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Abstract—Modern radiation therapy treatment planning has 

traditionally relied upon computed tomography (CT) in 

modeling the interaction of megavoltage (MV) photons with the 

various tissues and organs of the body. CT image data provide 

both detailed information about individual patient anatomy, as 

well as   a voxel-by-voxel three-dimensional grid of Hounsfield 

units (HU), which specifies, at all points within the patient, 

essentially the difference between the attenuation coefficient of 

the tissue within that voxel from the attenuation coefficient of 

water, normalized to that of water. From the HU value, the 

relative electron density can be inferred, and as the relative 

electron density is the major determinant of the interaction of the 

tissue with MV photons, the radiation dose distribution can then 

be calculated. Recently, there has been interest in using magnetic 

resonance imaging (MR) in lieu of CT, as MR provides superior 

soft-tissue contrast; however, MR does not provide any electron 

density information. Various approaches have been essayed to 

create a synthetic CT (synCT) from the MR data. In the present 

study, genetic programming was used to construct mappings of 

MR data to HU data for seven tissue types: bladder, cancellous 

bone, cortical bone, fat, muscle, prostate, and rectum. These 

maps were then applied to randomly chosen points in five patient 

data sets to calculate the synCT HU values, which were then 

compared with the actual HU values from CT images of those 

same patients. The method produced mean absolute errors 

(MAE) of 9.28 HU, 33.24 HU, 75.32 HU, 18.64 HU, 17.12 HU, 

11.76 HU, and 18.40 HU for the respective tissue types, and these 

MAE values are less than those of previous approaches, 

indicating superior performance. Although the method of the 

present study does require more manual input, the superior 

performance is compensatory. Further study is necessary to 

confirm accuracy on entire MR data sets, and to ensure there is 

no sample variance effect on the current results. 
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I. INTRODUCTION  

At the outset, it should be noted that the intent of the 
authors is to address a real-world problem using genetic 
programming methods. Though the optimization will be 

discussed in detail, the present study eschews more theoretical 
discussions of operators, recombination, termination 
conditions, bloat control, and the like. The goals here are to 
solve the problem of generation of synthetic computed 
tomography (synCT) data from magnetic resonance imaging 
(MR) data for the purposes of radiation therapy treatment 
planning, and to compare the ultimate performance of the 
genetic programming method adopted in the present study to 
that of the other prominent approaches. 

Radiation therapy is most often delivered via high-energy 
megavoltage (MV) photons. In this energy range, the 
interaction of the radiation with tissue is governed by inelastic 
Compton scattering, wherein a photon imparts a portion of its 
energy to a liberated electron, and that electron in turn deposits 
energy locally. This local deposition of energy is commonly 
referred to as radiation dose. The deposition of radiation dose 
induces biological effects, including apoptosis (cell death), 
which is the direct cause of the killing of tumors and of injury 
to normal organs. The magnitude of the Compton scattering 
interaction is directly related to the electron density of the 
tissue, so that a knowledge of the differential distribution of 
electron densities within the body can be used to calculate the 
radiation dose distribution. 

 
Fig. 1 Transverse CT image of a male pelvis. 

 



 

The distribution of relative electron densities can be 
calculated directly from CT data. CT data sets contain, at each 
point in the patient, the Hounsfield unit (HU) value, defined in 
(1) on the next page: 

 𝐻𝑈 = 1000 ∗
(𝜇−𝜇𝑤𝑎𝑡𝑒𝑟)

𝜇𝑤𝑎𝑡𝑒𝑟
, (1) 

 

where 𝐻𝑈  is the Hounsfield unit value, 𝜇  is the linear 

attenuation coefficient of the tissue at the point in question, 

and 𝜇𝑤𝑎𝑡𝑒𝑟  is the linear attenuation coefficient of water. In 

addition, CT imaging provides detail regarding the internal 

anatomy of the patient, so that the radiation oncologist can 

segment (or contour), either manually or supplemented with 

some automation, the tumor and critical organs. For these 

reasons, CT imaging has become integral to the radiation 

therapy planning process. An example of a transverse CT 

image of the male pelvis is displayed in Fig. 1 on the previous 

page. 

