
Empirical Benchmarks of a Genetic Algorithm
Incorporating Human Strategies

Markus Borschbach and Christian Grelle
Optimized Systems, Hauptstr. 2
University of Applied Sciences

51465 Bergisch Gladbach, Germany
+492202 9527369

Markus.Borschbach@fhdw.de

Technical Report no. 2009/01
Faculty of Computer Science, University of Applied Sciences, Bergisch Gladbach, Germany

ABSTRACT
This work outlines the incorporation of human strategies in a
genetic algorithm. Human competence and machine intelligence
are merged creating symbiotic human-machine intelligence, which
is called HuGO!, the Human strategy based Genetic Optimizer.
HuGO! emerged from and is applied to the restoration problem of
Rubik’s Cube and successfully solves this task. A competition
between HuGO! and human Rubik’s Cube contestants
demonstrates that the incorporated human strategies improved the
genetic solver’s performance to become human-competitive.

1. INTRODUCTION
The simulation of human intelligence is a central goal of artificial
intelligence. Genetic algorithms are admittedly nature inspired
optimization techniques, however basically ignoring human
problem solving strategies. This work illustrates the incorporation
of human strategies in a genetic algorithm and therefore
introduces a method of collaboration and knowledge exchange.
Human competence and machine intelligence are merged creating
symbiotic human-machine intelligence, which is called HuGO!,
the Human strategy based Genetic Optimizer.
As use case, a both simply working and complex mathematics
invoking application is analyzed. Rubik’s Cube is widely known
and allows a vivid problem embodiment. This three-dimensional
puzzle has undergone comprehensive research in the past. The
results are used to develop a thoroughly formal problem
description and solve the task of exploiting human knowledge.
There are five distinct sections. Section 2 introduces Rubik’s
Cube. Beginning with the historical roots, the cube’s physical
structure is explained and specific terminology is introduced to
allow clear communication throughout the work. The section
comprises an insight into the mathematical group theory and treats
certain subgroups of the cube that are important to realize a
human strategy. Belonging to the survey of related work are
scientific achievements regarding optimal solution sequences for a
scrambled cube. Corresponding work on upper and lower bounds
for necessary turn numbers is presented completed with an
overview on existing evolutionary solving approaches.
From the introduced fundamentals of Rubik’s Cube, Section 3 de-
rives the idea of HuGO! and describes the developed algorithm in
detail.

Section 4 comprises tests on the introduced algorithm. First,
integrity tests provide information on the correctness of the
results. Then performance tests demonstrate the efficiency of
HuGO!. The dramaturgical climax is reached with a comparison
of the algorithm’s and real human capabilities to solve the cube
that indicates the human competitiveness of HuGO!.

The work is brought to a close with the conclusion of Section 5
where results are summarized, problems are reflected and an
outlook is given including suggestions for further research as well
as potential application areas.

2. RUBIK’S CUBE

2.1 History
ERNO RUBIK, a Hungarian architect and professor at the
University of Budapest presented the first prototype of Rubik's
Cube in 1974. RUBIK developed the cube as a teaching aid for
recognizing three-dimensional spatial relationships. Already in the
beginnings of its history, the cube became interesting for scientific
research. The first significant public attention outside of Hungary
was caused by the mathematician DAVID SINGMASTER. He
conducted analyzes of the cube mathematics, which led to an
article in Scientific American by DOUGLAS HOFSTADTER

[9]
 in

1979. Today, Rubik’s Cube as discrete optimization problem is
a testing ground for scientific questions. It allows researchers
from different disciplines to compare their methods on a single,
well-known and vivid problem. Popular application areas are
mathematical group theory (Section 2.3) or search and
enumeration, incorporating disciplines like artificial
intelligence.[14]

2.2 Structure and terminology
Rubik’s Cube consists of 26 smaller pieces, which are called
cubies (see Figure 1). There are three different types of cubies.
Eight corner cubies are located in the corners of the cube. They
have three visible surfaces that are called facelets. 12 cubies have
two facelets. They fill in the space along an edge between two
corner cubies and are therefore called edge cubies. The third type
of cubie only has one facelet. These cubies are located in the
center of each side (face) of the cube and are consequently called
center cubies. There are six center cubies whose facelet colors
determine the cube face.[22] In the standard Rubik’s Cube the

possible colors are white, yellow, orange, red, green and blue,
whereas distinct center cubie color pairs are always on opposite
faces: white and yellow, orange and red as well as green and
blue.[23] Each of the 6 faces of the entire cube is made up of nine
facelets. Thus there are 6 9 54⋅ = facelets on the cube.

corner cubie

edge cubiecenter cubie

Figure 1. Structure of Rubik’s Cube

By rotating different faces of the cube, the cubies can be moved.
Each cubie of the turned face, except the center cubie, moves to a
location vacated by another cubie. These locations are called
cubicles. No matter how faces are rotated, corner cubies always
move from one corner cubicle to another corner cubicle. Edge
cubies move from one edge cubicle to another edge cubicle.
Center cubies have a fixed location relative to the other center
cubies. They only can be spun in place.[5]
Besides, the center cubie of each face determines the only color to
which this face can be restored. Therefore it is possible to define
the only cubicle in which each cubie can be placed to restore the
cube. For example, if the two facelets of an edge cubie are red and
yellow, then that cubie must be placed in the unique edge cubicle
between the red center cubicle and the yellow center cubicle (see
Figure 1). Furthermore, the cubie must be placed in that cubicle
so that its red facelet is next to the red center cubie and the yellow
facelet is next to the yellow center cubie. Similarly, it is possible
to determine the corresponding corner cubicles of each corner
cubie, except that there are 3 facelets to consider.
Since different Rubik’s Cube manufacturers use different colors,
each of the faces is named based on its position relative to the
person holding the cube.[23] The six faces have the names Front,
Up, Right, Back, Down and Left. These faces are designated by
their initials:

Table 1. Faces abbreviations
Face Abbreviation
Front F
Up U
Right R
Back B
Down D

On each rotation exactly 20 facelets are moved. Rotations are
described by the face initials (see Table 1)

F, U, R, B, D and L.
A single initial indicates a clockwise quarter turn of the
corresponding face while viewing the face from that side of the
cube. Figure 2 provides a graphical demonstration of all possible
clockwise quarter turns. A half turn of any face is two quarter
turns of that face. The following notation is used:

F2, U2, R2, B2, D2 and L2.
Counter-clockwise quarter turns are denoted by

F’, U’, R’, B’, D’ and L’.1[5]

F U

R B

LD

Figure 2. Clockwise face turns

To describe a sequence of turns, the turns are listed from left to
right. For example, FR’ means apply F first and then apply R’.
Any sequence of turns is called a process.[23]

2.3 Group Theory
Each process on the cube generates a permutation of the cubies.
Additionally, if one process is followed by another, the processes
form a new process that generates another permutation. This is the
first requirement for a group. Group theory is the mathematical
foundation of the study of symmetry. The concept has many
applications in art, physics, chemistry and biology. It is a way to
study the solvability of polynomial equations and the structure of
geometric and topological objects. So group theory is one of the
basic subjects of mathematics. On Rubik’s Cube, the processes
and permutations form groups. Since they are vividly embodied
on the cube, it is often used as a concrete example of group theory
concepts.[5]

1 The presented notations X, X2 and X’ are type-friendly

modifications of the original intentions X , 2X and
1X− ,

whereas the exponent denotes direction and number of turns.

