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ABSTRACT 
This work outlines the incorporation of human strategies in a 
genetic algorithm. Human competence and machine intelligence 
are merged creating symbiotic human-machine intelligence, which 
is called HuGO!, the Human strategy based Genetic Optimizer. 
HuGO! emerged from and is applied to the restoration problem of 
Rubik’s Cube and successfully solves this task. A competition 
between HuGO! and human Rubik’s Cube contestants 
demonstrates that the incorporated human strategies improved the 
genetic solver’s performance to become human-competitive. 

1. INTRODUCTION 
The simulation of human intelligence is a central goal of artificial 
intelligence. Genetic algorithms are admittedly nature inspired 
optimization techniques, however basically ignoring human 
problem solving strategies. This work illustrates the incorporation 
of human strategies in a genetic algorithm and therefore 
introduces a method of collaboration and knowledge exchange. 
Human competence and machine intelligence are merged creating 
symbiotic human-machine intelligence, which is called HuGO!, 
the Human strategy based Genetic Optimizer. 
As use case, a both simply working and complex mathematics 
invoking application is analyzed. Rubik’s Cube is widely known 
and allows a vivid problem embodiment. This three-dimensional 
puzzle has undergone comprehensive research in the past. The 
results are used to develop a thoroughly formal problem 
description and solve the task of exploiting human knowledge. 
There are five distinct sections. Section 2 introduces Rubik’s 
Cube. Beginning with the historical roots, the cube’s physical 
structure is explained and specific terminology is introduced to 
allow clear communication throughout the work. The section 
comprises an insight into the mathematical group theory and treats 
certain subgroups of the cube that are important to realize a 
human strategy. Belonging to the survey of related work are 
scientific achievements regarding optimal solution sequences for a 
scrambled cube. Corresponding work on upper and lower bounds 
for necessary turn numbers is presented completed with an 
overview on existing evolutionary solving approaches. 
From the introduced fundamentals of Rubik’s Cube, Section 3 de-
rives the idea of HuGO! and describes the developed algorithm in 
detail. 

Section 4 comprises tests on the introduced algorithm. First, 
integrity tests provide information on the correctness of the 
results. Then performance tests demonstrate the efficiency of 
HuGO!. The dramaturgical climax is reached with a comparison 
of the algorithm’s and real human capabilities to solve the cube 
that indicates the human competitiveness of HuGO!. 

The work is brought to a close with the conclusion of Section 5 
where results are summarized, problems are reflected and an 
outlook is given including suggestions for further research as well 
as potential application areas. 

2. RUBIK’S CUBE 

2.1 History 
ERNO RUBIK, a Hungarian architect and professor at the 
University of Budapest presented the first prototype of Rubik's 
Cube in 1974. RUBIK developed the cube as a teaching aid for 
recognizing three-dimensional spatial relationships. Already in the 
beginnings of its history, the cube became interesting for scientific 
research. The first significant public attention outside of Hungary 
was caused by the mathematician DAVID SINGMASTER. He 
conducted analyzes of the cube mathematics, which led to an 
article in Scientific American by DOUGLAS HOFSTADTER

[9]
 in 

1979.  Today, Rubik’s Cube as discrete optimization problem is 
a testing ground for scientific questions. It allows researchers 
from different disciplines to compare their methods on a single, 
well-known and vivid problem. Popular application areas are 
mathematical group theory (Section 2.3) or search and 
enumeration, incorporating disciplines like artificial 
intelligence.[14] 

2.2 Structure and terminology 
Rubik’s Cube consists of 26 smaller pieces, which are called 
cubies (see Figure 1). There are three different types of cubies. 
Eight corner cubies are located in the corners of the cube. They 
have three visible surfaces that are called facelets. 12 cubies have 
two facelets. They fill in the space along an edge between two 
corner cubies and are therefore called edge cubies. The third type 
of cubie only has one facelet. These cubies are located in the 
center of each side (face) of the cube and are consequently called 
center cubies. There are six center cubies whose facelet colors 
determine the cube face.[22] In the standard Rubik’s Cube the 



possible colors are white, yellow, orange, red, green and blue, 
whereas distinct center cubie color pairs are always on opposite 
faces: white and yellow, orange and red as well as green and 
blue.[23] Each of the 6 faces of the entire cube is made up of nine 
facelets. Thus there are 6 9 54⋅ =  facelets on the cube. 

corner cubie

edge cubiecenter cubie

 
Figure 1. Structure of Rubik’s Cube 

By rotating different faces of the cube, the cubies can be moved. 
Each cubie of the turned face, except the center cubie, moves to a 
location vacated by another cubie. These locations are called 
cubicles. No matter how faces are rotated, corner cubies always 
move from one corner cubicle to another corner cubicle. Edge 
cubies move from one edge cubicle to another edge cubicle. 
Center cubies have a fixed location relative to the other center 
cubies. They only can be spun in place.[5] 
Besides, the center cubie of each face determines the only color to 
which this face can be restored. Therefore it is possible to define 
the only cubicle in which each cubie can be placed to restore the 
cube. For example, if the two facelets of an edge cubie are red and 
yellow, then that cubie must be placed in the unique edge cubicle 
between the red center cubicle and the yellow center cubicle (see 
Figure 1). Furthermore, the cubie must be placed in that cubicle 
so that its red facelet is next to the red center cubie and the yellow 
facelet is next to the yellow center cubie. Similarly, it is possible 
to determine the corresponding corner cubicles of each corner 
cubie, except that there are 3 facelets to consider. 
Since different Rubik’s Cube manufacturers use different colors, 
each of the faces is named based on its position relative to the 
person holding the cube.[23] The six faces have the names Front, 
Up, Right, Back, Down and Left. These faces are designated by 
their initials: 

Table 1. Faces abbreviations 
Face Abbreviation
Front F
Up U
Right R
Back B
Down D  

On each rotation exactly 20 facelets are moved. Rotations are 
described by the face initials (see Table 1) 

