can consist of
several semi-independent blocks - this approach is usually
referred to as ensembling [2]. There are several techniques to
build complex models: for example, blending allows creating
single-level ensembles of machine learning (ML) models, and
stacking allows creating multi-level ones. Other approaches are
based on the representation of a model structure (or even the
whole modeling pipeline) as a directed acyclic graph (DAG).

The selection of the most suitable model design is the
core problem in automated machine learning (AutoML) [3].
Until recently, successful machine learning pipelines have been
designing manually by experts. However, this method requires
performing many routine operations and repeating experiments
which is generally a computationally expensive procedure that
does not always lead to success.

The aim of the model design search is to achieve the appro-
priate values of different criteria (e.g. quality of the modeling)

and satisfy the constraints (e.g. time-related ones). In many
cases, it is impossible to maximize all criteria simultaneously,
which leads to a multi-objective optimization problem. The
usage of multi-objective approaches in AutoML solutions is
a quite promising direction that can lead to better suitability
of the obtained ML pipelines and even makes it possible to
co-design the models and infrastructure [4].

In this paper, a flexible and effective multi-objective evo-
lutionary approach (EA) to the composite model design is
proposed and implemented as a part of the automated mod-
eling framework FEDOT. We modified the standard evolu-
tionary scheme with a self-configuration heuristic for the
hyper-parameters (such as population size, crossover and
mutation probabilities, maximal model structure graph size).
The performed experiments demonstrate that the implemented
approach named GPComp@Free provides an ability to design
effective data-driven models from scratch.

II. RELATED WORK

There is a variety of approaches that can be used to
identify the optimal design of a data-driven model. For in-
stance, AutoML solutions can be based on random search [5],
Bayesian optimization [6], reinforcement learning (RL) [7],
Monte Carlo tree search [8], gradient-based approaches [9].
However, most of them are less flexible than EAs to the model
design (implemented e.g. in [10]). Their conceptual advantage
is open-endedness [11], which allows ”growing” of the model
with the most suitable structure instead of the direct search
of appropriate solutions in some restricted range of structural
parameters.

Furthermore, evolutionary algorithms (EA) are much more
flexible due to their simplicity and clarity and can be easily
extended with new evolutionary operations. Thus, in [12] the
authors demonstrate a tournament selection modification with
memory (which contains the best genotypes) based on the as-
sociation of genotypes with their age, and displacement of the
tournament selection to choose the “younger” genotypes. This
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modification allows us to obtain similar results in convolution
neural network architecture search problems faster than when
using well-established reinforcement learning (RL) algorithms.
Another case when the EA competes with RL approaches
is presented in [13]. Authors demonstrate the advantages of
evolution strategies in comparison with popular RL techniques
(such as Q-learning and policy gradients) on test problems
from the OpenAI Gym library.

Multi-objective optimization is implemented in several ex-
isting AutoML solutions, e.g. TPOT [14] and autoxgboostmc
[15]. However, the diversity of the obtained solutions is quite
limited in these tools (because the custom graph-based model
structure is not supported). Also, multi-objective optimization
is widely used as a part of Neural Architecture Search ap-
proaches (NAS). For example, in [16] the second objective
function is usually based on structural complexity. Besides the
model structure design, the multi-objective hyperparameters
tuning can be applied to ML [17] and domain-specific models.

Various criteria can be involved in the multi-objective
model design. Besides the basic characteristics like quality and
complexity, there are additional objectives that can be used,
e.g. fairness, interpretability, robustness, and the sparsity of
models (as described in [15]). However, in [15] multi-objective
optimization is applied to a single machine learning model and
graph-based structures are not discussed.

It can be concluded that the existing methods in this field
are quite specialised, which leads us to the aim of developing a
more universal and effective multi-objective approach that can
be used to create an effective design of the various data-driven
models with graph-based structure.

III. PROBLEM STATEMENT

There is a lot of different modeling tasks that can be solved
using machine learning: classification, clustering, regression,
time series forecasting, ranking. However, all of them can be
formulated as results of evaluation of the model M .