There are several subgroups of the cube group like the two-
squares group, the slice group or the two-generator group.2

194.3 10⋅

 The
two-generator is an important group in the progress of this work
and shall therefore be explained. The cube group is the group of
all states that are accessible by using all faces of the cube for
rotations. The total number of cube permutations, which denotes
the order of the cube group, is . The two-generator,
however, is the group of all states that can be accessed by just
turning two adjacent faces of the cube, for example, U and B.
Significant characteristics of the two-generator are that edge
cubies cannot be changed in orientation, i.e. flips are not possible,
and that corner cubies are incapable of ceteris paribus swapping
two corner cubies. The total number of permutations and therefore
the order of the two-generator group is 73,483,200 , which is
significantly lower than the order of the cube group.

2.4 Survey of Related Work
2.4.1 An optimal Solution
In 1992, the mathematician HERBERT KOCIEMBA

[10]

 developed
CubeExplorer, a program incorporating an algorithm that, after
some improvements, is expected to calculate a shortest solution to
any scrambled cube provided. Therefore the tools of group
theory were used, which can simplify the calculations by defining
groups of different cube configurations that share mathematical
properties.

2.4.2 An upper bound for the worst case
One of the most fundamental questions about Rubik’s Cube is the
question after the number of turns necessary to solve it in the
worst case. Even after more than 30 years since its introduction,
the answer to this question remains unknown.
However, several approaches have been used to find an upper
bound for the worst case. These approaches are gradually shifting
the upper bound on the diameter of the cube group closer towards
the expected number of 20 turns. Combined with the estimates of
a lower bound, which has been shown to be at least 20 turns[16]
in a configuration called superflip, this allows to determine the
real number. Basically, most upper bound approaches are based
on defining a suitable way-station configuration and then
optimally solving it. After working out how many turns it takes at
least to get to the way station from any random configuration, the
sequence lengths of both ways having the way station in between
are summed up to receive the solution for an upper bound. Rather
than using a single configuration, it is often more efficient to
exploit symmetries when dealing with several way stations in a
single calculation.
MORWEN THISTLEWAITE

[25]

 presented an algorithm traversing four
specifically defined groups that requires a maximum of 52 turns in
1981. KOCIEMBA 2.4.1’s algorithm (Section) is actually an
improvement of THISTLEWAITE’s algorithm and was used by
MICHAEL REID [17] to show that 29 turns suffice to solve the cube.
In 2007, SILVIU RADU reduced the upper bound to 27 by
generalizing REID [15]’s method. In the same year, DANIEL
KUNKLE and GENE COOPERMAN

2 For details on the two-squares group and the slice group cf.

could reduce the upper bound

[5],
p. 112 ff.

even further to 26 turns.[11] They devised a way to construct 1.5
trillion groups called cosets of about 660,000 configurations each.
Regarding symmetries, they identified 15,000 unique
configurations in each coset and determined the maximum
distance to the solved cube. Besides, they introduced a method to
transform all coset configurations into one of the 15,000. So
solving just one of the 15,000 configurations equals solving the
whole coset. The calculations required seven terabytes of
computer memory and 8,000 hours processing time before the
upper bound could be lowered down to 26. In 2008, TOMAS
ROKICKI

[18]
 devised a computational proof that all unsolved cubes

can be solved in 25 turns or fewer. Using the same algorithm,
but more computational capacity, this was later reduced to 23
turns.[19] In August 2008, ROKICKI

[20]

 announced that calculations
are brought forward to the current best found upper bound of 22
turns.
ROKICKI’s algorithm works by dividing up the problem into two
billion cosets, each containing around 20 billion related
configurations. The program then works through one coset at a
time, building a list of the turns that bring each of its 20 billion
configurations into one of those in KOCIEMBA's subgroup used in
CubeExplorer, until all of the configurations in the coset have
been solved at least once. The longest sequence found by the
program is the upper bound for the whole coset. The calculations
are highly capacity-intensive and were conducted on a computer
grid of Sony Pictures Imageworks. Theoretically, on even faster
computers, ROKICKI could try to reach lower worst case
boundaries with his algorithm. These computers like Blue gene/L,
based at the Lawrence Livermore National Laboratory in
California, however, are not affordable to ROKICKI

[13]
 so that at the

present time, he is trying to improve the algorithm. [18]

2.4.3 Evolutionary approaches
In 1994, MICHAEL HERDY and GIANNINO PATONE

[8]
 solved the cube

using evolution strategies. Therefore, they introduced a quality
function for the evaluation of the cube state. The quality function
to be minimized consists of three parts, Q1, Q2 and Q3, combined
by addition. Q1 is increased for a wrong facelet while Q2 and Q3
penalize wrong positioned edge- and corner cubies. The 10
different mutations are realized using swaps and turns of
individual cubies. On the one hand this allows a rapid solution
search because dependencies are minimized. But on the other
hand the results will be fairly long solution sequences, because
accomplishing a single swap already incorporates around 10 cube
rotations. Since HuGO! is supposed to find short solutions,
HERDY and PATONE’s approach is inappropriate for this work’s
goals. Admittedly, CYRIL CASTELLA

[3]

 built an evolutionary
approach to solve the cube, aiming short solution sequences, that
is much more convenient to be exploited. The program uses a
genetic algorithm, which is based on a one-point crossover,
omitting a selection operator and mating pool. Unfortunately, the
approach suffers from missing integrity as yet so that no
performance comparison could be conducted. More precisely, the
solution output seems to fail if the cube is already in the two-
generator group. However, it incorporates some useful functions
that are enhanced and applied by HuGO! (Section 3.2).

3. HUGO!

3.1 Boundary Conditions
The task to solve Rubik’s Cube can be considered as a very
special optimization task. In ordinary optimization problems that
are appropriate to be solved by genetic algorithms, the goal is to
reach a comparatively good solution after a certain termination
condition is fulfilled. In contrast to this, the cube optimization
process can only be finished, if all facelets are fully restored, i.e.
the cube is solved. However, a cube solving turn sequence can be
differentiated in fitness by means of turn numbers. Characterizing,
the cube optimization is a discrete optimization problem. Discrete
optimization, also called integer programming, can be described
by the usage of restricted variables in the objective function as
being exclusively receptive for discrete values. So the examined
problem is of discrete nature, because the determinants of the
cube fitness are face turns, which cannot be conducted partially.