F, U, R, B, D and L. 
A single initial indicates a clockwise quarter turn of the 
corresponding face while viewing the face from that side of the 
cube. Figure 2 provides a graphical demonstration of all possible 
clockwise quarter turns. A half turn of any face is two quarter 
turns of that face. The following notation is used: 

F2, U2, R2, B2, D2 and L2. 
Counter-clockwise quarter turns are denoted by 

F’, U’, R’, B’, D’ and L’.1[5] 
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Figure 2. Clockwise face turns 

To describe a sequence of turns, the turns are listed from left to 
right. For example, FR’ means apply F first and then apply R’. 
Any sequence of turns is called a process.[23] 

2.3 Group Theory 
Each process on the cube generates a permutation of the cubies. 
Additionally, if one process is followed by another, the processes 
form a new process that generates another permutation. This is the 
first requirement for a group. Group theory is the mathematical 
foundation of the study of symmetry. The concept has many 
applications in art, physics, chemistry and biology. It is a way to 
study the solvability of polynomial equations and the structure of 
geometric and topological objects. So group theory is one of the 
basic subjects of mathematics. On Rubik’s Cube, the processes 
and permutations form groups. Since they are vividly embodied 
on the cube, it is often used as a concrete example of group theory 
concepts.[5] 

                                                                 
1  The presented notations X, X2 and X’ are type-friendly 

modifications of the original intentions X , 2X  and 
1X− , 

whereas the exponent denotes direction and number of turns. 



There are several subgroups of the cube group like the two-
squares group, the slice group or the two-generator group.2

194.3 10⋅

 The 
two-generator is an important group in the progress of this work 
and shall therefore be explained. The cube group is the group of 
all states that are accessible by using all faces of the cube for 
rotations. The total number of cube permutations, which denotes 
the order of the cube group, is . The two-generator, 
however, is the group of all states that can be accessed by just 
turning two adjacent faces of the cube, for example, U and B. 
Significant characteristics of the two-generator are that edge 
cubies cannot be changed in orientation, i.e. flips are not possible, 
and that corner cubies are incapable of ceteris paribus swapping 
two corner cubies. The total number of permutations and therefore 
the order of the two-generator group is 73,483,200 , which is 
significantly lower than the order of the cube group. 

2.4 Survey of Related Work 
2.4.1 An optimal Solution 
In 1992, the mathematician HERBERT KOCIEMBA

[10]

 developed 
CubeExplorer, a program incorporating an algorithm that, after 
some improvements, is expected to calculate a shortest solution to 
any scrambled cube provided.  Therefore the tools of group 
theory were used, which can simplify the calculations by defining 
groups of different cube configurations that share mathematical 
properties. 

2.4.2 An upper bound for the worst case 
One of the most fundamental questions about Rubik’s Cube is the 
question after the number of turns necessary to solve it in the 
worst case. Even after more than 30 years since its introduction, 
the answer to this question remains unknown. 
However, several approaches have been used to find an upper 
bound for the worst case. These approaches are gradually shifting 
the upper bound on the diameter of the cube group closer towards 
the expected number of 20 turns. Combined with the estimates of 
a lower bound, which has been shown to be at least 20 turns[16] 
in a configuration called superflip, this allows to determine the 
real number. Basically, most upper bound approaches are based 
on defining a suitable way-station configuration and then 
optimally solving it. After working out how many turns it takes at 
least to get to the way station from any random configuration, the 
sequence lengths of both ways having the way station in between 
are summed up to receive the solution for an upper bound. Rather 
than using a single configuration, it is often more efficient to 
exploit symmetries when dealing with several way stations in a 
single calculation. 
MORWEN THISTLEWAITE

[25]

 presented an algorithm traversing four 
specifically defined groups that requires a maximum of 52 turns in 
1981.  KOCIEMBA 2.4.1’s algorithm (Section ) is actually an 
improvement of THISTLEWAITE’s algorithm and was used by 
MICHAEL REID [17] to show that 29 turns suffice to solve the cube.  
In 2007, SILVIU RADU reduced the upper bound to 27 by 
generalizing REID [15]’s method.  In the same year, DANIEL 
KUNKLE and GENE COOPERMAN 

                                                                 
2  For details on the two-squares group and the slice group cf. 

could reduce the upper bound 

[5], 
p. 112 ff. 

even further to 26 turns.[11] They devised a way to construct 1.5 
trillion groups called cosets of about 660,000 configurations each. 
Regarding symmetries, they identified 15,000 unique 
configurations in each coset and determined the maximum 
distance to the solved cube. Besides, they introduced a method to 
transform all coset configurations into one of the 15,000. So 
solving just one of the 15,000 configurations equals solving the 
whole coset. The calculations required seven terabytes of 
computer memory and 8,000 hours processing time before the 
upper bound could be lowered down to 26. In 2008, TOMAS 
ROKICKI

[18]
 devised a computational proof that all unsolved cubes 

can be solved in 25 turns or fewer.  Using the same algorithm, 
but more computational capacity, this was later reduced to 23 
turns.[19] In August 2008, ROKICKI

[20]

 announced that calculations 
are brought forward to the current best found upper bound of 22 
turns.  
ROKICKI’s algorithm works by dividing up the problem into two 
billion cosets, each containing around 20 billion related 
configurations. The program then works through one coset at a 
time, building a list of the turns that bring each of its 20 billion 
configurations into one of those in KOCIEMBA's subgroup used in 
CubeExplorer, until all of the configurations in the coset have 
been solved at least once. The longest sequence found by the 
program is the upper bound for the whole coset. The calculations 
are highly capacity-intensive and were conducted on a computer 
grid of Sony Pictures Imageworks. Theoretically, on even faster 
computers, ROKICKI could try to reach lower worst case 
boundaries with his algorithm. These computers like Blue gene/L, 
based at the Lawrence Livermore National Laboratory in 
California, however, are not affordable to ROKICKI