In a common case, the structure of the model M can
be represented as a graph that consists of several atomic
models. An atomic model is a machine learning model that
has a logically indivisible structure in terms of a particular
problem. In fact, an atomic model can have an arbitrary
internal structure (e.g. an ensemble obtained by gradient
boosting). It is a quite flexible representation that allows us to
describe different types of models beyond machine learning:
hybrid [18], equation-based [19], etc. In this case, M can be
formalized as a composite model - a data-driven model with
an explicit internal structure, where several atomic models can
be identified.

Since the data flow is directed from the input X of the
model to the output X with the general statement of numerical
simulation problem, the internal structure of the model M can
be represented as a directed acyclic graph (DAG) MG and
defined as follows:

Y = H(M |X),MG = 〈Vi, Ej〉 = 〈Ai, {HAi
}k, Ej〉 , (1)

where H is a modelling operator for the model M with input
data X and Y as model results. For ML models, the data set X
is usually split into subsamples Xtrain and Xtest. In the graph
model MG, the vertices V have complex structure and can be
represented as tuple 〈Ai, {HAi

}k〉 with different data-driven
models Ai and its hyper-parameters {HAi}k. Directed edges
E represent the data flow from income vertices (the model’s
input) to outcome vertices (the model’s output).

The application of the evolutionary optimization approaches
leads to the following interpretation: MG structure can be con-
sidered as the genotype and phenotype is expressed through
integral characteristics of realization MG. In the frame of
this paper, the integral characteristics fill the objective vector
function F .

As can be seen from Sec. II, there are different objective
functions that can be used in the design of the composite
model: modeling quality for a specific data set, structural com-
plexity, computation time, interpretability, robustness, number
of features required to build the model (related to the sparsity).
Also, specific infrastructure-related objectives can be involved
as part of the co-design and scheduling tasks [20]. In this pa-
per, we decided to consider the quality, structural complexity,
and computational performance objectives.

In this case, the formulation of the optimization task can be
defined as follows:

MG
opt = argmin

MG

F (Ai, {HAi
}k, Ej), (2)

F (MG) = (Q(MG), S(MG), P (MG)),

Fhyp = HV (F (MG)), (3)

where F is a vector objective function, Q is a quality-based
criterion for the prediction obtained by the model MG, S
is the structural complexity criteria (tightly connected with
the interpretability of the model), P is the computational
performance criterion of the model. Here we miss arguments
X and Y for compactness of formulas and because these
conditions remain constant while optimization proceeds. Ad-
ditional measure Fhyp that helps to join components of vector
objective function is Pareto hypervolume operator HV .

There are different interpretations of the quality of the multi-
objective design that can be used. In the paper, we used the
following set of criteria: the root-mean-seared-error (RMSE)
as Q criterion for the regression problems, the negative area
under the ROC curve ((-1)*(ROC AUC)) as Q criterion for
the classification problems, fitting time as the computational
complexity criterion P , graph size Gs as a structural complex-
ity criterion S, and hypervolume [21] as a quality measure for
the Pareto frontiers.

The possible alternative to the ’real’ multi-objective ap-
proach is the application of penalty-based optimization algo-
rithm. In this case, the Eq. 3 can be formulated as follows:

F (MG) = Q(MG)− S(MG)w1 − P (MG)w2, (4)

where w1 and w1 are weights for the complexity penalties.
However, this implementation can affect the diversity during
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the optimization and lead to insufficient efficiency of the model
design.

The described statement of the composite model problem is
summarized in Figure 1.

In this paper, the following hypotheses can be stated:
Hypothesis 1: The use of multi-objective optimization as

a part of composite models identification methods allow us
to obtain the models with better quality than single-objective
approaches due to the more effective preservation of the
diversity.

Hypothesis 2: The selection of the appropriate genetic
operators makes it possible to increase the quality of the
obtained solutions for different cases.

Hypothesis 3: The hyper-parameters of the multi-objective
evolutionary algorithm can be self-configured during the evo-
lution using heuristic techniques without the computationally
expensive meta-optimization methods.