The most obvious way to solve the cube by evolutionary means is
to use a trivial fitness function that compares the scrambled cube
to the solved one and counts the number of consistent facelets.
Tests showed that this approach turns out to be inefficient. While
the algorithm quickly reaches around 70% consistent facelets,
further calculations only provide marginal improvements. This is
due to 194.3 10⋅ interdependent permutations as possible states of
the cube group, which lead to an enormously jagged fitness
landscape containing lots of local optima. Consequently, the
algorithm repeatedly becomes trapped in local optima, extending
calculation time tremendously.

The integration of a common human solving strategy for Rubik’s
Cube, called two-generator method, provides a solution to this
problem. The two-generator method is inefficient for fast solution
generating, but often used by contestants of fewest moves
challenges. This method restores a scrambled cube by
transforming it into the two-generator subgroup first and then
solving the cube in this group. As described in Section 2.3, the
two-generator subgroup encompasses a number of different states
that is only about 73,483,200 and therefore much smaller than the
entire cube group. Thus, it is promising to split up the cube-
solving search algorithm into part solutions.

In the first phase a 2x2x3 subcube, i.e. the entire cube except two
adjacent layers, is solved in one of the twelve possible locations.
The two remaining layers are left scrambled. Since not all cube
states that only have two adjacent layers unsolved are
automatically in the two-generator, the second phase transforms
the cube into this group. For this purpose tests are necessary that
check, whether the edge cubie orientations and corner cubie
permutations stick to the states achievable in the two-generator. In
the third phase, the remaining two layers are turned until the
entire 3x3x3 cube is completely restored. The three phases of the
algorithm realizing this human strategy are three independent
algorithms that are based on the common canonical genetic
algorithm and share a lot of analogies. The individual
components, as well as their interaction in the composed
workflow are explained in detail in the succeeding sections.

3.2 Components
3.2.1 Solution Representation
According to these suggestions, the discrete characteristics of
Rubik’s Cube as optimization process allow a rather direct
incorporation of the search space into the solution representation.
All three phases of the algorithm have in common that instead of
binary strings, each gene of a solution contains a number ranging
from 0 to 17 representing one of the 18 potential cube turns
introduced in Section 2.2.[3] Tab. 4.1 depicts the exact allocations
used:

Table 2. Turn allocations

F 0 F2 6 F’ 12
U 1 U2 7 U’ 13
R 2 R2 8 R’ 14
B 3 B2 9 B’ 15
D 4 D2 10 D’ 16
L 5 L2 11 L’ 17

Clockwise quarter turns Half turns Counter-clockwise quarter turns

It becomes obvious that the search space equals the representation
space, except that the growth function maps numbers to the literal
turn abbreviations. In this way genes do not need to be merged to
decision variables that they already are. Fig. 4.4 illustrates an
example of the resulting genotypical solution representation:

5 1 8 16 11 3 13 0 4 1 12 1 14 10

gene allele

individual (chromosome)

Figure 3. A coded representation of an individual

The alleles of the solution compose a process as defined in
Section 2.2. Equally, substrings of the process can be seen as
potential solutions. If l determines the length of an individual,
then this solution representation leads to a search space of 18l
possibilities in every phase. Section 3.2.2 describes in detail how
evaluation of the solution representation is proceeded. Deviating
approaches regarding turn allocations excluding half turns or
using binary representations are still to be compared in further
investigations.

3.2.2 Fitness Function
To successfully apply a GA to a given optimization problem, an
adequate representation of the problem must be developed. In the
case of Rubik’s Cube, the scrambled cube represents the
environment and the solution string represents the individual that
is customized to fit to the environment. The fitness function
assigns a fitness value to the individual judging the quality of
adaptation, i.e. ability to solve the cube. To test this ability, the
particular solution operates on the scrambled cube and the
resulting cube undergoes evaluations that determine the
individual’s fitness. It becomes clear that the implementation of
the cube has to fulfill two main capabilities. First it must be
receptive to the individual’s modifications, i.e. turns. Then the

resulting cubes must be distinguishable in quality, respecting the
number of turns applied.
The cube representation, as introduced in Section 2.2, allows a
color independent modification and identification of individual
cubies and therefore supports the two mentioned conditions. To
simplify implementation, the facelets of the cubies are labeled
with integer numbers.[3] Since there are 54 facelets on the cube,
the numbers from 0 to 53 are used to identify them. Allocated row
by row on the faces in the order F, U, R, B, D, L, the entire cube
is encompassed. Fig. 4.5 shows the internal representation of the
cube:

18
19

20

21
22

23

0
1

2

3
4

5

6
7

8

10
13

16
17

9
11

14

26

24
25

12
15

Figure 4. Internal representation of Rubik’s Cube

During evaluation, the individuals are traversed successively from
gene to gene (see Figure 3) while on each step the substring's
(first to current gene) fitness is determined. The best fitness and
the step number, i.e. number of turns, are stored. The overall
fitness of the potential solution is determined by calculating the
fitness and subtracting the number of needed steps. The fitness
describes the progress of restoring the cube. The counted number
of steps allows to differentiate between longer and shorter turn
sequences of cube states of the same fitness. The distinct
determination of the best fitness is different in each algorithm
phase due to different goals of the phases.[3]
In the first phase, the solve 2x2x3 cube phase, the fitness is
determined by counting the number of facelet pairs of the same
color on the 2x2x3 surface. Particularly, the pairs are corner-edge
pairs and center-edge pairs as displayed in Figure 5:

corner-edge pairs center-edge pairs
Figure 5. Corner-edge pairs and center-edge pairs on the

2x2x3 surface
A corner-edge pair is the conformance of the corner cubie
facelets and the adjacent edge cubie facelets of a corner cubie and
an edge cubie. Thus there exist six corner-edge pairs on the 2x2x3

surface. A center-edge pair is the conformance of a center cubie
facelet and an edge cubie facelet. There are 10 center-edge pairs
on the 2x2x3 surface, adding up to a total number of 16 pairs that
constitute the maximum fitness value when the entire 2x2x3
subcube is solved. If the two cubes of Figure 5 are placed one
upon the other, it becomes obvious that the pair technique
encompasses the entire 2x2x3 surface and no facelet is ignored.[3]
In the second phase, the transformation to two-generator phase,
fitness is determined by the number of corner-edge pairs and
center-edge pairs as in the first phase, as well as the fact, whether
the cube is in the two-generator group. The check for the pairs is
done because in this phase, the cube is allowed to temporary leave
the solved 2x2x3 state. Only in this way it is possible to
manipulate the two not yet solved layers beyond the turns allowed
in the two-generator to enter the two-generator subgroup. So the
maximum fitness value achievable is 17 and signifies that the
cube is successfully transformed to the two-generator group. To
determine, whether the cube is in the two-generator, the cubies
that are in the edge cubicles and in the corner cubicles of the not
yet solved layers are requested. The center cubies are not directly
involved in this transformation process because their position is
fixed a priori.
The third phase, the solve two-generator phase, only allows turns
of the two still scrambled sides, so that the cube remains in the
two-generator subgroup.
This phase performs the integrity determination, which equals the
fitness value, for the entire cube surface. Integrity is always at
least 16 because the already solved 2x2x3 cube stays unaffected.
The maximum value the integrity can achieve is 48 pairs, which
means that the two-generator is solved and the cube is completely
restored.