[13]
 so that at the 

present time, he is trying to improve the algorithm. [18] 

2.4.3 Evolutionary approaches 
In 1994, MICHAEL HERDY and GIANNINO PATONE

[8]
 solved the cube 

using evolution strategies.  Therefore, they introduced a quality 
function for the evaluation of the cube state. The quality function 
to be minimized consists of three parts, Q1, Q2 and Q3, combined 
by addition. Q1 is increased for a wrong facelet while Q2 and Q3 
penalize wrong positioned edge- and corner cubies. The 10 
different mutations are realized using swaps and turns of 
individual cubies. On the one hand this allows a rapid solution 
search because dependencies are minimized. But on the other 
hand the results will be fairly long solution sequences, because 
accomplishing a single swap already incorporates around 10 cube 
rotations. Since HuGO! is supposed to find short solutions, 
HERDY and PATONE’s approach is inappropriate for this work’s 
goals. Admittedly, CYRIL CASTELLA

[3]

 built an evolutionary 
approach to solve the cube, aiming short solution sequences, that 
is much more convenient to be exploited.  The program uses a 
genetic algorithm, which is based on a one-point crossover, 
omitting a selection operator and mating pool. Unfortunately, the 
approach suffers from missing integrity as yet so that no 
performance comparison could be conducted. More precisely, the 
solution output seems to fail if the cube is already in the two-
generator group. However, it incorporates some useful functions 
that are enhanced and applied by HuGO! (Section 3.2). 



3. HUGO! 

3.1 Boundary Conditions 
The task to solve Rubik’s Cube can be considered as a very 
special optimization task. In ordinary optimization problems that 
are appropriate to be solved by genetic algorithms, the goal is to 
reach a comparatively good solution after a certain termination 
condition is fulfilled. In contrast to this, the cube optimization 
process can only be finished, if all facelets are fully restored, i.e. 
the cube is solved. However, a cube solving turn sequence can be 
differentiated in fitness by means of turn numbers. Characterizing, 
the cube optimization is a discrete optimization problem. Discrete 
optimization, also called integer programming, can be described 
by the usage of restricted variables in the objective function as 
being exclusively receptive for discrete values. So the examined 
problem is of discrete nature, because the determinants of the 
cube fitness are face turns, which cannot be conducted partially. 

The most obvious way to solve the cube by evolutionary means is 
to use a trivial fitness function that compares the scrambled cube 
to the solved one and counts the number of consistent facelets. 
Tests showed that this approach turns out to be inefficient. While 
the algorithm quickly reaches around 70% consistent facelets, 
further calculations only provide marginal improvements. This is 
due to 194.3 10⋅  interdependent permutations as possible states of 
the cube group, which lead to an enormously jagged fitness 
landscape containing lots of local optima. Consequently, the 
algorithm repeatedly becomes trapped in local optima, extending 
calculation time tremendously. 

The integration of a common human solving strategy for Rubik’s 
Cube, called two-generator method, provides a solution to this 
problem. The two-generator method is inefficient for fast solution 
generating, but often used by contestants of fewest moves 
challenges. This method restores a scrambled cube by 
transforming it into the two-generator subgroup first and then 
solving the cube in this group. As described in Section 2.3, the 
two-generator subgroup encompasses a number of different states 
that is only about 73,483,200 and therefore much smaller than the 
entire cube group. Thus, it is promising to split up the cube-
solving search algorithm into part solutions. 

In the first phase a 2x2x3 subcube, i.e. the entire cube except two 
adjacent layers, is solved in one of the twelve possible locations. 
The two remaining layers are left scrambled. Since not all cube 
states that only have two adjacent layers unsolved are 
automatically in the two-generator, the second phase transforms 
the cube into this group. For this purpose tests are necessary that 
check, whether the edge cubie orientations and corner cubie 
permutations stick to the states achievable in the two-generator. In 
the third phase, the remaining two layers are turned until the 
entire 3x3x3 cube is completely restored. The three phases of the 
algorithm realizing this human strategy are three independent 
algorithms that are based on the common canonical genetic 
algorithm and share a lot of analogies. The individual 
components, as well as their interaction in the composed 
workflow are explained in detail in the succeeding sections. 

3.2 Components 
3.2.1 Solution Representation 
According to these suggestions, the discrete characteristics of 
Rubik’s Cube as optimization process allow a rather direct 
incorporation of the search space into the solution representation. 
All three phases of the algorithm have in common that instead of 
binary strings, each gene of a solution contains a number ranging 
from 0 to 17 representing one of the 18 potential cube turns 
introduced in Section 2.2.[3] Tab. 4.1 depicts the exact allocations 
used: 

Table 2. Turn allocations 

F 0 F2 6 F’ 12
U 1 U2 7 U’ 13
R 2 R2 8 R’ 14
B 3 B2 9 B’ 15
D 4 D2 10 D’ 16
L 5 L2 11 L’ 17

Clockwise quarter turns Half turns Counter-clockwise quarter turns

 
It becomes obvious that the search space equals the representation 
space, except that the growth function maps numbers to the literal 
turn abbreviations. In this way genes do not need to be merged to 
decision variables that they already are. Fig. 4.4 illustrates an 
example of the resulting genotypical solution representation: 

5 1 8 16 11 3 13 0 4 1 12 1 14 10

gene allele

individual (chromosome)

 
Figure 3. A coded representation of an individual 

The alleles of the solution compose a process as defined in 
Section 2.2. Equally, substrings of the process can be seen as 
potential solutions. If l  determines the length of an individual, 
then this solution representation leads to a search space of 18l  
possibilities in every phase. Section 3.2.2 describes in detail how 
evaluation of the solution representation is proceeded. Deviating 
approaches regarding turn allocations excluding half turns or 
using binary representations are still to be compared in further 
investigations. 