IV. MULTI-OBJECTIVE DESIGN OF COMPOSITE MODELS

A. Evolutionary optimization of the models structure

There are many extensively used conventional optimization
techniques, but evolutionary algorithms deserve particular at-
tention due to their range of advantages. They have a lower
probability of getting stuck in a local optima than most
optimization algorithms because they perform a global search
in the solution space. In addition, such algorithms can be easily
parallelized. This property is especially important for applied
engineering problems since the time for finding the solution
is usually restricted. Moreover, evolutionary algorithms are
easily interpreted for almost any problem, therefore the user of
an evolutionary-based framework always has an opportunity to
adapt it to another optimization problem (e.g. to the problem
of the neural architecture search).

The proposed implementation of composite models struc-
ture optimizer is based on genetic programming (GP) algo-
rithms [22]. Unlike many other algorithms, genetic program-
ming allows us to use a high-level problem statement. It
finds a composite model (or several candidate models in the
multi-objective case) for a certain machine learning problem
(classification, regression and time series forecasting problems
are currently supported) from a pre-defined set of available
models.

The algorithm initializes the population of chains with
random structure at the first step. Next, a few models in
the population are selected as the parents using a preferred
selection method. Each new model (offspring) is constructed
from two parents by the application of a crossover operator,
and some of them are impacted by a transformation called a
mutation. Each operator has a performing probability which
can be static or dynamic depending on the chosen evolutionary
scheme. Once the child model structure is produced, it is then
fitted with a training sample, evaluated with a test sample,
and added to the new population. These manipulations are
performed during several generations until the termination
criteria are satisfied.

In experiments we used subtree crossover which replaces
random subtree in one parent to random subtree from an-
other and one-point crossover which performs in the same
way, but subtrees is selected from common structural parts
between two trees. Three mutation’s options: simple, subtree
and reduce (first option changes models in random nodes,
second changes random subtree to randomly generated and
last removes random subtree). In [23] we described in detail
the composite model representation in the genetic program-
ming algorithm GPComp and how the custom evolutionary
operators are used. Thus, in this paper, we focus on the
aspects of multi-objective evolutionary optimization technique,
describe implemented evolutionary schemes, and demonstrate
its effectiveness on certain data sets for machine learning
algorithms benchmarking.

The composite model optimization algorithm GPComp in-
cludes two of the most common evolutionary schemes: steady-
state (also named (µ + λ)) and generational. In the first
scheme, the new population is generated by using a selection
operator which is applied to the union of the offspring and
the previous population. In the generational scheme the off-
spring completely replaces the parent population. Our previous
experiments (also in [23]) demonstrate the clear domination
of steady-state scheme over the generational. Thus, we didn’t
apply the generational scheme in this paper.

B. GPComp@Free: algorithm for parameters-less multi-
objective evolution of composite models

Although the AutoML concept focuses on reducing (or
excluding altogether) human participation in the optimization
process, the majority of the state-of-the-art tools raise an
additional meta-optimization problem related to the identi-
fication of their most-effective hyperparameters. It is well-
known that the EA has been solving many real-world op-
timization problems successfully, but their performance can
depend considerably on the particular hyperparameters val-
ues used. Hyperparameters self-configuration procedures al-
low us to achieve complete automation. Our parameter-free
multi-objective genetic scheme (GPComp@Free) based on an
adaptive EA (described in [24]) allows configuring most of
EA hyperparameters through the algorithm execution unlike
aforementioned GPComp which suppous hand-tuning of hy-
perparameters. The proposed algorithm uses a steady-state
evolutionary scheme, but µ (population size) changes during
evolution like the Fibonacci sequence and λ always equals
to the previous item of the sequence with respect to µ.
Crossover and mutation rates (crate, mrate) are also changed
depending on the diversity of the population. The scheme of
this approach is presented in Figure 2. The approach assumes
two optimization objectives are used: solution quality (main
goal) and chain complexity. We used two conditions for the
hyperparameters changes: if none of the objective function
values is improved then µ is increased to the next number in
the sequence and, if both objectives (quality and complexity)
are improved in the offspring population (with respect to their
parents) then µ is decreased to the previous number in the
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Fig. 1: The concept of the multi-objective evolutionary design of the composite machine learning model. The internal structure
of the model, design approaches, possible objectives and their interactions are presented as separate blocks to highlight the
main issues of the optimization.

sequence and crossover and mutation rates change according
to the rule described in the AdaptedEvoParams procedure
(Alg. 1).

