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Abstract

In the context of Model-Driven Engineering applied to video games, software models are high-level ab-
stractions that represent source code implementations of varied content such as the stages of the game,
vehicles, or enemy entities (e.g., final bosses).

In this work, we present our Evolutionary Model Generation (EMoGen) approach to generate software
models that are comparable in quality to the models created by human developers. Our approach is based on
an evolution (mutation and crossover) and assessment cycle to generate the software models. We evaluated
the software models generated by EMoGen in the Kromaia video game, which is a commercial video game
released on Steam and PlayStation 4. Each model generated by EMoGen has more than 1000 model elements.

The results, which compare the software models generated by our approach and those generated by the
developers, show that our approach achieves results that are comparable to the ones created manually by
the developers in the retail and digital versions of the video game case study. However, our approach only
takes five hours of unattended time in comparison to ten months of work by the developers. We perform a
statistical analysis, and we make an implementation of EMoGen readily available.
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1. Introduction due to the newness of this area, there are fields of
study that remain unexplored.
Game Software Engineering (GSE) is a research
SLICCHNG ( . ) . As the survey mentioned above showed, Model-
area that was compared with classic Software Engi-

neering for the first time by McShaffry in 2003 [1]. A priven Engineer;ng. (MDE) laP pléed to dvideo §aImes
recent survey, published in 2010, showed an overview is uncommon and, in general, is focused on generat-

of GSE research works and described the increasing 1g source code from pre-existing models [3] In the
interest in GSE [2]. Until now, GSE works have fo- following years, subsequent works have continued fo-
' cusing on the generation of source code from models

[4, 5, 6, 7].

Some of the above MDE works [3, 7] use UML as
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vantage of modelling languages is that models use
concepts that are much less bound to the underlying
implementation technology, like video game engines
such as Unreal [8] or Unity [9], and are much closer to
the problem domain (the content of the video game)
related to most popular programming languages (e.g.,
C++) [10]. This notion of "model” should not be
confused with "mesh” or ”polygon mesh”, which are
terms used in computer graphics and video games for
the visual representation of 3D shapes/geometry.

In this work, we present our Evolutionary Model
Generation (EMoGen) approach to generate software
models that are comparable in quality to the models
created by human developers. Automatically gener-
ating human-competitive software models is a chal-
lenging task. Fully achieving it spans the creation of
model elements, the initialization of their properties,
and their relationships with each other. Moreover,
the resulting models must be valid, which includes
satisfying modeling constraints. Finally, the human-
competitive aspect is only achieved if the resulting
models are comparable to those produced by software
engineers for the same task at hand.

To generate the software models, our EMoGen ap-
proach takes an initial population of software mod-
els as input. These initial models may be randomly
generated or may also be models that were previ-
ously generated by software engineers. Then, the
genetic operations of EMoGen, which are mutation
and crossover, evolve the population. Invalid models
are fixed by means of repair operations. The evolved
models are assessed by means of a fitness function.
This evolution and assessment cycle is repeated until
a stop condition is met. The output of EMoGen is a
ranking of generated models.

The case study for our work are the game char-
acters at the end of each stage of the video game
Kromaia: final bosses. This video game was released
worldwide in both physical and digital versions for
PC and PlayStation 4. In the context of video games,
bosses are particularly powerful adversaries that are
generally much stronger than the rest of the enemies
in the video game. Usually, the player must over-
come them at the end of a stage or level. Three-
dimensional space simulation titles, such as the case
study, include content like: a spaceship controlled by

a human player; architecture, buildings or celestial
bodies; a repertory of bosses and basic enemies; and
projectiles that are fired by both the human player
and the enemies.