3.2.2 Fitness Function 
To successfully apply a GA to a given optimization problem, an 
adequate representation of the problem must be developed. In the 
case of Rubik’s Cube, the scrambled cube represents the 
environment and the solution string represents the individual that 
is customized to fit to the environment. The fitness function 
assigns a fitness value to the individual judging the quality of 
adaptation, i.e. ability to solve the cube. To test this ability, the 
particular solution operates on the scrambled cube and the 
resulting cube undergoes evaluations that determine the 
individual’s fitness. It becomes clear that the implementation of 
the cube has to fulfill two main capabilities. First it must be 
receptive to the individual’s modifications, i.e. turns. Then the 



resulting cubes must be distinguishable in quality, respecting the 
number of turns applied. 
The cube representation, as introduced in Section 2.2, allows a 
color independent modification and identification of individual 
cubies and therefore supports the two mentioned conditions. To 
simplify implementation, the facelets of the cubies are labeled 
with integer numbers.[3] Since there are 54 facelets on the cube, 
the numbers from 0 to 53 are used to identify them. Allocated row 
by row on the faces in the order F, U, R, B, D, L, the entire cube 
is encompassed. Fig. 4.5 shows the internal representation of the 
cube: 
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Figure 4. Internal representation of Rubik’s Cube 

During evaluation, the individuals are traversed successively from 
gene to gene (see Figure 3) while on each step the substring's 
(first to current gene) fitness is determined. The best fitness and 
the step number, i.e. number of turns, are stored. The overall 
fitness of the potential solution is determined by calculating the 
fitness and subtracting the number of needed steps. The fitness 
describes the progress of restoring the cube. The counted number 
of steps allows to differentiate between longer and shorter turn 
sequences of cube states of the same fitness. The distinct 
determination of the best fitness is different in each algorithm 
phase due to different goals of the phases.[3] 
In the first phase, the solve 2x2x3 cube phase, the fitness is 
determined by counting the number of facelet pairs of the same 
color on the 2x2x3 surface. Particularly, the pairs are corner-edge 
pairs and center-edge pairs as displayed in Figure 5: 

corner-edge pairs center-edge pairs  
Figure 5. Corner-edge pairs and center-edge pairs on the 

2x2x3 surface 
A corner-edge pair is the conformance of the corner cubie 
facelets and the adjacent edge cubie facelets of a corner cubie and 
an edge cubie. Thus there exist six corner-edge pairs on the 2x2x3 

surface. A center-edge pair is the conformance of a center cubie 
facelet and an edge cubie facelet. There are 10 center-edge pairs 
on the 2x2x3 surface, adding up to a total number of 16 pairs that 
constitute the maximum fitness value when the entire 2x2x3 
subcube is solved. If the two cubes of Figure 5 are placed one 
upon the other, it becomes obvious that the pair technique 
encompasses the entire 2x2x3 surface and no facelet is ignored.[3] 
In the second phase, the transformation to two-generator phase, 
fitness is determined by the number of corner-edge pairs and 
center-edge pairs as in the first phase, as well as the fact, whether 
the cube is in the two-generator group. The check for the pairs is 
done because in this phase, the cube is allowed to temporary leave 
the solved 2x2x3 state. Only in this way it is possible to 
manipulate the two not yet solved layers beyond the turns allowed 
in the two-generator to enter the two-generator subgroup. So the 
maximum fitness value achievable is 17 and signifies that the 
cube is successfully transformed to the two-generator group. To 
determine, whether the cube is in the two-generator, the cubies 
that are in the edge cubicles and in the corner cubicles of the not 
yet solved layers are requested. The center cubies are not directly 
involved in this transformation process because their position is 
fixed a priori. 
The third phase, the solve two-generator phase, only allows turns 
of the two still scrambled sides, so that the cube remains in the 
two-generator subgroup. 
This phase performs the integrity determination, which equals the 
fitness value, for the entire cube surface. Integrity is always at 
least 16 because the already solved 2x2x3 cube stays unaffected. 
The maximum value the integrity can achieve is 48 pairs, which 
means that the two-generator is solved and the cube is completely 
restored. 

3.2.3 Selection 
As selection operator, stochastic universal sampling is used to 
propagate individuals to the mating pool. The selection operator 
incorporates two selection points to reduce spread. The best 
solution is maintained as elite. Elitist strategies link the lifetime of 
individuals to their fitness. They are techniques to keep good 
solutions in the population for longer than one generation. The 
use turns search more exploitative rather than explorative. Elitist 
strategies are guessed to be necessary when genetic algorithms are 
used as function optimizers and the goal is to find a global 
optimal solution as it is the case in the cube optimization process 
regarding integrity restoration.[21] 

3.2.4 Crossover 
The genetic operations in the reproduction stadium are slightly 
adapted standard operators. The crossover operator is realized by 
a uniform crossover, eliminating positional bias. Table 3 depicts 
an exemplary application of the uniform crossover operator during 
the algorithm execution with two children. As explained in 
Section 3.2.1 and shown in Figure 3, the gene values are, in 
contrast to binary values, composed of numbers 0 to 17: 
 
 
 
 



Table 3. Application of uniform crossover during algorithm 
execution 

Individuals 1 and 2
17 14 0 2 17 10 17 12 1 12 13 9 1 12 1 9 13 5 12 14 0 1 8 12 3 5
17 12 11 4 3 17 4 1 11 6 11 8 0 16 3 4 9 5 14 6 15 17 7 0 14 17
Random bit pattern
0 1 1 0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0

Individuals 2 and 3
17 12 11 2 17 17 4 1 11 6 11 8 1 16 1 9 13 5 14 14 0 17 8 12 14 5
17 14 0 4 3 10 17 12 1 12 13 9 0 12 3 4 9 5 12 6 15 1 7 0 3 17  
In the implementation of HuGO!, for each crossover operation, a 
new random bit pattern is created. 