Fig. 2: The description of one iteration of the parameter-free
evolutionary algorithm. Population size (µ), offspring size (λ),
crossover and mutation rates (crate, mrate) adapt during the
algorithm execution.

Also, we implemented the heuristics adaptation of chains’
depth which allows avoiding over-complicated individuals.
The algorithm with depth adaptation starts from low-depth
chains and if there are no possibilities to improve objectives
(stagnation during several generations) then depth is increased
(see Alg. 1, DepthAdaptation procedure). The details of the
parameter-free optimizer implementation (further in the paper
it will be called GPComp@Free) are described in Alg. 1.
The version without depth adaptation will be called ”GP-
Comp@Free with fixed depth” in the paper. Both algorithms
are implemented using DEAP [25].

The described approach is implemented as a part of the
automated modeling framework FEDOT [18]. It supports both
single- and multi-objective optimization of the ML pipelines
that includes the composite models. The main feature of
the framework is the complex management of interactions
between various computing elements of the pipelines. The

TABLE I: Key features of the selected data sets

Data set Nsamples Nfeatures Task type Imbalance
Churn 5000 20 binary clf. 0.51

Dis 3772 29 binary clf. 0.93
Hill Valley 1212 100 binary clf. 9.81

Elusage 55 2 regr. -

framework can be used to automate the creation of mathe-
matical models for various problems, different types of data,
and models. It is available under the open-source license in
https://github.com/nccr-itmo/FEDOT.

V. EXPERIMENTAL STUDIES

A. Setup of experiments

To analyze the correctness and effectiveness of the proposed
approach, a set of experiments was conducted using several
data sets from the Penn Machine Learning Benchmarks repos-
itory [26]. These data sets cover a broad range of applications,
and combinations of categorical, ordinal, and continuous fea-
tures. There are no missing values in these data sets. Selected
data sets were split on training and test sets in the ratio of
70/30.

Key features of the selected data sets are shown in I. Feature
’Imbalance’ show a value of imbalance metric, where zero
means that the data set is perfectly balanced and the higher
the value, the more imbalanced the data set.

There were three complex experiments prepared:
Experiment 1: Comparison of the various model design ap-

proaches. The single-objective genetic algorithm (GPComp),
a single-objective genetic algorithm with penalty-based fitness
(described in Eq. 4), and the multi-objective algorithm GP-
Comp@Free were used. The aim of the experiment is to ensure
that the multi-objective approach can find models with equal
or better prediction quality than the single-objective approach
(see Hypothesis 1).

Experiment 2: Comparison of different implementations of
the GPComp@Free algorithm. Two variants of the algorithm
are based on different strategies inspired by well-known al-
gorithms SPEA2 [27] and NSGA-II [28]. The aim of the
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Algorithm 1 GPComp@Free (parameter-free implementation of the multi-objective GP algorithm for the model design)

1: procedure PARAMETERFREECOMPOSER(models, data, objectiveFunctions, timeConstraint)
2: Input: objectiveFunctions = {qualityObjective, complexityObjective}
3: Output: array with nondominated models (Pareto frontier)
4: stagnationThreshold← 5 . Allowed number of populations without improvement before max depth update
5: maxDepth← 2 . Inital values of chain depth
6: SequenceFunction← FibonacchiIterator . Heuristic for the population size
7: popSize← SequenceFunction.StateByIndex(index = 2) . Default size equals to second sequence item
8: crossRate,mutRate← 0.5, 0.5
9: pop← INITPOPULATION(models, popSize)