3.2.3 Selection
As selection operator, stochastic universal sampling is used to
propagate individuals to the mating pool. The selection operator
incorporates two selection points to reduce spread. The best
solution is maintained as elite. Elitist strategies link the lifetime of
individuals to their fitness. They are techniques to keep good
solutions in the population for longer than one generation. The
use turns search more exploitative rather than explorative. Elitist
strategies are guessed to be necessary when genetic algorithms are
used as function optimizers and the goal is to find a global
optimal solution as it is the case in the cube optimization process
regarding integrity restoration.[21]

3.2.4 Crossover
The genetic operations in the reproduction stadium are slightly
adapted standard operators. The crossover operator is realized by
a uniform crossover, eliminating positional bias. Table 3 depicts
an exemplary application of the uniform crossover operator during
the algorithm execution with two children. As explained in
Section 3.2.1 and shown in Figure 3, the gene values are, in
contrast to binary values, composed of numbers 0 to 17:

Table 3. Application of uniform crossover during algorithm
execution

Individuals 1 and 2
17 14 0 2 17 10 17 12 1 12 13 9 1 12 1 9 13 5 12 14 0 1 8 12 3 5
17 12 11 4 3 17 4 1 11 6 11 8 0 16 3 4 9 5 14 6 15 17 7 0 14 17
Random bit pattern
0 1 1 0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0

Individuals 2 and 3
17 12 11 2 17 17 4 1 11 6 11 8 1 16 1 9 13 5 14 14 0 17 8 12 14 5
17 14 0 4 3 10 17 12 1 12 13 9 0 12 3 4 9 5 12 6 15 1 7 0 3 17
In the implementation of HuGO!, for each crossover operation, a
new random bit pattern is created.

3.2.5 Mutation
A standard mutation is performed after the crossover using the
adjustable mutation probability

 mp . Table 4 depicts an
exemplary application of the mutation operator during the
algorithm execution:

Table 4. Application of mutation during algorithm execution
Individual before mutation
17 14 0 4 3 10 17 12 1 12 13 9 0 12 3 4 9 5 12 6 15 1 7 0 3 17
Individual after mutation
17 14 0 8 3 10 17 12 1 12 13 9 0 12 3 4 9 5 12 6 15 1 7 0 3 17
At position 4 of the individual, a mutation occurs so that the gene
value 4 is replaced by the gene value 8. In contrast to binary string
individuals, where during mutation a gene value is just swapped
from 0 to 1 or from 1 to 0, here the genes have values from 0 to
17. So if a gene is chosen to become mutated, the gene value will
be replaced by a random integer number between 0 and 17.

3.2.6 Optimization
An additional genetic operator, proposed by CASTELLA

[3]
, is the

optimization operator. The optimization operator eliminates
redundant turns so that gene strings are reduced in length. For
example, the sequence F R B B’ D2 F’ is reduced to F R D2 F’ so
that B B’ is cut out by the optimization operator, because a B-turn
followed by a B’-turn results in the same state of the cube as it has
been before these two turns.
Keeping in mind the internal representation of turns outlined in
Table 2, the optimization process is done for all consecutive pairs
of turns.

3.3 WORKFLOW
3.3.1 Solve 2x2x3 cube phase
The three successive phases are genetic algorithms itself and in
the end composed to HuGO!, the algorithm that completely
restores Rubik’s Cube.
In the first phase, a 2x2x3 subcube is solved. There are 12 edges
on the entire cube, which constitute the 12 possible locations for
2x2x3 cubes. For this reason, 12 populations are created, one for
each possible location. The populations work on their allocated
2x2x3 location one after the other until a population produces an
individual that solves the 2x2x3 cube. So the algorithm starts with
the selection of a 2x2x3 location. In fact, in the implementation,
populations are working on the same spatial edge of the cube,
whereas the cube itself is rotated by horizontal and vertical
rotations so that all 2x2x3 locations can be treated successively.
Then it is checked, whether the algorithm has already been

working on this location beforehand. If so, no new population is
created, but the already existing is loaded from the population
storage. So the algorithm does not have to develop the individuals
from initialization, but can work on with already advanced
individuals as proposed by CASTELLA [3]. On the other hand, if it
is the first run through this 2x2x3 location, a new population is
created and the algorithm proceeds. The following steps consist of
the operations presented in Section 3.2. The individuals are
optimized, the fitness becomes evaluated by the fitness function
and then the individuals are sorted by their fitness for the
selection step. After selection, the genetic operators crossover and
mutation are applied to the individuals. These operations are done
until the number of set generations is reached. Then the current
population is stored in the population storage so that it can be
loaded in the next run on this location. Besides, it is tested,
whether all 12 locations are processed. If not, the next location is
selected and the operations are repeated. If all locations are
processed, the solution containing the best fitness is selected and
tested, whether it can solve the 2x2x3 cube. If it cannot solve the
2x3x3 cube, the locations are processed again, but if it can solve
the 2x2x3 cube, the solve 2x2x3 cube phase stops and the second
phase is allowed to start.

3.3.2 Transform to two-generator phase
The second phase is the transform to two-generator phase. The
phase receives a solved 2x2x3 cube from the first phase and
manipulates the two remaining unsolved layers so that they can be
solved in the two-generator group. The phase starts by creating a
population that contains the potential solutions and then traverses
the same genetic operations as the first phase does. It
differentiates from the 2x2x3 operations by the fitness evaluation
that is handled according to the description of the second phase’s
fitness function in Section 3.2.2. The consecutive steps are
optimization, fitness evaluation, sorting, selection, crossover and
finally mutation. The steps are repeated until the set number of
generations is reached. Then it is tested, whether the cube entered
the two-generator. If it did not enter the two-generator, the
algorithm is repeated for the set number of generations. If the
cube entered the two-generator group, this phase is finished and
the last phase can start.

3.3.3 Solve two-generator phase
The last phase is the solve two-generator phase, where the two
remaining layers are rotated until the entire cube is totally
restored. The solve two-generator algorithm is similar to the
transform to two-generator algorithm. After creating a population,
the algorithm traverses the operations optimization, fitness
evaluation, sorting, selection, crossover and mutation until the
predetermined number of generations is reached. The difference to
the second phase lays in the fitness function, which evaluates the
individuals regarding the integrity until a maximum value of 48
according to Section 3.2.2. The processing of generations is
repeated until the two-generator is solved and the last phase stops.