Figure 1 shows this game content in the context
of a Kromaia playing session. Each of the stages
or levels involves flying from a starting point to a
certain destination, and the player spaceship must
reach the goal before being destroyed. The stage im-
plies exploring floating structures, avoiding asteroids
and finding items along the route, which is protected
by basic enemies (Figure 1, G): ships and creatures
that try to damage the player unit by firing projec-
tiles that damage the player spaceship (Figure 1, E).
Basic enemies vary in anatomy and weaponry, but
are significantly weaker than the player spaceship,
in terms of endurance and firepower. In case that
the player manages to reach the destination, the fi-
nal boss (Figure 1, A) corresponding that stage ap-
pears, and it must be defeated in order to complete
the stage. Bosses differ from basic enemies in some
aspects:

e They are huge in comparison to the player space-
ship or basic enemies. An average boss is 50
times larger than the player spaceship.

e Bosses tend to be more complex in terms of
anatomical structure.  They include mobile
parts, and the nexuses that connect two parts
may behave as joints or even strings.

e They use several powerful weapons that are dis-
tributed along the parts that form their structure
or body. In contrast, basic enemies use one or
two frontal weapons.

e Bosses include in their structure special parts,
which are the only damageable elements of their
bodies. The player must locate these parts and
destroy them, since it is the only way to defeat
a boss.

The final bosses of the video game Kromaia are
specified with the Shooter Definition Model Lan-
guage (SDML). SDML is a DSL model for the video
game domain. Specifically, SDML defines aspects in-
cluded in video game entities:



GAME ELEMENTS

A - ENEMY BOSS (SERPENT)

B - PROJECTILES

C - ASTEROIDS

D - SCENERY / ARCHITECTURE
E - HUMAN PLAYER SPACESHIP
F - DISTANT PLANET

G - BASIC ENEMIES

Figure 1: Screenshot showing game content in Kromaia.

e The anatomical structure, including which parts
are used in it, their physical properties, and how
they are connected to each other.

e The amount and distribution of vulnerable parts,
weapons, and defenses in the structure/body of
the character.

e The movement behaviours associated to the
whole body or its parts.

This modeling language has concepts such as hulls,
links, weak points, weapons, and Al components.
The top of Figure 2 depicts an excerpt of the SDML
that specifies one of the bosses of Kromaia (see the
bottom of Figure 2). Each model element (e.g., Hull

Head) instantiates a concept (e.g., Hull) of the mod-
eling language in order to specify the boss. More can
be learned about the SDML model of Figure 2 in the
following video: https://youtu.be/Vp3Zt4qXkoY
Our evaluation considers different starting points
for our approach (the initial population of software
models), ranging from randomly initialized models
to models generated by software engineers. Models
generated by software engineers are the most promis-
ing starting points; however, they come at a cost for
software engineers. In contrast, random models re-
verse the pros and cons. The baseline is Random
Search, which in the past [11] has proven to outper-
form more sophisticated algorithms, and is a common
sanity check practice in the Search-based Software
Engineering [12] community. To evaluate the results,
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we use measurements studied in the scientific litera-
ture of video games: Completion, Duration, Uncer-
tainty, Killer Moves, Permanence, and Lead Change.
We also perform a statistical analysis to provide evi-
dence of the significance of the results.

The results show that our approach produces
human-competitive software models for the content
(final bosses) of a commercial video game. On av-
erage, these software models have about 1300 model
elements. They can be produced in five hours of unat-
tended time, which is a significant reduction in time
compared to ten months of work by the video game
developers, as the Kromaia’s Version Control Sys-
tem shows !. What is specially relevant is that these
human-competitive models are achieved in the most
positive scenario for software engineers: the seeds are
random models. This means that software engineers
do not have to manually generate the initial popula-
tion of software models.

This is a step forward for Genetic Programming
[13], where programs are evolved to fit a specific task,
in the context of MDE. This paper contributes to the
rise of what we call Genetic Modeling, and in this
case, models are evolved for video game content in
the particular case of our evaluation. Furthermore,
this acceleration of video game content generation is
also relevant for software developers of video games
since they face the challenge of what is called the
age of crunch [14]. There is an ever-increasing high
demand for game content that is derived from early
access releases, post-launch updates, downloadable
content, and games as a service.