10: pop← EVALUATE(pop, objectiveFunctions, data)
11: currentStd,maxStd← QUALITYSTDCALCULATION(pop) . Standard deviation for prediction quality objective
12: while time() < timeConstraint do
13: offspringSize← SequenceFunction.PreviousState(popSize)
14: pareto, selectedParents← UPDATEPARETO(pop),MULTIOBJSELECTION(pop, offspringSize)
15: offspring ← REPRODUCT(selectedParents, offspringSize, crossRate,mutRate,maxDepth,models)
16: pop← EVALUATE(offspring, objectiveFunctions, data)
17: stagnationCnt,maxDepth← DEPTHADAPTATION(stagnationCnt, pareto, stagnationThreshold,maxDepth)
18: mutRate, crossRate, popSize← ADAPTEDEVOPARAMS(offspring, pareto, popSize,mutRate, crossRate)
19: pop← MULTIOBJSELECTION(pop ∪ offspring, popSize)
20: currentStd← QUALITYSTDCALCULATION(pop)
21: maxStd← UPDATEMAXSTD(currentStd)

22: return pareto

23: procedure DEPTHADAPTATION(stagnationCnt, pareto, stagnationThreshold, maxDepth)
24: stagnationCnt← UPDATESTAGNATIONCNT(pareto) . Number of generations without Pareto frontier’s changes
25: if stagnationCnt == stagnationThreshold then
26: maxDepth← maxDepth+ 1 . Increase the maximum allowed depth of the composite model structure graph
27: return stagnationCnt,maxDepth

28: procedure ADAPTEDEVOPARAMS(offspring, pareto, popSize, mutRate, crossRate)
29: if NOOBJECTIVESIMPROVEMENTS(offspring, pareto) then
30: popSize← SequenceFunction.NextState(popSize)
31: mutRate, crossRate← 1− (currentStd/maxStd), currentStd/maxStd
32: else if AREBOTHOBJECTIVESIMPROVED(offspring, pareto) then
33: popSize← SequenceFunction.PreviousState(popSize)

34: return mutRate, crossRate, popSize

experiment is to analyze the possibility of choosing a single
effective selection strategy for different model design tasks
(see Hypothesis 2).

Experiment 3: Comparison of the parameter-free GP-
Comp@Free approach against different multi-objective EAs
(based on the simple steady-state algorithm and a partial
algorithm with a fixed maximum depth of the model structure
graph). The aim of the experiment is to verify the effectiveness
of the proposed approach against existing multi-objective
schemes (see Hypothesis 3).

Every experiment consists of several stages: the evaluation
of each version of the evolutionary algorithm (repeated ten
times to obtain a stable result); evaluation of the prediction
quality (with test sample) and computational time (measured
during the evaluations and verified using an empirical perfor-
mance model [4]); analysis of Pareto frontiers and hypervol-
ume values. The solid area around line on the graph shows the
deviation in quality metric for each of the proposed algorithms.

For the non-parameter-free algorithms, the population size was
set to 20 and the maximum number of generations was set to
30.

B. Experimental results

Experiment 1: The first experiment is aimed to compare the
multi-objective (MO) approach to the single-objective (SO)
competitors. From the analysis of the quality metrics for each
of the algorithms presented in Fig. 3, we can conclude that
starting with the 10th generation the MO algorithm consistently
outperforms the SO approach and is slightly inferior to the
SO approach with a penalty function. However, later in the
runs, with the growth of the number of generations, the MO
approach surpasses all others. An important fact that is worth
mentioning is that the results of the MO algorithm are much
more robust and stable in time compared to the alternative
approaches. Summing up the above, it can be argued that
with a sufficient number of generations, a MO algorithm is
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Fig. 3: Comparison of RMSE objective-function value dynam-
ics during the optimization for different algorithms: single and
multi-objective (from Experiment 1). The results are obtained
with the 228 elusage data set.

more preferable. Partial results for the 228 elusage data set
are presented in Fig. 3.

It can be seen that the multi-objective approach allows
achieving a slightly better quality of the prediction. The values
of the graph size Gs and graph depth Gd from Table II are also
lower for the multi-objective case that confirms its practical
applicability and allows us to continue the set of experiments
and confirms Hypothesis 1.