3.3.4 Human strategy based Genetic Optimizer
algorithm
The entire composed Human strategy based Genetic Optimizer is
depicted in Figure 6. Three columns of workflows become
obvious that represent the just explained three phases of the
algorithm. Before each phase, the algorithm checks, whether the

Figure 6. HuGO! algorithm

Select next 2x2x3
location

Start

Create population

Population
storage

Optimize
sequence

Evaluate fitness

Sort individuals

Selection

Crossover

Mutation

Generations
reached?

1st generation
of 1st 2x2x3

run?

no

All 12 2x2x3
locations

processed?

2x2x3 solved?

no

no

no

yes

yes

yes

1st run through
this 2x2x3
location?

yes

no

Determine best
2x2x3 sequence

Create population

Optimize
sequence

Evaluate fitness

Sort individuals

Selection

Crossover

Mutation

Generations
reached?

In Two-
generator?

Create population

Optimize
sequence

Evaluate fitness

Sort individuals

Selection

Crossover

Mutation

Generations
reached?

Two-Generator
solved?

Stop

Solution

2x2x3 solved?

Two-generator
solved?

In Two-
generator?

Optimize
sequence

no

yes

yes

yes

yes

yes

yes

yes

no

no

no

no

no

no

Workflow

Dataflow

goal of the current phase is already reached and skips this phase if
possible. The resulting turn sequence of each phase is composed
to the solution sequence that restores the scrambled cube. Before
put out, the solution sequence is treated by an adapted
optimization operator to cut out redundant turns that occur during
composition. This operator repeats optimization until no further
abbreviation of the sequence is possible. For example, the process
F R B2 B2 R’ D needs two optimization steps for a satisfying
abbreviation. In the first run, the sequence is transformed to F R
R’ D by cutting out the redundant turns B2 and B2. In the second
run, the sequence is reduced to F D, because the newly succeeding
turns R and R’ are redundant as well. So the complete composed
algorithm starts with a scrambled cube, passes the phases solve
2x2x3 cube, transform to two-generator as well as solve two-
generator and stops when the cube is completely restored. The
resulting individual turn sequences are composed and in the end,
the optimized final solution can be displayed.

4. TEST RESULTS

4.1 Test Objectives and Resources
Three kinds of tests are performed to evaluate the characteristics
of HuGO!. First, integrity tests provide answers to the question,
whether the algorithm is able find a solution for all possible
scrambles of Rubik’s Cube. These extensive tests are also used to
investigate the interior properties and interdependencies between
the different phases to find appropriate parameter configurations.
Then performance tests are conducted that give information about
the efficiency of the algorithm. For this purpose, a measure called
complexity is introduced with the help of the program
CubeExplorer (Section 2.4.1) to classify a scrambled cube
according to the difficulty of restoring it. For each complexity
class, the algorithm’s performance is worked out. The third kind
of tests is the HuGO!-human competition that tests the
algorithm’s and human capabilities to solve the cube in the fewest
turns possible. On the basis of data, evaluated from real human
competition databases, a comparison is conducted that indicates
the human competitiveness of HuGO!. All tests are carried out on
comparable hardware, using Pentium 4 processors as well as one
gigabyte of main memory.

Despite the best settings seem hard to find, some recommen-
dations exist that suggest starting values for the search of good
parameter settings. A population size of 50 individuals is chosen
as suggested by DE JONG.[4]

cp

 Besides, an individual size of 30
genes demonstrates to be sufficient to solve each tested scramble.
Generation numbers vary from phase to phase due to different
goals. The basic configuration is 10, 50 and 50 generations for
phase 1 to 3. The 2x2x3 phase is assigned with fewer generations
than the other phases because the restoration of the 2x2x3 cube
shows to be the shortest part of the algorithm. If a phase is not
finished after the set generations, the generation number
automatically increases linearly for phase 1 and 2, as well as
progressively for phase 3, which indicates to be the longest part.
For crossover a standard probability of 0.6 is chosen as
suggested by GREFENSTETTE [6]. The mutation probability is
calculated by 1 /mp l= with l being the individual length. This
treatment is recommended by BÄCK

[1]
 and leads to a value of around

0.03. [2][12]

4.2 Integrity Tests
It is not possible to test, whether the algorithm can solve all

194.3 10⋅ different scrambles of the cube group in a brute force
way due to calculation capability restrictions. So, some scramble
sequences are chosen to be representative test scrambles. First, all
scrambles containing three turns are tested. This includes

38 5832= different turn sequences.
HuGO! provides a solution to all tested three-turns scrambles with
an average solution length of 2.945 turns. Random samples also
depict that the solutions are correct and restore the scrambled
cube. The distribution of turn numbers to the phases is 0.723 to
0.202 to 2.050 before optimization. Consequently, phase 3 is the
phase needing the most turns. Then a test with tripled generation
numbers is conducted including 30, 150 and 150 generations.
During this test, the average solution sequence length could be
reduced to 2.872 turns. Regarding the test results, it becomes clear
that a long solution for phase 2 results in an even longer solution
for phase 3. This is due to the cubie mixing to transform the cube
into the two-generator. The three initial turns to scramble the cube
only have a limited influence on the cube’s integrity so that it
remains in a relatively ordered state. Many turns in the second
phase, however, mix the cube further, even though the two-
generator is reached. As a consequence, the generations for phase
2 are increased to 300. Phase 1 and 3 are reduced to 10 and 50
again, because the preceding improvement can be referred to the
second phase’s increase of generations and in this way,
calculation speed is improved. The resulting average solution
length using these settings is about 2.870 turns with a distribution
of 0.724 to 0.193 to 1.992 turns before optimization.
Table 5 gives an overview about the average test results:

Table 5. Three-turns average results

Te
st

M
in

 g
en

er
at

io
ns

 2
x2

x3

M
in

 g
en

er
at

io
ns

 2
G

en
Tr

an
sf

or
m

M
in

 g
en

er
at

io
ns

 2
G

en
S

ol
ve

A
vg

 to
ta

l t
ur

ns

A
vg

 tu
rn

s
2x

2x
3

A
vg

 tu
rn

s
2G

en
Tr

an
sf

or
m

A
vg

 tu
rn

s
2G

en
S

ol
ve

A
vg

 to
ta

l g
en

er
at

io
ns

A
vg

 g
en

er
at

io
ns

 2
x2

x3

A
vg

 g
en

er
at

io
ns

 2
G

en
Tr

an
sf

or
m

A
vg

 g
en

er
at

io
ns

 2
G

en
S

ol
ve

A
vg

 to
ta

l t
im

e
m

s

1 10 50 50 2.945 0.723 0.202 2.050 2255 6 22 2227 12315
2 30 150 150 2.872 0.722 0.194 1.992 376 18 29 328 3141
3 10 300 50 2.870 0.724 0.193 1.992 506 6 39 462 3319