3.2.5 Mutation 
A standard mutation is performed after the crossover using the 
adjustable mutation probability

 mp . Table 4 depicts an 
exemplary application of the mutation operator during the 
algorithm execution: 

Table 4. Application of mutation during algorithm execution 
Individual before mutation
17 14 0 4 3 10 17 12 1 12 13 9 0 12 3 4 9 5 12 6 15 1 7 0 3 17
Individual after mutation
17 14 0 8 3 10 17 12 1 12 13 9 0 12 3 4 9 5 12 6 15 1 7 0 3 17  
At position 4 of the individual, a mutation occurs so that the gene 
value 4 is replaced by the gene value 8. In contrast to binary string 
individuals, where during mutation a gene value is just swapped 
from 0 to 1 or from 1 to 0, here the genes have values from 0 to 
17. So if a gene is chosen to become mutated, the gene value will 
be replaced by a random integer number between 0 and 17. 

3.2.6 Optimization 
An additional genetic operator, proposed by CASTELLA

[3]
, is the 

optimization operator.  The optimization operator eliminates 
redundant turns so that gene strings are reduced in length. For 
example, the sequence F R B B’ D2 F’ is reduced to F R D2 F’ so 
that B B’ is cut out by the optimization operator, because a B-turn 
followed by a B’-turn results in the same state of the cube as it has 
been before these two turns. 
Keeping in mind the internal representation of turns outlined in 
Table 2, the optimization process is done for all consecutive pairs 
of turns. 

3.3 WORKFLOW 
3.3.1 Solve 2x2x3 cube phase 
The three successive phases are genetic algorithms itself and in 
the end composed to HuGO!, the algorithm that completely 
restores Rubik’s Cube. 
In the first phase, a 2x2x3 subcube is solved. There are 12 edges 
on the entire cube, which constitute the 12 possible locations for 
2x2x3 cubes. For this reason, 12 populations are created, one for 
each possible location. The populations work on their allocated 
2x2x3 location one after the other until a population produces an 
individual that solves the 2x2x3 cube. So the algorithm starts with 
the selection of a 2x2x3 location. In fact, in the implementation, 
populations are working on the same spatial edge of the cube, 
whereas the cube itself is rotated by horizontal and vertical 
rotations so that all 2x2x3 locations can be treated successively. 
Then it is checked, whether the algorithm has already been 

working on this location beforehand. If so, no new population is 
created, but the already existing is loaded from the population 
storage. So the algorithm does not have to develop the individuals 
from initialization, but can work on with already advanced 
individuals as proposed by CASTELLA [3].  On the other hand, if it 
is the first run through this 2x2x3 location, a new population is 
created and the algorithm proceeds. The following steps consist of 
the operations presented in Section 3.2. The individuals are 
optimized, the fitness becomes evaluated by the fitness function 
and then the individuals are sorted by their fitness for the 
selection step. After selection, the genetic operators crossover and 
mutation are applied to the individuals. These operations are done 
until the number of set generations is reached. Then the current 
population is stored in the population storage so that it can be 
loaded in the next run on this location. Besides, it is tested, 
whether all 12 locations are processed. If not, the next location is 
selected and the operations are repeated. If all locations are 
processed, the solution containing the best fitness is selected and 
tested, whether it can solve the 2x2x3 cube. If it cannot solve the 
2x3x3 cube, the locations are processed again, but if it can solve 
the 2x2x3 cube, the solve 2x2x3 cube phase stops and the second 
phase is allowed to start. 

3.3.2 Transform to two-generator phase 
The second phase is the transform to two-generator phase. The 
phase receives a solved 2x2x3 cube from the first phase and 
manipulates the two remaining unsolved layers so that they can be 
solved in the two-generator group. The phase starts by creating a 
population that contains the potential solutions and then traverses 
the same genetic operations as the first phase does. It 
differentiates from the 2x2x3 operations by the fitness evaluation 
that is handled according to the description of the second phase’s 
fitness function in Section 3.2.2. The consecutive steps are 
optimization, fitness evaluation, sorting, selection, crossover and 
finally mutation. The steps are repeated until the set number of 
generations is reached. Then it is tested, whether the cube entered 
the two-generator. If it did not enter the two-generator, the 
algorithm is repeated for the set number of generations. If the 
cube entered the two-generator group, this phase is finished and 
the last phase can start. 

3.3.3 Solve two-generator phase 
The last phase is the solve two-generator phase, where the two 
remaining layers are rotated until the entire cube is totally 
restored. The solve two-generator algorithm is similar to the 
transform to two-generator algorithm. After creating a population, 
the algorithm traverses the operations optimization, fitness 
evaluation, sorting, selection, crossover and mutation until the 
predetermined number of generations is reached. The difference to 
the second phase lays in the fitness function, which evaluates the 
individuals regarding the integrity until a maximum value of 48 
according to Section 3.2.2. The processing of generations is 
repeated until the two-generator is solved and the last phase stops. 

3.3.4 Human strategy based Genetic Optimizer 
algorithm 
The entire composed Human strategy based Genetic Optimizer is 
depicted in Figure 6. Three columns of workflows become 
obvious that represent the just explained three phases of the 
algorithm. Before each phase, the algorithm checks, whether the  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. HuGO! algorithm 
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goal of the current phase is already reached and skips this phase if 
possible. The resulting turn sequence of each phase is composed 
to the solution sequence that restores the scrambled cube. Before 
put out, the solution sequence is treated by an adapted 
optimization operator to cut out redundant turns that occur during 
composition. This operator repeats optimization until no further 
abbreviation of the sequence is possible. For example, the process 
F R B2 B2 R’ D needs two optimization steps for a satisfying 
abbreviation. In the first run, the sequence is transformed to F R 
R’ D by cutting out the redundant turns B2 and B2. In the second 
run, the sequence is reduced to F D, because the newly succeeding 
turns R and R’ are redundant as well. So the complete composed 
algorithm starts with a scrambled cube, passes the phases solve 
2x2x3 cube, transform to two-generator as well as solve two-
generator and stops when the cube is completely restored. The 
resulting individual turn sequences are composed and in the end, 
the optimized final solution can be displayed. 