Experiment 2: In the next experiment, we compared two
multi-objective selection strategies. As can be seen in Figure 4,
the value of the first objective function (in this case, ROC
AUC) for the algorithm with the SPEA2-based selection is
higher for each data set. It should also be noted that based
on the results of ten runs for each of the algorithms, it
can be concluded that SPEA2-based selection is more robust
and reliable. The analysis of the number of points in Pareto
frontiers (described in Table II) confirms that the SPEA2-based
selection is more suitable for further experiments since the
Pareto frontiers obtained for this variant of the algorithm are
more diverse and contain more points, which confirms the
Hypothesis 2.

Experiment 3: The final experiment was devoted to the
comparison of different multi-objective approaches. The main
idea of this experiment is to find out whether it is possible
to get higher values of the objectives using self-configuration
of the evolutionary algorithm hyperparameters during opti-
mization. As an alternative to this method, an approach was
used in which the values of hyperparameters were set before
the optimization began. The results presented in Fig. 5 for
the Hill Valley data set indicate that starting from a certain
generation (in our case, from the fifth), the approach using
self-configured hyperparameters of the evolutionary algorithm
begins to consistently outperform the alternative approach.
It should also be noted that as the number of generations
increases, the self-configured algorithm provides more robust
and stable solutions. The results of the experiment for all data
sets that are shown in the Table II confirm Hypothesis 3.

Additional comparison of best Pareto frontiers for each

Fig. 4: Comparison of objective function values convergence
(top) and hypervolume values convergence (bottom) during
the optimization for different selection operators (from Exper-
iment 2). The results are obtained with the Dis data set.

approach in the experiment with the Dis data set and detailed
representation of certain models is presented in Figure 6. It
can be seen that all points in the frontier for GPComp@Free
are dominating the points for the steady-state GP algorithm,
which confirms its efficiency.

Detailed results of experiments: The summary of the results
for all experiments and data sets is presented in Table II. It
also includes the comparison of GPComp@Free with state-of-
the-art AutoML approach TPOT (also based on GP concept)
and single-model baseline Random Forest with default param-
eters which demonstrates its greatest efficiency. Best algorithm
for each experiment and its solution characteristics highlighted
with bold.

As can be seen in this table, the results obtained during
the experiments demonstrate the advantage of multi-objective
optimization algorithms over other used approaches. The only
exception is a single case from the first experiment, where the
maximum value of the quality metric was obtained using a
single-objective algorithm. However, it should be noted that
the difference in the obtained values of the quality metric for
the single-objective and multi-objective algorithms is less than
0.01. At the same time, a much more simple model structure
was designed in the case of a multi-objective approach. In
the second experiment, the SPEA2 selection showed higher
results for each of the three selected data sets. Thus, this
algorithm was chosen for the next experiments. Results ob-
tained during the third experiment confirm that the parameter-
free optimization approach GPComp@Free allows achieving
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TABLE II: Results of the experiments for different versions
of the single-objective algorithm and the multi-objective al-
gorithm. The algorithms with the complexity penalty term
(PT) and the fixed depth heuristic (FD) were involved in the
comparison. ROC AUC, root mean squared error (RMSE) and
hypervolume (Fhyp) were used to evaluate the solutions. Gs

and Gd represent the size and the depth of the model structure
graph. The classification and regression benchmarks from
PMLB repository were used as test cases. For all experiments,
the deviation in the obtained quality metric was less then 5
percent.

Data
set Option

Quality
(ROC
AUC

or
RMSE)

Gs

and
Gd

for
best

Fhyp Nf

Exp. #1 - Comparison of the single-obj and multi-obj approaches

Churn
Single-objective 0.932 15;3 0.142 20

Single-objective PT 0.921 6;3 0.139 20
Multi-objective 0.924 7;3 0.14 5

Dis
Single-objective 0.928 13;3 0.067 4

Single-objective PT 0.921 6;3 0.067 5
Multi-objective 0.958 7;3 0.069 10

Hill
Valley

Single-objective 0.995 12;3 0.032 3
Single-objective PT 0.921 5;2 0.030 5

Multi-objective 0.999 4;2 0.033 6

Elusage
(regr.)