We make an open-source implementation® of
EMoGen available as well as two model examples
to facilitate the reproduction of the results. Even
though this implementation is adapted to Kromaia,
our approach includes general ideas that could work
in other domains, and therefore make EMoGen useful
for encouraging Genetic Modeling.

The structure used in this paper is the follow-
ing: Section 2 summarizes related works. Section 3

1Confirmed by the developers: two hours per day, including
the time spent by real players on tests.
’https://bitbucket.org/svitusj/EMoGen

presents Model-Driven Engineering for Video Games.
Section 4 describes our EMoGen approach. Section 5
deals with evaluation. Section 6 presents the discus-
sion. Section 7 describes the threats to validity, and
Section 8 presents the conclusion of the paper.

2. Related Work

This work is about generating software models us-
ing our EMoGen approach. Our evaluation is in the
context of the video game content (bosses) of Kro-
maia. Therefore, our EMoGen approach generates
models of Kromaia bosses. In this section, we dis-
cuss: 1) works that address game software engineer-
ing from the MDE community; and 2) works that
address video game content generation. Video game
content generation is also know as procedural con-
tent generation in the literature. Finally, we present
an analysis of the research gap.

2.1. MDE and Game Software Engineering

Platform independence is one of the potential ben-
efits of using models as the main artifact for software
development. The diversity of platforms that video
game developers must deal with has motivated most
of the research works that combine software models
and the domain of video games.

The 2010 survey of Software Engineering Research
for Computer Games [2] identified only one work that
applied Model-Driven Development to video games
[3]. That work coined the term “Model-Driven Game
Development” and presented a first approach to 2D
platform game  prototyping through Model-Driven
Development. Specifically, they used UML classes
and state diagrams that were extended with stereo-
types, and a model-to-code transformation to gener-
ate C++ code.

The research by Nuifez et al. [4, 5] presents
model-driven approaches that are intended to mini-
mize errors, time, and cost in multi-platform video
game development. The work in [4] proposes a

30mne of the first genres in video game history. In plat-
form games, the main character climbs and jumps between
suspended platforms while avoiding enemies/obstacles.
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Figure 2: SDML model of a boss (top) and the boss at run-time (bottom).

Domains-Specific Language, named Gadedall, and
focuses on tablet and smartphone-oriented games.
Solis-Martinez et al. [6] suggest the use of business
process models as the modeling language for video
games. Specifically, they focus on the logic behind
game loops in mobile games. In another work, Us-
man et al. [7] propose a model-driven product-line
approach that focuses on multi-platform (Android
and Windows Phone) mobile game development and
maintenance. They use a feature model to configure
the UML use-case, class, and state machine diagrams.

Although the details are different, the above works
share a common assertion: in the domain of video
games, automated code generation from software
models has the potential to significantly reduce the
development effort and cost. Paradoxically, platform
independence is an issue that is being addressed by
widely used technologies such as Unity [9] and Un-
real Engine [8] and is leading developers to be less

concerned with this issue in this particular domain.

In the intersection between software models and
evolutionary computation, Williams et al. [15] use an
evolutionary algorithm to search for desirable game
character behaviours in a text-based video game that
plays unattended combats and that outputs an out-
come result. The character behaviour is defined using
a Domain-Specific Language. The combats are man-
aged internally and are only driven by behaviour pa-
rameters, without taking into account a spatial envi-
ronment, real-time representation, or visual feedback
(which takes into consideration the physical interac-
tion of the characters, variation in the properties,
etc.). However, the case study is a simplified text
game. In addition, [15] deals with game parameter
adjustment, that is, the work does not address the
generation of software models.

Another work that focuses on the intersection be-
tween software models and evolutionary computation



is Avida-MDE [16], which generates state machines
that describe the behaviour of one of the classes of
a software system (Adaptive Flood Warning System
case study). The resulting state machines comply
with developer requirements (scenarios for adapta-
tion). Instead of generating whole models, Avida-
MDE extends already existing models (object mod-
els and state machines) with new state machines that
support new scenarios. The work in [16] does not re-
port the size of the generated state machines; how-
ever, the ones shown in the paper are around 50
model elements, which is significantly smaller than
the more than 1000 model elements of the models of
a commercial video game such as Kromaia.