 

MR imaging provides superior soft-tissue contrast to that 

of CT, and as such, MR studies of the patient are registered 

with CT studies to provide aid to the radiation oncologist in 

segmenting the tumor and other organs. The MR is necessary 

for accurate delineation of the volume of the structures, and 

the CT is necessary in order to calculate the radiation dose 

distribution. An example of a transverse MR image is shown 

in Fig. 2. Because the registration of the MR and CT data sets 

introduces geometric error, there has been much interest in 

MR-only radiation therapy treatment planning [1-5]. These 

approaches use atlas-based methods and complicated 

algorithms, such as neural networks [2].  

 

The present study is an attempt to address the question: is 

there a relatively simple alternative method, without the 

necessity of the cumbersome and lengthy process of training a 

neural network, and using the existing workflow in a typical 

radiation oncology department, to generate accurate synthetic 

CT data directly from an MR study of a patient? The approach 

adopted was to utilize genetic programming and optimize 

separate MR-to-HU maps for seven tissue types (bladder, 

cancellous bone, cortical bone, fat, muscle, prostate, and 

rectum) to generate synCT HU values. This novel method uses 

a previously untried optimization of a direct functional MR-to-

HU mapping. The result is an approach that yielded more 

accurate HU values than the current methods. 
 

II. MATERIALS AND METHODS 

A. CT and MR Image Data 

CT data were acquired with a 16-slice Optima 580RT CT 

scanner (GE Healthcare Systems, Chicago, IL). MR data sets 

were acquired with a 1.5T Magnetom MRI scanner (Siemens 

Medical Solutions USA, Malvern, PA). Image data for 

patients undergoing radiation therapy for carcinoma of the 

prostate were used. A total of ten pairs of CT-MR image sets 

for ten distinct patients were utilized; five pairs were used to 

establish the MR-to-HU tissue-specific maps, and five pairs 

were used to test the accuracy of the synCT HU values 

calculated from the tissue-specific maps. 

B. Registration, Segmentation, and Point Sampling 

CT-MR image registration was accomplished via  

computer-aided fusion supplemented with manual adjustment 

by the radiation oncologist. The studies were imported into the 

Precision v1.1 treatment planning software (Accuray, Inc., 

Sunnyvale, CA), and a rigid-body automated registration was 

applied to align the image sets. Further fine-tuning of the 

registration was performed manually by the radiation 

oncologist, so that the registration of the soft tissues (e.g. 

prostate, bladder, and rectum) was optimized. 

 

Subsequent to the image registration process, the radiation 

oncologist segmented (i.e. outlined by manipulating software 

drawing tools) the organs: bladder, prostate, rectum, femoral 

heads, and bowel. It is important to note that all these steps are 

part of the normal treatment planning workflow, so thus far no 

sacrifices in planning throughput have been made to 

accommodate the experiment carried out in this study. 

 

In anticipation of the need to optimize the tissue-specific 

MR-to-HU maps, points were selected at random from five of 

the registered CT-MR pairs. For each tissue type, the MR 

pixel intensity value was recorded, as well as the 

corresponding CT HU value. A number of points were 

sampled for each tissue-type: bladder (34), cancellous bone 

(12), cortical bone (32), fat (36), muscle (38), prostate (49), 

rectum (35). The number of points sampled reflected the 

perceived variation in HU range, so that for each tissue type, 

the full range was captured in the set of sampled points. 

C. Hardware and Software for Genetic Programming 

 

All GP optimization was performed on a ThinkPad P50 

laptop (Lenovo, Beijing, CN) with 32 GB RAM and an Intel 

Xeon 8-core processor running MATLAB R2016b (The 

Mathworks, Natick, MA). 

 
Fig. 2 Transverse MR image of the male pelvis. 

 



 

D. Genetic Programming 

For each tissue-type, a mapping, 𝑓𝑡𝑖𝑠𝑠𝑢𝑒 was optimized such 
that: 

 𝑓𝑡𝑖𝑠𝑠𝑢𝑒: 𝑓𝑡𝑖𝑠𝑠𝑢𝑒(𝑀𝑅) = 𝐻𝑈. (2) 

 

In (2), 𝑀𝑅 ∈ ℤ is the intensity of the pixel in the MR image, 
and 𝐻𝑈 ∈ ℤ is the HU value at the pixel in the registered CT 
data set. 

At this point, it was apparent that the nature of the problem 
was two-fold: classify the tissue type, and after correct 
classification, use the correct map to predict the HU value. 
Since the classification was achieved by the segmentation of 
the organs, what remains is to optimize the mapping. The 
problem now reduces to a symbolic regression, for which GP is 
well-suited [6]. 