4. TEST RESULTS 

4.1 Test Objectives and Resources 
Three kinds of tests are performed to evaluate the characteristics 
of HuGO!. First, integrity tests provide answers to the question, 
whether the algorithm is able find a solution for all possible 
scrambles of Rubik’s Cube. These extensive tests are also used to 
investigate the interior properties and interdependencies between 
the different phases to find appropriate parameter configurations. 
Then performance tests are conducted that give information about 
the efficiency of the algorithm. For this purpose, a measure called 
complexity is introduced with the help of the program 
CubeExplorer (Section 2.4.1) to classify a scrambled cube 
according to the difficulty of restoring it. For each complexity 
class, the algorithm’s performance is worked out. The third kind 
of tests is the HuGO!-human competition that tests the 
algorithm’s and human capabilities to solve the cube in the fewest 
turns possible. On the basis of data, evaluated from real human 
competition databases, a comparison is conducted that indicates 
the human competitiveness of HuGO!. All tests are carried out on 
comparable hardware, using Pentium 4 processors as well as one 
gigabyte of main memory. 

Despite the best settings seem hard to find, some recommen-
dations exist that suggest starting values for the search of good 
parameter settings. A population size of 50 individuals is chosen 
as suggested by DE JONG.[4]

cp

 Besides, an individual size of 30 
genes demonstrates to be sufficient to solve each tested scramble. 
Generation numbers vary from phase to phase due to different 
goals. The basic configuration is 10, 50 and 50 generations for 
phase 1 to 3. The 2x2x3 phase is assigned with fewer generations 
than the other phases because the restoration of the 2x2x3 cube 
shows to be the shortest part of the algorithm. If a phase is not 
finished after the set generations, the generation number 
automatically increases linearly for phase 1 and 2, as well as 
progressively for phase 3, which indicates to be the longest part. 
For crossover a standard probability  of 0.6 is chosen as 
suggested by GREFENSTETTE [6].  The mutation probability is 
calculated by 1 /mp l=  with l  being the individual length. This 
treatment is recommended by BÄCK

[1]
 and leads to a value of around 

0.03. [2][12] 

4.2 Integrity Tests 
It is not possible to test, whether the algorithm can solve all 

194.3 10⋅  different scrambles of the cube group in a brute force 
way due to calculation capability restrictions. So, some scramble 
sequences are chosen to be representative test scrambles. First, all 
scrambles containing three turns are tested. This includes 

38 5832= different turn sequences. 
HuGO! provides a solution to all tested three-turns scrambles with 
an average solution length of 2.945 turns. Random samples also 
depict that the solutions are correct and restore the scrambled 
cube. The distribution of turn numbers to the phases is 0.723 to 
0.202 to 2.050 before optimization. Consequently, phase 3 is the 
phase needing the most turns. Then a test with tripled generation 
numbers is conducted including 30, 150 and 150 generations. 
During this test, the average solution sequence length could be 
reduced to 2.872 turns. Regarding the test results, it becomes clear 
that a long solution for phase 2 results in an even longer solution 
for phase 3. This is due to the cubie mixing to transform the cube 
into the two-generator. The three initial turns to scramble the cube 
only have a limited influence on the cube’s integrity so that it 
remains in a relatively ordered state. Many turns in the second 
phase, however, mix the cube further, even though the two-
generator is reached. As a consequence, the generations for phase 
2 are increased to 300. Phase 1 and 3 are reduced to 10 and 50 
again, because the preceding improvement can be referred to the 
second phase’s increase of generations and in this way, 
calculation speed is improved. The resulting average solution 
length using these settings is about 2.870 turns with a distribution 
of 0.724 to 0.193 to 1.992 turns before optimization.  
Table 5 gives an overview about the average test results: 

Table 5. Three-turns average results 
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1 10 50 50 2.945 0.723 0.202 2.050 2255 6 22 2227 12315
2 30 150 150 2.872 0.722 0.194 1.992 376 18 29 328 3141
3 10 300 50 2.870 0.724 0.193 1.992 506 6 39 462 3319  

The derived parameter settings of the third test are the best found 
configuration for the three-turns tests and are therefore used for an 
integrity test of four turns. In this test, 6670 of the 

48 104976= different scrambles are calculated. This corresponds 
to 6.4% of all four-turns scrambles possible. The test shows that 
HuGO! provides a solution for all considered scrambles. Table 6 
gives an overview about the average results obtained: 
 
 
 
 
 
 



Table 6. Four-turns average results 
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1 20 300 50 4.924 1.237 0.724 3.042 13362 15 675 12672 106178  
The resulting average solution length is 4.924 turns with a 
distribution of 1.237 to 0.724 to 3.042 turns in phase 1 to 3. 88% 
of the scrambles are solved in a maximum of four turns. The 
remaining 12% have an average solution length of 17.467 turns 
with the longest sequence being about 39 turns. Similarly, 84% of 
the scrambles are solved in a maximum of two seconds on the 
used hardware, whereas the left 16% need an average computing 
time of 11 minutes and 27 seconds, the longest duration being 11 
hours, 29 minutes and 47 seconds. The exact overall time for the 
four-turns test is 210 hours, 11 minutes and 53 seconds for all 
6670 scrambles to become solved. Thereby the 16% solutions of 
more than two seconds calculation time count for 99% of the 
overall time. Consequently the few long solutions constitute to a 
substantial part of the computing duration. One reason for outliers 
was found as a consequence of a certain state during restoration of 
the cube. If the complete cube is solved, except two opposite 
corner cubies that need to be swapped, the algorithm can need 
comparatively much time. This is due to the contrasting goals of 
exploitation and exploration in the restoring process. For two 
opposite corner cubies to become swapped, the almost solved 
cube must be severely decomposed. With the 6670 four-turns 
scrambles, the limit of calculation capacity for comprehensive 
integrity tests is reached, whereas all test scrambles could be 
solved. Scrambles of further lengths are tested as samples during 
the performance tests. 