2.2. Procedural Content Generation

Figure 3 shows the works of the video game re-
search community that address procedural content
generation (PCG). All of these works generate part
of the content of video games using either evolution-
ary computation (15 of 28) or machine learning (8 of
28). They generate content for the following parts of
games.

Game rules [17, 18, 19, 20, 21]. These are the
core of the game and changing them could result in
a new game. To generate game rules, research works
combine rules from existing games, such as Checkers
or Pac-Man. The results of these works are mainly
obtained at the scale of board or grid-based games.

Level Layouts. These are generated by combin-
ing different pre-existing design elements of levels,
such as terrain, platforms, items, non-player char-
acters. Research works achieve results at the scale
of games such as a clone of Super Mario Bros, which
is adapted for research, or Quake, a shooter game.
[22, 23, 24, 25, 26, 27, 28, 29, 30, 31]

Scenarios. These cover the structure of both puz-
zles [32, 33, 34] and maps/terrains [35, 36, 37, 38, 39].
These research works have been applied in grid-based
puzzles. In the case of maps/terrains, these works
have been applied in grid-based maps and heightmap
terrains.

Items [40, 41, 42, 43, 44] include content such as
weapons or buildings. Items are mostly generated
by varying the properties of the items themselves.
Research works create similar, but different, items

in order to enrich players’ experience. These works
achieve results at the scale of games such as Galactic
Arms Race, which is an indie development.

Furthermore, in Figure 3, we classify the works in
relation to their type of assessment following the To-
gelius classification. Togelius et al. [45] classified as-
sessment as direct, simulation-based, or interactive.
Direct assessment is depicted as a red square in Fig-
ure 3 and uses features from the generated content
to obtain a fitness value. Simulation-based assess-
ment is depicted as a blue triangle and is based on
artificial agents playing part of the game to evaluate
the content. Finally, interactive assessment, which is
depicted as an orange circle, involves the participa-
tion of real players scoring their gameplay explicitly
or implicitly. The works with no defined assessment
criteria could not be classified because they are sur-
veys [27, 46] or they are not explained [20, 43]. They
are represented in Figure 3 without a geometric clas-
sification.

2.3. Analysis of the research gap

There is a trend at the intersection of MDE and
game software engineering (see subsection 2.1) where
research works focus on achieving platform indepen-
dence by means of the abstraction of software mod-
els. These works propose automation to generate the
implementation code for different platforms from the
models. However, none of these works have explored
the generation of software models in the context of
video games. In that context, generating software
models results in generating game content.

In the video game research community (see subsec-
tion 2.2), research works explicitly address the gen-
eration of game content. So far, these works have
succeeded in varying properties (works on items) and
recombining pre-existing assets (works on game rules,
level layouts, and scenarios). However, none of the
works have leveraged models to generate game con-
tent.

Our work explores the gap of generating game con-
tent by leveraging software models. Our EMoGen ap-
proach evolves models and guides the evolution with
a fitness function that uses the model interpreter for
validation purposes and a game simulation which in-
cludes domain knowledge regarding the rules, the me-
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Figure 3: Overview of the PCG related work.

chanics, and the course of a playing session. Lever-
aging a model interpreter to generate content is one
of the differences between our work and the previous
works.

Our work achieves successful results at the scale of
contemporary video games such as Kromaia, while
none of the previous works address contemporary
games, and most of them address academic mobile
games. Compared to content generation works, our
work addresses a different part of games: final bosses.
Our work is not limited to varying properties as previ-
ous works on item generation. Furthermore, our work
could be applied in settings where previous assets are
not available: works on game rules, level layouts, and
scenarios require the existence of previous assets.

3. Model-Driven Engineering for Video

Games: The Kromaia Case

This section gives background on the role of models
in Kromaia. Model-Driven Engineering (MDE) [47]
aims to facilitate the development of complex systems
by using models as the cornerstone of the software
development process. Models are built in accordance
with a metamodel that embodies the particularities

and rules of a specific domain, formalizing what is
valid and what is not when building a model for that
metamodel. Models are used to formalize a system
and capture each of its particularities. Then, those
models can be used to reason about the system, per-
form validations, or transform it into different meta-
languages, source code, or even run-time objects.