For each tissue-type, a GP optimization to determine the 
mapping was performed. In each case, the fitness function was 
the sum of the squares of the deviations of the predicted 
synthetic HU values from the actual HU values, as in (3) 
below: 

 𝑓𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  ∑(𝐻𝑈𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 − 𝐻𝑈𝑎𝑐𝑡𝑢𝑎𝑙)
2
. (3) 

The function set selected was: 

 {+, −,∗, 𝑠𝑖𝑛, 𝑐𝑜𝑠, 𝑙𝑜𝑔} , (4) 

while the terminals were just the MR pixel intensities, 
namely: 

 {𝑀𝑅: 𝑀𝑅 ∈ ℤ} . (5) 

The GP implemented was that of GPLAB v4. The 
population size was 100, and the number of generations for 
each algorithm run was 100. The trees were created using 
ramped half-and-half initialization. Tree growth was initially 
controlled by setting the allowed maximum depth equal to 6.  

The reproduction rate was set to 0.1, i.e. this was the rate at 
which individuals were directly copied into the succeeding 
population in the next generation in the absence of being acted 
upon by the genetic operators [7]. The sampling method for 
parent selection was a modified tournament selection operator 
called “lexictour” [7], which uses, in a lexicographic ordering, 
a primary (evaluated fitness) and secondary (tree size) 
objective. According to Silva [7], the technique is effective in 
problems where many individuals are expected to have equal 
fitness values. The expected number of children for each 
individual was calculated using the “rank85” method, so that 
each individual’s expected number of children was determined 
by its rank in the population [7]. There was no elitism, and so 
the population was replaced in each generation.  

The probability of crossover was set at a static value of 0.5, 
as was the probability of mutation. The crossover operator was 
the usual swap of branches from trees of parents subsequent to 
random node selection. The mutation operator acted to create 
point mutations. 

Bloat was controlled with both a fixed maximum tree 
depth, set at 17, and a dynamic maximum tree depth, set at 6. 

As explained by Silva [7], the dynamic depth technique has 
been demonstrated to show better results than that of 
lexicographic parsimony pressure. In addition, the combination 
of the dual dynamic and strict depth limits yields yet superior 
performance [7]. A flow diagram of the GP optimization is 
displayed in Fig. 3. 

III. RESULTS 

The results of the optimization are presented in Fig. 4 on 
the following page. As there are seven optimization runs for 
each of the seven tissue types (bladder, cancellous bone, 
cortical bone, fat, muscle, prostate, and rectum), to present 
plots for all the runs such that the displays would be large 
enough to be intelligible would occupy far too much space, so 
the results for fat are shown as representative of the results for 
all tissue types. For the fat GP symbolic regression, there are 

 
 

Fig. 3 Flow diagram for GP optimization 

 

 



 

plots of the best tree, the accuracy versus complexity, and the 

 
Fig. 4 Results of the optimization for fat tissue type. Top: Best Tree. Middle: Accuracy versus Complexity. Bottom: Desired Versus Obtained HU Values. 

 



 

plots of the best tree, the accuracy versus complexity, and the 
desired versus obtained HU values. The accuracy versus 
complexity display plots the best fitness, number of nodes, and 
tree depth as a function of generation number. Note that in the 
best tree plot, the function 𝑚𝑦𝑙𝑜𝑔  is simply the natural 
logarithm of absolute value of the MR pixel intensity, and the 
terminal 𝑋1 represents the MR pixel intensity. 

 

A. General Remarks Regarding GP Optimization Results 

The best trees for all tissue types are somewhat bloated, but 
calculating the synCT data using them is trivial, and the quality 
of the results, as will be shown, is excellent. Considering the 
middle plot in Fig. 4, it is observed that for a modest increase 
in complexity, there is a payoff in more fit solutions, so the 
increase in tree depth and number of nodes is certainly 
tolerable. Finally, considering the bottom plot in Fig. 4, the 
synCT HU values calculated from the MR pixel intensities 
show good agreement with the actual CT data. 