The derived parameter settings of the third test are the best found
configuration for the three-turns tests and are therefore used for an
integrity test of four turns. In this test, 6670 of the

48 104976= different scrambles are calculated. This corresponds
to 6.4% of all four-turns scrambles possible. The test shows that
HuGO! provides a solution for all considered scrambles. Table 6
gives an overview about the average results obtained:

Table 6. Four-turns average results

Te
st

M
in

 g
en

er
at

io
ns

 2
x2

x3

M
in

 g
en

er
at

io
ns

 2
G

en
Tr

an
sf

or
m

M
in

 g
en

er
at

io
ns

 2
G

en
S

ol
ve

A
vg

 to
ta

l t
ur

ns

A
vg

 tu
rn

s
2x

2x
3

A
vg

 tu
rn

s
2G

en
Tr

an
sf

or
m

A
vg

 tu
rn

s
2G

en
S

ol
ve

A
vg

 to
ta

l g
en

er
at

io
ns

A
vg

 g
en

er
at

io
ns

 2
x2

x3

A
vg

 g
en

er
at

io
ns

 2
G

en
Tr

an
sf

or
m

A
vg

 g
en

er
at

io
ns

 2
G

en
S

ol
ve

A
vg

 to
ta

l t
im

e
m

s

1 20 300 50 4.924 1.237 0.724 3.042 13362 15 675 12672 106178
The resulting average solution length is 4.924 turns with a
distribution of 1.237 to 0.724 to 3.042 turns in phase 1 to 3. 88%
of the scrambles are solved in a maximum of four turns. The
remaining 12% have an average solution length of 17.467 turns
with the longest sequence being about 39 turns. Similarly, 84% of
the scrambles are solved in a maximum of two seconds on the
used hardware, whereas the left 16% need an average computing
time of 11 minutes and 27 seconds, the longest duration being 11
hours, 29 minutes and 47 seconds. The exact overall time for the
four-turns test is 210 hours, 11 minutes and 53 seconds for all
6670 scrambles to become solved. Thereby the 16% solutions of
more than two seconds calculation time count for 99% of the
overall time. Consequently the few long solutions constitute to a
substantial part of the computing duration. One reason for outliers
was found as a consequence of a certain state during restoration of
the cube. If the complete cube is solved, except two opposite
corner cubies that need to be swapped, the algorithm can need
comparatively much time. This is due to the contrasting goals of
exploitation and exploration in the restoring process. For two
opposite corner cubies to become swapped, the almost solved
cube must be severely decomposed. With the 6670 four-turns
scrambles, the limit of calculation capacity for comprehensive
integrity tests is reached, whereas all test scrambles could be
solved. Scrambles of further lengths are tested as samples during
the performance tests.

4.3 Performance Tests
The performance tests investigate the efficiency of HuGO!. To
display the efficiency in terms of solution lengths, it is essential to
differentiate between different difficulties of scrambled cubes. A
slightly scrambled cube is likely to have a short solution while a
heavily scrambled one should need more turns to become solved.
To give a statement on the efficiency, the scrambled cube must be
considered. A feasible way to gain information on the scrambled
cube is to count the number of turns that led to the cube state.
However, the number of turns is limited in information content.
For example, a scramble sequence of 20 turns might need no turns
as solution, if after 10 turns, the first 10 turns are inverted and
repeated in reverse order. For this reason, a measure called
complexity is introduced that does not consider the scramble
sequence but orientates on the actual solution length. The actual
solution length can be computed with a program generating
optimal solutions to a given cube configuration. This is the case in
CubeExplorer (Section 2.4.1). So, for the performance tests, the
complexity of each cube configuration considered is derived from
CubeExplorer beforehand. The resulting optimal solution length
is used to develop classes. Since each cube should be solvable in
up to 20 turns (Section 2.4.2), complexity has a range of 1 to 20,

whereas any cube can be classified in one of the 20 complexity
classes.
For each of the 20 classes, three random scrambles are solved 10
times resulting in 600 test runs that evaluate the performance of
the algorithm. As generation numbers 200, 5000 and 50000 are
used. This exceeds the number of generations used for the
integrity tests, because in this case, the goal is to minimize the
solution lengths. Additionally, in contrast to the integrity tests, the
third phase is run with the highest amount of generations, because
the third phase produces the longest part solutions and therefore
has the highest potential for solution improvements as observed in
Section 4.2.
To illustrate the test results, boxplot diagrams are used. Boxplots
are an easy way to show differences in groups of data, i.e. the 20
classes. They indicate the degree of variability as well as
asymmetry in the data and identify outliers. So trends and the
limits of acceptable data are revealed. The graphical illustrations
are the smallest observation, the lower quartile (25% of data), the
median (50% of data), the higher quartile (75% of data) and the
largest observation. The range between the lower and the higher
quartile is called interquartile range (IQR). The smallest and
largest observations are at the ends of the whiskers, which have a
maximum size of 1.5 times the IQR. All data exceeding the
smallest or largest observations are outliers and marked in the
diagram as separate points.[24]

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

Figure 7. Complexity classes 1 to 10

Figure 7 illustrates the resulting boxplot diagram for the
complexity classes 1 to 10. Regarding complexities 1 to 3, the
algorithm provides the optimal solution, which is the complexity
measure itself, in each test. From complexity 4, the solutions
diverge in length so that an IQR appears. Up to complexity 7, the
IQRs lie between the optimal solution and around 20 turns above
it. Surprisingly, the median decreases in these complexities so that
in complexity 4, the median is about 22 turns, while in complexity
7, the median is only about 8 turns. The reason becomes obvious
when observing the raw data, which reveal that from complexity 4
to 7, the optimal solutions are increasingly reached. Since optimal
solutions are the shortest possible, the median consequently
becomes decreased. The same reason causes that in these cases no
lower whiskers are visible. For complexity 8 to 10, the IQR
reduces to around 8 turns, beginning at turn numbers 23, 29 and
33. So, from complexity 8, the solution lengths are heavily
increasing, while classes 8 and 9 sometimes still met optimal
solutions as smallest observation on the whisker or as outlier.

Tu
rn

s

Complexity

From complexity 10 on, optimal solutions are not reached any
more.

11 12 13 14 15 16 17 18 19 20
0

10

20

30

40

50

60

Figure 8. Complexity classes 11 to 20

Regarding the complexity classes 11 to 20, as illustrated in Figure
8, the needed numbers of turns are relatively constant in contrast
to the complexities 1 to 10. The IQRs lie between around 33 turns
and 44 turns in all classes. While no optimal solutions are reached
any more, some outliers identify turn number of up to 57 turns.
To summarize, the performance tests reveal four distinct
categories of complexity classes. The first category goes from
complexity 1 to 3, where HuGO! reaches optimal solutions. In
classes 4 to 7, optimal solutions are often reached, while a heavy
variation occurs. From complexities 8 to 10, HuGO! loses
capability of calculating the optimal solution, while solution
sequences are rigorously lengthened. The last category goes from
complexity class 11 to 20 and is characterized by a relatively
equal amount of around 38 turns on average.