In the case of Kromaia, models are built against
the Shooter Definition Model Language (SDML), a
Domain-Specific Language created by Kraken Em-
pire, which is the company that developed Kromaia.
SDML allows for the definition of every element that
will be present in the game, including worlds, vehi-
cles, creatures, missions, enemies, etc. SDML is built
using Ecore, the reference implementation of the Es-
sential Meta Object Facility (EMOF) [48], which is
the standard metalanguage proposed by the Object
Management Group (OMG) to build metamodels.

Kromaia was developed with a custom video game
engine, created by the company, that acts as a frame-
work in the context of the video game architecture,
as shown in Figure 4. This framework allows the de-
velopers to add new content in two different ways:

e Programming, making use of the Application
Programming Interface (API) provided by the



framework.

e Software Models, which are created using
SDML and translated to its programming equiv-
alent at run-time by an interpreter that is used
by the engine (shown in Figure 4).

The bottom of Figure 2 shows a final boss that is
included in the video game case study. Examples of
the SDML concepts used in bosses are the following:

Hulls and Links: Hulls (see circle 1 of Figure 2)
are rigid bodies or solid objects that shape the struc-
ture of entities such as bosses. Hulls are connected
via configurable nexuses, called links (circle 2 of Fig-
ure 2). Hulls and links define both the anatomical
hierarchy and physics for the boss. Through differ-
ent arrangement and flexibility settings, links deter-
mine whether a boss includes mobile structures, rigid
parts, or even complex limbs that resemble tentacles.

Weak Points: Weak points (circle 3 of Figure 2)
are concepts that are characterized by the fact that
they can be damaged. Weak points are attached to
hulls and they could optionally be arranged in layers
to be unlocked as the player, who is the opponent of
the boss, destroys them.

Weapons: Weapons (circle 4 of Figure 2) are ob-
jects that could inflict damage on direct contact, fir-
ing bullets, launching smart homing projectiles, or
tracing rays/beams. These four kinds correspond to
the weapon types used in Kromaia. These weapons
automatically aim at targets (human players) since
they involve AI behaviours.

AT components: The behaviour patterns shown
by bosses during a battle are defined by Artificial In-
telligence components. These elements do not have a
graphical representation, so they are not highlighted
in Figure 2. An Al module included in a boss may in-
volve one or more of these concepts, suiting different
battle situations or describing flocking behaviours.

The creation of game content in Kromaia is per-
formed across four different stages using the concepts
of SDML: Creative Design, Spatial Organization, Be-
haviour Specification, and Equipment Balance.

Creative Design: This is out of the scope of this
work. Creative Design considers decisions from an
artistic point of view. Therefore, it also involves con-
cept art, texturing, and color palette selection, since

the design must adjust to the art direction. This Cre-
ative Design is mostly related to texture files, which
are a few of the properties of some elements of SDML.

What our work does consider for the case study
are the following technical stages of bosses that are
addressed by means of SDML.

1 Spatial Organization: The specification for
the anatomy that characterizes a boss is defined at
this level. Spatial Organization produces a hierar-
chy that makes bosses resemble chains, trees, rings,
quadrupeds, bipeds, and an unlimited range of struc-
tures that are similar to those examples or that are
combinations of them. This specification makes the
hierarchy possible since it includes the hull set that is
present in the boss and the links that connect them,
which may vary in nature and use (e.g., ropes or fixed
joints).

2 Behaviour Specification: At this point, it is
assumed that the spatial organization for the boss
is complete since Behaviour Specification revolves
around the means that the boss will use for mov-
ing between target locations, exploring the environ-
ment, chasing enemies, or dodging attacks. There-
fore, anatomical constraints may not be compatible
with certain behaviours. During this stage, the devel-
opers assign different artificial intelligence behaviours
in order to match game experience needs and agility
requirements.