4.3 Performance Tests 
The performance tests investigate the efficiency of HuGO!. To 
display the efficiency in terms of solution lengths, it is essential to 
differentiate between different difficulties of scrambled cubes. A 
slightly scrambled cube is likely to have a short solution while a 
heavily scrambled one should need more turns to become solved. 
To give a statement on the efficiency, the scrambled cube must be 
considered. A feasible way to gain information on the scrambled 
cube is to count the number of turns that led to the cube state. 
However, the number of turns is limited in information content. 
For example, a scramble sequence of 20 turns might need no turns 
as solution, if after 10 turns, the first 10 turns are inverted and 
repeated in reverse order. For this reason, a measure called 
complexity is introduced that does not consider the scramble 
sequence but orientates on the actual solution length. The actual 
solution length can be computed with a program generating 
optimal solutions to a given cube configuration. This is the case in 
CubeExplorer (Section 2.4.1). So, for the performance tests, the 
complexity of each cube configuration considered is derived from 
CubeExplorer beforehand. The resulting optimal solution length 
is used to develop classes. Since each cube should be solvable in 
up to 20 turns (Section 2.4.2), complexity has a range of 1 to 20, 

whereas any cube can be classified in one of the 20 complexity 
classes. 
For each of the 20 classes, three random scrambles are solved 10 
times resulting in 600 test runs that evaluate the performance of 
the algorithm. As generation numbers 200, 5000 and 50000 are 
used. This exceeds the number of generations used for the 
integrity tests, because in this case, the goal is to minimize the 
solution lengths. Additionally, in contrast to the integrity tests, the 
third phase is run with the highest amount of generations, because 
the third phase produces the longest part solutions and therefore 
has the highest potential for solution improvements as observed in 
Section 4.2. 
To illustrate the test results, boxplot diagrams are used. Boxplots 
are an easy way to show differences in groups of data, i.e. the 20 
classes. They indicate the degree of variability as well as 
asymmetry in the data and identify outliers. So trends and the 
limits of acceptable data are revealed. The graphical illustrations 
are the smallest observation, the lower quartile (25% of data), the 
median (50% of data), the higher quartile (75% of data) and the 
largest observation. The range between the lower and the higher 
quartile is called interquartile range (IQR). The smallest and 
largest observations are at the ends of the whiskers, which have a 
maximum size of 1.5 times the IQR. All data exceeding the 
smallest or largest observations are outliers and marked in the 
diagram as separate points.[24] 
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Figure 7. Complexity classes 1 to 10 

Figure 7 illustrates the resulting boxplot diagram for the 
complexity classes 1 to 10. Regarding complexities 1 to 3, the 
algorithm provides the optimal solution, which is the complexity 
measure itself, in each test. From complexity 4, the solutions 
diverge in length so that an IQR appears. Up to complexity 7, the 
IQRs lie between the optimal solution and around 20 turns above 
it. Surprisingly, the median decreases in these complexities so that 
in complexity 4, the median is about 22 turns, while in complexity 
7, the median is only about 8 turns. The reason becomes obvious 
when observing the raw data, which reveal that from complexity 4 
to 7, the optimal solutions are increasingly reached. Since optimal 
solutions are the shortest possible, the median consequently 
becomes decreased. The same reason causes that in these cases no 
lower whiskers are visible. For complexity 8 to 10, the IQR 
reduces to around 8 turns, beginning at turn numbers 23, 29 and 
33. So, from complexity 8, the solution lengths are heavily 
increasing, while classes 8 and 9 sometimes still met optimal 
solutions as smallest observation on the whisker or as outlier. 
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From complexity 10 on, optimal solutions are not reached any 
more. 
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Figure 8. Complexity classes 11 to 20 

Regarding the complexity classes 11 to 20, as illustrated in Figure 
8, the needed numbers of turns are relatively constant in contrast 
to the complexities 1 to 10. The IQRs lie between around 33 turns 
and 44 turns in all classes. While no optimal solutions are reached 
any more, some outliers identify turn number of up to 57 turns. 
To summarize, the performance tests reveal four distinct 
categories of complexity classes. The first category goes from 
complexity 1 to 3, where HuGO! reaches optimal solutions. In 
classes 4 to 7, optimal solutions are often reached, while a heavy 
variation occurs. From complexities 8 to 10, HuGO! loses 
capability of calculating the optimal solution, while solution 
sequences are rigorously lengthened. The last category goes from 
complexity class 11 to 20 and is characterized by a relatively 
equal amount of around 38 turns on average. 

4.4 HuGO!-Human Competition 
In the HuGO!-Human competition, the human competitiveness of 
the developed genetic algorithm is tested. Therefore, a new 
benchmark that represents the human performance is introduced. 
To obtain information on human capabilities, the databases of 
DAN HARRIS' and PER KRISTEN FREDLUND

[7]
's fewest moves 

challenge was evaluated.  The fewest moves challenge is the 
leading provider of contests that aim to solve the cube using the 
fewest turns possible. Contestants meet regularly using different 
human strategies without technical support to compete in finding 
the best solution. The resulting data was used to create a 
benchmark of human capability that can now be compared to the 
results of HuGO!. This is especially of interest because the genetic 
algorithm incorporates a human strategy as well.3

                                                                 
3  From a philosophical point of view, the competition might be 

called an evolutionary duel between the creator and its creation. 
The creator’s capability evolved about millions of years while 
the creation’s performance is shaped in an evolutionary time 
lapse. 