Single-objective 8.477 10;4 0.235 20
Single-objective PT 8.367 12;4 0.237 20

Multi-objective 8.364 8;3 0.240 4
Exp. #2 - comparison of the multi-obj selections types

Churn NSGA selection 0.924 5;3 0.140 4
SPEA2 selection 0.929 5;3 0.140 10

Dis NSGA selection 0.994 6;3 0.067 5
SPEA2 selection 0.995 6;3 0.069 5

Hill
Valley

NSGA selection 0.982 7;3 0.032 4
SPEA2 selection 0.986 6;3 0.033 6

Elusage
(regr.)

NSGA selection 8.413 13;3 0.236 4
SPEA2 selection 8.314 6;3 0.240 5

Exp. #3 - Comparison of multi-obj algorithms

Churn

Paremeter-free with FD 0.929 8;3 0.435 10
GPComp@Free 0.928 6;3 0.430 8

Steady-state with FD 0.923 7;3 0.427 7
Steady-state 0.928 6;3 0.427 8

Dis

Parameter-free with FD 0.992 8;3 0.761 8
GPComp@Free 0.994 6;3 0.771 7

Steady-state with FD 0.991 6;3 0.756 8
Steady-state 0.99 5;2 0.758 6

Hill
Valley

Parameter-free with FD 0.972 8;4 0.032 4
GPComp@Free 0.974 5;3 0.032 5

Steady-state with FD 0.960 6;3 0.030 4
Steady-state 0.973 5;3 0.031 5

Elusage
(regr.)

Parameter-free with FD 8.583 7;3 0.223 5
GPComp@Free 8.762 10;3 0.219 7

Steady-state with FD 8.825 7;3 0.198 6
Steady-state 9.211 6;3 0.137 4

Comparasion with state-of-art and baseline

Churn
TPOT 0.908 2;1 - -

Random forest 0.887 1;1 - -
GPComp@Free 0.924 7;3 0.14 5

Dis
TPOT 0.932 3;1 - -

Random forest 0.918 1;1 - -
GPComp@Free 0.994 6;3 0.771 7

Hill
Valley

TPOT 0.999 3;1 - -
Random forest 0.638 1;1 - -

GPComp@Free 0.999 4;2 0.033 6

Elusage
(regr.)

TPOT 11.682 3;1 - -
Random forest 13.417 1;1 - -

GPComp@Free 8.364 8;3 0.240 4

Fig. 5: Comparison of objective function and hypervolume
convergence during the optimization of the different types
of multi-objective approaches (from Experiment 3). The two
variants of the steady-state GP and two variants of the GP-
Comp@Free are presented. The results are obtained with the
Hill Valley data set.
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M7 M8

Bernb

DT Bernb

RF

Logit

RF XGB

Logit

XGBRF

QDA Bernb RF

QDA Bernb

Bernb

XGB

Bernb

MLP DT XGB QDA

RF RF

Fig. 6: Pareto frontiers for multi-objective optimization with
different algorithms for the Hill valley data set. The internal
structure of the obtained composite models is presented as
graphs with names of the used ML models in nodes.
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better results compared to the other approaches. The version of
the algorithm with the non-fixed depth of the final composite
model did not decrease the values of the quality metric and
hypervolume. It allows us to obtain more simple composite
models (from both structural and computational points of
view) without loss of prediction quality.

VI. CONCLUSION AND DISCUSSIONS

There are a lot of different decisions that should be made to
build an effective, robust, and flexible algorithm for the design
of the composite models or modeling pipelines. In the paper,
we propose the self-tuning approach that can be effectively
used without additional meta-optimization, which is critically
important for the application in AutoML-related solutions
since it allows achieving a better degree of automation.

The results of the experiments confirm that the proposed
evolutionary approach GPComp@Free allows achieving a
stable advantage against different single-objective and multi-
objective implementations. It can be seen that the composite
models found with a parameter-free approach are more effec-
tive and less complex according to the various benchmarks.

The proposed approach is not limited to the problem of
the composite models’ design or specific AutoML framework
and can be applied as a part of various automated modeling
solutions (e.g. NAS, equation discovery, etc).

CODE AND DATA AVAILABILITY

The implemented approach is available as a part of the open-
source FEDOT framework1. Data and scripts that were used
to conduct the experiments in the paper can also be obtained
from the open repository2.
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