3 Equipment Balance: The last stage focuses on
weak point and weapon distribution. Both the user
experience and the difficulty associated to the boss
are heavily influenced by the inclusion of different
defense/attack items and the hulls to which they are
attached. In addition, the weapon and weak point
distribution affects and limits the possible or even
valid strategies that human players could adopt to
try to defeat the boss.

Even without Creative Design, the generation of
boss models poses a challenge that exceeds the ca-
pabilities of systematic approaches. A boss model,
without considering Creative Design, requires more
than 1000 model elements. In an optimistic scenario
where properties are ignored and model elements can
be enabled or disabled, the resulting search space
has 21990 different possibilities. Trying to assess ev-
ery single model is not feasible, and, therefore, our
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Figure 4: The different architecture layers in Kromaia, the video game case study.

EMoGen approach relies on an evolutionary algo-
rithm to explore the search space.

4. Our EMoGen Approach

This section presents our EMoGen approach,
which leverages evolutionary computation to gener-
ate human-competitive software models. Figure 5
shows the Evolutionary Algorithm (EA) that evolves
a population of software models (models that follow
our encoding) through genetic operations. First, the
initial seeds are used to generate an initial popula-
tion. Then, the population is assessed using the fit-
ness function. Next, the population is evolved by
applying genetic operators. This process (assessment
+ evolution) is repeated until the stop condition is
met. Then, the population is decoded into models
that are ready to be used.

When applying EMoGen to the Kromaia case
study, we encode the models for the final bosses that

are faced at the end of each level that are present
in the video game. These models include the Spatial
Organization, the Behaviour Specification, and the
Equipment Balance of each of the final bosses (see
Section 3).

4.1. Fitness of the EMoGen Approach

The objective of the fitness function in our
EMoGen approach is to assess the quality of each
individual as a model. This is done by taking into
account the validity of the model and a game simu-
lation that includes Domain Knowledge:

Validity: First, our approach checks the model in
search of inconsistencies that would lead to classify-
ing it as not being valid for use, hence assigning a
fitness value of 0.

Domain Knowledge: Once the models are con-
sidered valid, our approach determines the suitability
of the model. This is done by using a game simulation
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Figure 5: Overview of the EMoGen Approach.

that takes into account domain knowledge that is re-
lated to the elements present in a battle that involves
a human player and a boss. It considers aspects such
as the weaponry used by each of them and the dif-
ferences between the two entities in terms of agility,
speed, endurance, or size.

When applying EMoGen to the Kromaia case
study, the validity of the models is performed by a
run-time interpreter that is part of the game. The
boss models generated by either human designers or
our approach may not be valid due to inconsistent
data that is related to the different stages (see Sec-
tion 3). For instance, it is not valid to indicate in
the model that a certain hull is connected to another
hull that is not even present in that model. It is also
invalid to denote a behaviour leading role for a hull
that does not have at least one weapon attached. In
these cases, the model would be assigned a fitness
value of 0.

When no validation errors are found for a cer-
tain boss model and it is confirmed as valid, its fit-
ness value is obtained from a simulation that repro-
duces a duel between the boss of the model and a
human player. During that simulation, the player
faces the boss in order to destroy the weak points
that are available at that moment, whereas the boss
acts according to the anatomy, behaviour, and at-
tack/defense balance that is included in its model,
trying to defeat the player. In that simulation,
both the boss and the human player try to win the
match and do not avoid confrontation, try to prevent
draw/tie games, and try to ensure that there is a
winner. The fitness value is calculated once the sim-
ulation process is finished, and our approach collects
information on the battle progress and key events.