 Arbitrary 
challenges of the fewest moves challenge, i.e. scrambles, are 
chosen and a solution is calculated by HuGO!. The algorithm’s 
result is compared to the human best solution and the human 
average solution of a certain scramble, whereas the human results 
have a universe of one to seven solutions. The competition is 

repeated for six times so that possible outliers would be exposed. 
The used parameter settings are 200, 5000 and 50000 generations 
for phase 1 to phase 3 as set for the performance tests of Section 
4.3. Figure 9 illustrates the results of the competition, while Table 
7 provides background information on the genetic algorithm: 
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Figure 9. HuGO!-human comparison 

Table 7. HuGO!-human comparison background information 
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1 #187 16 44 44 38 1277400 02:12:42 2400 9 175000 8 1100000 21
2 #188 17 55 55 31 255800 00:26:09 800 10 5000 4 250000 17
3 #195 18 33 37.250 43 1225400 02:04:33 400 16 175000 9 1050000 18
4 #206 18 31 36 41 955400 01:18:36 400 12 5000 6 950000 23
5 #210 17 24 31 31 620200 00:50:26 200 7 20000 6 600000 18
6 #219 18 34 40 34 1131200 01:32:08 1200 11 280000 6 850000 17

Avg 17.333 36.833 40.542 36.333 910900 01:24:06 900 10.833 110000 6.500 800000 19.000  
On the horizontal axis of Figure 9, there are the indices of the 
human challenges that provide the basis of the comparison. On 
the vertical axis the needed turns of HuGO! as well as the human 
best solution and the human average solution are recorded. As 
additional benchmark, the optimal solution calculated by 
CubeExplorer is displayed. Regarding the human best solution, 
beside one draw, human capability wins three times, while HuGO! 
wins two times. Concerning the human average solution, beside 
one draw, human capability wins two times and HuGO! wins 
three times. From Table 7, the average solution lengths become 
obvious. HuGO! has the best average with 36.333 turns per 
solution. Then the human best solution and the human average 
solution follow with values of 36.833 and 40.542. 
The comparison between the algorithm's solutions and human 
solutions shows that the algorithm, using the selected settings and 
human capability are quite similar in performance. There are 
marginal advantages for HuGO! that cannot be generalized to 
determine an obvious winner. Consequently, HuGO! can be 
considered as human-competitive. However, compared to the 
optimal solution, there is still a lot of potential for performance 
enhancement. Keeping in mind that the algorithm will improve 
solutions having allowance for higher generation numbers, it 
becomes clear that human strategies can have a high significance 
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for the implementation of evolutionary processes and vice versa. 
If the human practice sticks to certain optimization ideas, 
evolutionary processes can imitate human behavior and improve 
optimization performance. 

5. CONCLUSION 
The Human strategy based Genetic Optimizer is a collaboration of 
human proceeding and genetic optimization techniques. It is 
applied to the restoration problem of Rubik’s Cube and 
successfully solves this task. 
The foundation of the developed algorithm is built up in the 
introduction of the cube. The structure analysis of the applied 
problem instance provides a mathematically reasoned usage of the 
human two-generator approach for complexity reduction. The 
concepts of the used genetic operators are explained on the other 
hand. They provide the machine intelligence part that is guided by 
the human method after reception. 
The introduction of HuGO! is not only theoretically reasoned but 
also empirically. Tests to solve the cube using a plain genetic 
algorithm show the inappropriateness of this optimization 
technique to the chosen discrete optimization problem. Only when 
a human strategy was implemented that splits up the process to 
distinct intermediate stages, the algorithm’s solving capability 
became enabled. The strategy consists of three phases that allow 
the cube to be gradually solved. In the first phase, a 2x2x3 
subcube is completed in one of the 12 possible locations. The 
second phase transforms the cube to the two-generator subgroup, 
which allows the cube to be solved by just turning the two 
adjacent layers that are not solved yet. In the third phase these two 
layers are turned until the entire 3x3x3 cube is completely solved. 
For the realization of the human strategy, several obstacles in 
solution representation, additional operators and fitness function 
had to be overcome. Finding of an appropriate fitness function 
will also be the most demanding task regarding other possible 
problem instances. The reasons to additionally use a human 
strategy and the corresponding overhead must be weighted to 
decide about an introduction. 
The tests documented for this work are divided up into three 
categories. Integrity tests show that the algorithm is likely to find 
a solution to every input. For this assumption 5832 three-turns 
scrambles and 6670 four-turns scrambles were tested. 
Performance tests reveal four distinct efficiency characteristics 
depending on the introduced complexity measure. From 
complexity 1 to 3, HuGO! reaches optimal solutions. From 4 to 7, 
a heavy variation in solution lengths occurs. From 8 to 10, HuGO! 
loses the capability of optimal solutions and in the last category 
from 11 to 20, a relatively equal amount of around 38 turns esta-
blishes itself. Consequently, the algorithm performs well for lower 
complexities, while it shows disadvantages in the handling of 
complex scrambles. The final competition between evolution in a 
time lapse, the genetic algorithm, and the product of real 
evolution, the human capability, demonstrates the human-
competitiveness of HuGO! in a draw on the given parameter 
setup. 
An additional idea for algorithm improvement is the variation of 
the solution representation to test binary strings or exclude half 
turns to reduce the search space. Concerning the string 
optimization, solutions could be browsed for entire redundant turn 
sequences that can be cut out. From a more distanced viewpoint, 

other evolutionary or non-evolutionary optimization techniques 
could be tested for applicability regarding the covered or other 
problems with human intrusion. 
To summarize, this work vividly shows, how a human strategy 
can be incorporated in a genetic algorithm. The goal was not to 
develop an outstanding fast or efficient algorithm, but to 
demonstrate the advantageous adaptation of genetic algorithms to 
human induced strategies. While an external strategy guides the 
algorithm, the evolutionary process produces solutions no human 
had thought of. Application fields of this technique could be, 
among others, evolutionary knowledge management with 
integration of knowledge from different sources, collaborative 
human-computer interaction and fields that facilitate user-centered 
design to integrate user preferences into problem solving 
processes. All in all, it must be stated that human- and artificial 
intelligence can complement each other, producing cooperative 
results and improving performance. 
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