GP optimization yielded similar results for all tissue types. 
There is an observable marked improvement in fitness earlier 
in the run, with less improvement as the optimization proceeds 
to later generations. The number of nodes and depth of trees 
tended to increase throughout the run, but the bloat control of 
the dual fixed and dynamic depth limits succeeded in 
preventing the bloat from becoming overwhelming. The 
poorest performance observed was for the rectal tissue type. 
The fitness did not really improve that much throughout the 
run, and the trees tended to increase in complexity without an 
increase in the accuracy of the calculated synCT values. This 
may be attributable to less-than-ideal parameter settings, HU 
values that contained noise, or both. An accuracy versus 
complexity plot for the rectal tissue type is displayed in Fig. 5. 

B. Calculated SynCT Data 

For each tissue type, five points were randomly selected 
from each of five patient MR-CT image pairs, for a total of 

twenty-five points per tissue type. The GP-optimized map was 
then applied to calculate the synCT HU values. The synthetic 
HU data was then compared with the actual CT HU values at 

each point. Error histograms for all tissue types are shown in 
Fig. 6. 

The poorest performances of the GP-optimized maps were 
associated with the cancellous bone and cortical bone tissue 
types. This is unsurprising, as the MR-to-CT registration 
performed between the image data sets was fine-tuned by the 
radiation oncologist to ensure the most accurate registration of 
the soft tissues (prostate, bladder, rectum, muscle, and fat). 
Consequently, the match of the bony anatomy can be less than 
ideal, leading to erroneous MR-to-synCT HU values. 

C. Comparison Of GP Results With Other Algorithms 

 
Arabi et al. published a helpful survey of current synCT 

generation algorithms [8]. The approaches detailed in the paper 
include four atlas-based techniques: median value of atlas 

 
Fig. 5 Accuracy Versus Complexity for the rectum tissue type. 

 

 

 
Fig. 6 HU Deviation Histograms for all tissue types. 

 



 

images (ALMedian), atlas-based local weighted voting 
(ALWV), bone enhanced atlas-based local weighted voting 
(ALWV-Bone), iterative atlas-based local weighted voting 
(ALWV-Iter). The survey also included a machine learning 
technique using a deep convolution neural network (DCNN). 
The performance of the GP approach can be compared directly 
for some tissue types, and indirectly for others, by comparing 
the mean absolute errors (MAE) and standard deviations (STD) 
of HU values. Where no comparable results exist, ‘N/A’ is 
displayed for the tissue type. The comparison is shown in 
Table I below: 

 
It is clear from the comparison that the GP approach 

outperforms all the other methods. This is not unexpected, 

since all the other approaches are more automated; indeed, in 

all the other cases, the segmentation is performed 

automatically, i.e. there is no human radiation oncologist 

contouring the organs on the images [8]. Clearly, this expert 

knowledge enhances the GP approach of the authors, yielding 

more accurate synCT HU values. In the authors’ experience, 

many clinics still employ this manual segmentation procedure, 

so the addition of the GP-optimized tissue-specific maps 

would be a natural fit if it were to be adopted. Further, the 

statistics quoted above for the algorithms other than GP are for 

larger ensembles of data points, so that some of the effect seen 

above could be caused by sample variance (though an attempt 

was made to minimize any such effect by randomly sampling 

the data points in each organ). 

IV. CONCLUSION 

     In this study, genetic programming was used to optimize 

tissue-specific MR-to-HU maps for the generation of synthetic 

CT data; tissue types were: bladder, cancellous bone, cortical 

bone, fat, muscle, prostate, and rectum. MR-CT image studies 

were registered using automated fusion, and then fine-tuned. A 

GP algorithm was employed to optimize the MR-to-HU 

mappings. The optimized maps were then used to calculate 

synCT HU values at randomly selected points. The synCT data 

were then compared with the actual CT HU values to assess the 

performance of the algorithm. 

      

     The GP method outperformed other atlas-based methods, as 

well as a deep convolution neural network, when the mean 

absolute errors and standard deviations of the synCT values 

were compared. This was not unexpected, since the problem of 

generating a synCT involves both classification of the tissues 

as well as predicting the HU values from the MR pixel 

intensities. The GP method relies on expert human knowledge, 

so this obviates the need for an automated solution to the 

classification problem, which is nontrivial. 

 

     The GP method shows promise but needs further study. 

Larger sample sizes of points need to be tested to ensure that 

the results are not subject to a sample variance effect. An 

automated segmentation algorithm could be applied to classify 

the organs, so that the process does not involve human 

interaction. Finally, radiation dose distributions should be 

calculated on the full synCT studies to assess the accuracy of 

the dose to the tissues. 
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