4.4 HuGO!-Human Competition
In the HuGO!-Human competition, the human competitiveness of
the developed genetic algorithm is tested. Therefore, a new
benchmark that represents the human performance is introduced.
To obtain information on human capabilities, the databases of
DAN HARRIS' and PER KRISTEN FREDLUND

[7]
's fewest moves

challenge was evaluated. The fewest moves challenge is the
leading provider of contests that aim to solve the cube using the
fewest turns possible. Contestants meet regularly using different
human strategies without technical support to compete in finding
the best solution. The resulting data was used to create a
benchmark of human capability that can now be compared to the
results of HuGO!. This is especially of interest because the genetic
algorithm incorporates a human strategy as well.3

3 From a philosophical point of view, the competition might be

called an evolutionary duel between the creator and its creation.
The creator’s capability evolved about millions of years while
the creation’s performance is shaped in an evolutionary time
lapse.

 Arbitrary
challenges of the fewest moves challenge, i.e. scrambles, are
chosen and a solution is calculated by HuGO!. The algorithm’s
result is compared to the human best solution and the human
average solution of a certain scramble, whereas the human results
have a universe of one to seven solutions. The competition is

repeated for six times so that possible outliers would be exposed.
The used parameter settings are 200, 5000 and 50000 generations
for phase 1 to phase 3 as set for the performance tests of Section
4.3. Figure 9 illustrates the results of the competition, while Table
7 provides background information on the genetic algorithm:

0

10

20

30

40

50

60

#187 #188 #195 #206 #210 #219

Tu
rn

s

Fewest moves challenge

Optimal solution

Human best solution

Human average
solution
HuGO! Total turns

Figure 9. HuGO!-human comparison

Table 7. HuGO!-human comparison background information

Te
st

Fe
w

es
t m

ov
e

ch
al

le
ng

e

O
pt

im
al

 s
ol

ut
io

n

H
um

an
 b

es
t s

ol
ut

io
n

H
um

an
 a

ve
ra

ge
 s

ol
ut

io
n

H
uG

O
! t

ot
al

 tu
rn

s

To
ta

l g
en

er
at

io
ns

To
ta

l t
im

e

G
en

er
at

io
ns

 2
x2

x3

Tu
rn

s
2x

2x
3

G
en

er
at

io
ns

 2
G

en
Tr

an
sf

or
m

Tu
rn

s
2G

en
Tr

an
so

fo
rm

G
en

er
at

io
ns

 2
G

en
S

ol
ve

Tu
rn

s
2G

en
S

ol
ve

1 #187 16 44 44 38 1277400 02:12:42 2400 9 175000 8 1100000 21
2 #188 17 55 55 31 255800 00:26:09 800 10 5000 4 250000 17
3 #195 18 33 37.250 43 1225400 02:04:33 400 16 175000 9 1050000 18
4 #206 18 31 36 41 955400 01:18:36 400 12 5000 6 950000 23
5 #210 17 24 31 31 620200 00:50:26 200 7 20000 6 600000 18
6 #219 18 34 40 34 1131200 01:32:08 1200 11 280000 6 850000 17

Avg 17.333 36.833 40.542 36.333 910900 01:24:06 900 10.833 110000 6.500 800000 19.000
On the horizontal axis of Figure 9, there are the indices of the
human challenges that provide the basis of the comparison. On
the vertical axis the needed turns of HuGO! as well as the human
best solution and the human average solution are recorded. As
additional benchmark, the optimal solution calculated by
CubeExplorer is displayed. Regarding the human best solution,
beside one draw, human capability wins three times, while HuGO!
wins two times. Concerning the human average solution, beside
one draw, human capability wins two times and HuGO! wins
three times. From Table 7, the average solution lengths become
obvious. HuGO! has the best average with 36.333 turns per
solution. Then the human best solution and the human average
solution follow with values of 36.833 and 40.542.
The comparison between the algorithm's solutions and human
solutions shows that the algorithm, using the selected settings and
human capability are quite similar in performance. There are
marginal advantages for HuGO! that cannot be generalized to
determine an obvious winner. Consequently, HuGO! can be
considered as human-competitive. However, compared to the
optimal solution, there is still a lot of potential for performance
enhancement. Keeping in mind that the algorithm will improve
solutions having allowance for higher generation numbers, it
becomes clear that human strategies can have a high significance

#187: B F2 D2 L B2 D' L B R2 U' B' F' L B2 L' R B' U2 F B' R D R' D' F' L D' U L'
#188: D L' R D' U R F D2 R L' F2 B2 L' U' F2 D U B U B' L2 F U R U2 L' B2 U F' D'
#195: F R' F2 L' D' R' D' R F' L2 R' B2 L2 R' F2 U' D' R' D R F' B2 D B2 F' L2 R2 U' B' D2
#206: D' F2 B' L R' U F U' D2 B R2 L2 D' B2 F R2 L2 D U2 B2 L2 D R D2 U L D R2 U' R'
#210: L' F L B' L' B' R' L' D' R L B2 R' D2 F2 R' D2 B R' L D' R2 U B' U' B R L' B2 L'
#219: D' L2 R' F' R B2 R2 F B' R D2 R D B' L' R U2 D L' R2 U D B L' F L2 U D B2 L

Tu
rn

s

Complexity

for the implementation of evolutionary processes and vice versa.
If the human practice sticks to certain optimization ideas,
evolutionary processes can imitate human behavior and improve
optimization performance.