The information retrieved from the simulation is
the data that the developers regard as relevant, using

their domain knowledge, for determining whether or
not a boss is suitable for a commercial release of the
video game, i.e., the percentage of human player vic-
tories (Fyictory) and the percentage of human player
health left once the player wins a duel (Fgeqitr). The
clamp function is used in the fitness measures:

clampyg 11(x) = max(0, min(z,1))

(1)

In our approach, Fy;ciory is calculated as a measure
of the difference between the number of human player
victories (Vp) and the optimal number of victories
(33%, according to the developers of Kromaia and
their criteria) (Voptimai):

_ | VOptimal - VP |> (2)

Fvictory = clampyo 1) <1 Voptimal
ptima

The criterion Fpeqien, which refers to completed
duels that end in human player victories, is the av-
erage difference between the human player’s health
percentage once the duel is over (Op) and the opti-
mal health level that the player should have at that
point (©optimat, 20%, according to the developers):

Ve

ZP |®Opti7nal_®P|
©0ptimal

d—=1 Optimal

1- (3)

Freaitn = clampyg q Vs

Foveran is an average fitness value for a boss model
that includes the fitness criteria described above and
validation information, with Validity being a value
that determines whether or not a model is valid (1



and 0, respectively):

N
S F
Foveran = min(Validity, %) (4)
In the end, Foyeran is a value in [0, 1] that is used
to assess a boss model when our EMoGen approach

is applied to the Kromaia case study.

4.2. Model Encoding of the EMoGen Approach

In evolutionary algorithms like the one used by our
EMoGen approach, the models are encoded, and this
representation is usually achieved in evolutionary al-
gorithms with arrays or strings. In this work, we
encode models elements in a way similar to our pre-
vious works [49, 50, 51] for models of the Induction
Hob and Train Control domains.

When applying EMoGen to the Kromaia case
study, the boss models contain elements, such as hulls
and weapons, that are defined as being present or ab-
sent throughout the different stages in the creation
process as well as properties that are constrained to
a range of values. Figure 6 shows an excerpt the
metamodel which the boss models are produced in
accordance with. This excerpt omits secondary con-
cepts, relationships and properties that are not as
common or relevant as those presented in the fig-
ure. The metamodel contains more than 20 con-
cepts, over 20 relationships and more than 60 prop-
erties. A final boss model like the example in Fig-
ure 2 and in the example video for this research
(https://youtu.be/Vp3Zt4qXkoY) contains around
1300 elements.

Our approach encodes boss models as bi-
dimensional matrices, in which columns correspond
to the hulls that could be used in the model and in
which each row indicates present or absent elements
as well as properties:

Elements: Figure 7 shows four of the elements
represented in our encoding. The presence or absence
of these elements is defined through binary values (1
and 0, respectively). For instance, in the example
shown in Figure 7, Hu110 would not be present in the
model and Hull2 would have a turret.
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Figure 6: Excerpt of the Metamodel of the boss models.
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Figure 7: Example of encoding for boss models.

Properties: The second row in Figure 7 shows a
row with non-binary values that correspond to link
relationships. This property indicates the parents
that the hull is linked to. For instance, H3 of Fig-
ure 7 means that Hul12 and Hull3 are linked in a way
that Hull2 acts as a parent in the hierarchy. In ad-
dition, the encoding used by our approach represents
hulls that do not depend on other hulls via links (root
hulls) with values of -1 for that property, as shown in
Figure 7.

4.8. Genetic Operations of the EMoGen Approach

Our EMoGen approach generates new models us-
ing some of the existing ones in the population as
parents. This process is supported by genetic oper-
ators that are adapted to work with the EMoGen
encoding that represents models.

First, it is necessary to select the parents from the
model population before applying the genetic opera-
tors. The fittest of the potential parents are selected
using the fitness value calculated for each model in
the population.

Crossover: The crossover operation mixes the
content of two models to create a new one. The new
model takes a first random half with size n from the
first parent and a second half with size S - n from
the second parent, with S being the total size of the
model.

Mutation: This operator is named after the mu-
tations found in biology. These mutations make in-
dividuals show non-inherited modifications in their
genes due to random factors. In our EMoGen ap-
proach, the mutation operation is applied on the new
models that are created through crossover operations;
however, changes depend on a certain probability, so
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they do not always occur. Due to the nature of the
encoding used by our approach, mutations add and
remove elements from the model and change proper-
ties.