5. CONCLUSION
The Human strategy based Genetic Optimizer is a collaboration of
human proceeding and genetic optimization techniques. It is
applied to the restoration problem of Rubik’s Cube and
successfully solves this task.
The foundation of the developed algorithm is built up in the
introduction of the cube. The structure analysis of the applied
problem instance provides a mathematically reasoned usage of the
human two-generator approach for complexity reduction. The
concepts of the used genetic operators are explained on the other
hand. They provide the machine intelligence part that is guided by
the human method after reception.
The introduction of HuGO! is not only theoretically reasoned but
also empirically. Tests to solve the cube using a plain genetic
algorithm show the inappropriateness of this optimization
technique to the chosen discrete optimization problem. Only when
a human strategy was implemented that splits up the process to
distinct intermediate stages, the algorithm’s solving capability
became enabled. The strategy consists of three phases that allow
the cube to be gradually solved. In the first phase, a 2x2x3
subcube is completed in one of the 12 possible locations. The
second phase transforms the cube to the two-generator subgroup,
which allows the cube to be solved by just turning the two
adjacent layers that are not solved yet. In the third phase these two
layers are turned until the entire 3x3x3 cube is completely solved.
For the realization of the human strategy, several obstacles in
solution representation, additional operators and fitness function
had to be overcome. Finding of an appropriate fitness function
will also be the most demanding task regarding other possible
problem instances. The reasons to additionally use a human
strategy and the corresponding overhead must be weighted to
decide about an introduction.
The tests documented for this work are divided up into three
categories. Integrity tests show that the algorithm is likely to find
a solution to every input. For this assumption 5832 three-turns
scrambles and 6670 four-turns scrambles were tested.
Performance tests reveal four distinct efficiency characteristics
depending on the introduced complexity measure. From
complexity 1 to 3, HuGO! reaches optimal solutions. From 4 to 7,
a heavy variation in solution lengths occurs. From 8 to 10, HuGO!
loses the capability of optimal solutions and in the last category
from 11 to 20, a relatively equal amount of around 38 turns esta-
blishes itself. Consequently, the algorithm performs well for lower
complexities, while it shows disadvantages in the handling of
complex scrambles. The final competition between evolution in a
time lapse, the genetic algorithm, and the product of real
evolution, the human capability, demonstrates the human-
competitiveness of HuGO! in a draw on the given parameter
setup.
An additional idea for algorithm improvement is the variation of
the solution representation to test binary strings or exclude half
turns to reduce the search space. Concerning the string
optimization, solutions could be browsed for entire redundant turn
sequences that can be cut out. From a more distanced viewpoint,

other evolutionary or non-evolutionary optimization techniques
could be tested for applicability regarding the covered or other
problems with human intrusion.
To summarize, this work vividly shows, how a human strategy
can be incorporated in a genetic algorithm. The goal was not to
develop an outstanding fast or efficient algorithm, but to
demonstrate the advantageous adaptation of genetic algorithms to
human induced strategies. While an external strategy guides the
algorithm, the evolutionary process produces solutions no human
had thought of. Application fields of this technique could be,
among others, evolutionary knowledge management with
integration of knowledge from different sources, collaborative
human-computer interaction and fields that facilitate user-centered
design to integrate user preferences into problem solving
processes. All in all, it must be stated that human- and artificial
intelligence can complement each other, producing cooperative
results and improving performance.

6. REFERENCES
[1] Bäck, T.: Optimal mutation rates in genetic search. In:

Proceedings of the 5th

[2] Bäck, T.: Mutation parameters. In: The Handbook of
Evolutionary Computation. Eds.: T. Bäck, D. Fogel, Z.
Michalewicz. Bristol 2002c, pp. E1.2:1-E1.2:7.

 International Conference on Genetic
Algorithms. (1993), pp. 2-8.

[3] Castella, C.: Rubik's Cube, méthodes pour tous. 2005.
http://www.francocube.com. Call date 2009-01-20.

[4] De Jong, K.: An analysis of the behaviour of a class of
genetic adaptive systems

[5] Frey Jr., A.; Singmaster, D.: Handbook of Cubik Math. New
Jersey 1982.

. PhD Thesis, University of
Michigan, Michigan 1975.

[6] Grefenstette, J.: Optimization of control parameters for
genetic algorithms. In: IEEE Transactions on Systems, Man,
and Cybernetics. 16 (1986) 1, pp. 122-128.

[7] Harris, D.; Fredlund, P.: Fewest Moves Challenge. 2009.
http://fmc.mustcube.net/. Call date 2009-01-18.

[8] Herdy, M.; Patone, G.: Evolution Strategy in Action – 10
ES-Demonstrations. 1994. http://www.bionik.tu-
berlin.de/user/giani/esdemos/evo.html. Call date 2009-02-23.

[9] Jumbo Spiele GmbH: Geschichte des Zauberwürfels. 2008.
http://www.zauberwuerfel.de/history/. Call date 2009-02-28.

[10] Kociemba, H.: CubeExplorer. 2009.
http://kociemba.org/cube.htm. Call date 2009-02-21.

[11] Kunkle, D.; Cooperman, G.: Twenty-six moves suffice for
Rubik’s Cube. In: Proceedings of the 2007 International
Symposium on Symbolic and Algebraic Computation,
(2007), pp. 235-242.

[12] Mühlenbein, H.: How genetic algorithms really work. I.
Mutation and hillclimbing. In: Proceedings of the 2nd

[13] Palmer, J.: Cube routes. In: New Scientist. (2008) 2668, pp.
40-43.

International Conference on Parallel Problem Solving from
Nature. (1992), pp. 15-25.

[14] Physorg.com: Northeastern University researchers solve
Rubik's Cube in 26 moves. 2008.
http://www.physorg.com/news99843195.html. Call date
2009-02-28.

[15] Radu, S.: New Upper Bounds on Rubik’s cube. 2007
http://www.risc.uni-linz.ac.at/publications/download/risc_31
22/uppernew3.ps. Call date 2009-02-22.

[16] Reid, M. Superflip requires 20 face turns

[17] Reid, M. New upper bounds. 1995b.
http://www.math.rwth-aachen.de/~Martin.Schoenert/Cube-L
overs/michael_reid__new_upper_bounds.html. Call date
2009-02-22.

. 1995a.
http://www.math.rwth-aachen.de/~Martin.Schoenert/Cube-L
overs/michael_reid__superflip_requires_20_face_turns.html.
Call date 2009-02-22.

[18] Rokicki, T.: Twenty-Five Moves Suffice for Rubik’s Cube.
2008a. http://arxiv.org/abs/0803.3435. Call date 2009-02-21.

[19] Rokicki, T.: Twenty-Three Moves Suffice. 2008b.
http://cubezzz.homelinux.org/drupal/?q=node/view/117. Call
date 2009-02-21.

[20] Rokicki, T.: Twenty-Two Moves Suffice. 2008c.
http://cubezzz.homelinux.org/drupal/?q=node/view/121. Call
date 2009-02-21.

[21] Sarma, J.; De Jong, K.: Generation gap methods. In: The
Handbook of Evolutionary Computation. Eds.: T. Bäck, D.
Fogel, Z. Michalewicz. Bristol 2002, pp. C2.7:1-C2.7:5.

[22] Seven Towns Ltd.: You can do the Rubik’s Cube. 2008.
http://www.youcandothecube.com. Call date 2009-01-13.

[23] Singmaster, D.: Notes on Rubik’s Magic Cube. New Jersey
1981.

[24] The MathWorks Inc.: boxplot. 2009.
http://www.mathworks.com/access/helpdesk/help/toolbox/sta
ts/index.html?/access/helpdesk/help/toolbox/stats/boxplot.ht
ml. Call date 2009-02-27.

[25] Thistlethwaite, M.: Thistlethwaites’s 52-move algorithm.
1981. http://www.geocities.com/jaapsch/puzzles/thistle.htm.
Call date 2009-02-21.