Repair: Finally, after crossover and mutation
have modified the genetic material of the individu-
als, inconsistencies may appear. For instance, when
the crossover operation is applied, a link to a hull
can be "broken”, resulting in a new individual that
is pointing to a hull that is not activated. Incon-
sistencies of this kind will prevent the model from
being loaded into the game since it will fail to pass
the model interpreter validation. The repair oper-
ator mitigates inconsistencies, making small modifi-
cations to the individuals, like modifying links that
point nowhere. We do not claim to have a complete
catalogue of repairs that guarantees that the result-
ing model will be accepted by the model interpreter.

5. Evaluation

This section presents the evaluation performed to
determine if EMoGen can help game developers when
creating the models for video games. In past works,
there are four types of studies explained by Basili
[52] and Travassos [53]. They refer to in-silico, in-
vivo, in-vitro, and in-virtuo. More recent works used
models as experimentation units [54] within in-virtuo
experiments [55], but in this work we perform an in-
silico experiment, in order to minimize the interaction
with humans, and, therefore, favour the replicability
of the study [53].

We defined the experimental design of the evalua-
tion following the Goal-Question-Metric (GQM) [52]
method. The GQM method defines a measurement
model on three levels: a set of goals (the conceptual
level) defined through a set of questions (the opera-
tional level) that can be answered through a set of
metrics (the quantitative level). Following the tem-
plate proposed by Basili et al. [56], we set three goals,
which are defined through five questions that can be
answered using seven metrics (see Figure 8). Apart
from wall clock time, which is necessary to evaluate
the time needed by our approach and the develop-
ers to generate models, a set of indicators of game
quality described and widely used in the literature of
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Figure 8: Application of the Goal Question Metric method for the evaluation

video game research are used to answer the questions.
We use the six indicators that Browne et al. studied
and recommended for being the most relevant [57].
Specifically, Browne et al. correlated 57 different
quality indicators with players rankings. At the end,
six of them stand out as the most important: Com-
pletion, Duration, Uncertainty, Killer Moves, Perma-
nence, and Lead Change. Each of those metrics is
measured using the characteristics of the case study.
The suitability of a boss model is assessed studying
the data obtained from a duel between the boss and a
simulated player. That data provides values that are
used in order to measure the metrics: the duration
of a duel, the player victory percentage, the amount
of relevant events in a match, and the health level of
the player after the end of a duel.

Goal 1 is to determine if the quality level of the boss
models produced by EMoGen is comparable to the
quality of the boss models produced by developers.
To determine this, we define two questions: Q1-What
is the quality of the models generated by EMoGen?,
and Q2-What is the quality of the models produced
by developers?. The quality will be assessed using a
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set of six metrics that are widely used in the literature
to assess the quality of games.

Goal 2 is to determine the impact of the seed strate-
gies on the quality of the boss models generated by
EMoGen in comparison to the quality of the boss
models produced by the developers. The seeds are
boss models that the evolutionary algorithm in our
approach is fed with as starting points. To determine
this impact, we define a new question: Q3-What is
the quality of the models generated when each seed
strategy is applied?. The quality level will be as-
sessed as with Q1 and Q2, using six metrics from the
literature.

Goal 3 is to determine if the time needed by
EMoGen to generate boss models is reduced in com-
parison to the time needed by the developers to pro-
duce boss models. To determine this, we define two
questions: Q4—How much time do developers need to
produce the models? and Q5-How much time does
EMoGen need to generate the models?. These two
questions will be assessed by measuring the wall clock
time.

The following subsections present a description of



the experimental setup, the metrics used to answer
the questions, the details of the implementation, and
the results.

5.1. Ezxperimental Setup

Figure 9 shows an overview of the evaluation pro-
cess followed. The first step of the evaluation is the
extraction of information from the oracle that is pro-
vided by the developers of Kromaia (see top-left of
Figure 9). The developers provided the set of final
boss models and a set of seeds that is used by the
approach to generate the initial population. Specifi-
cally, we use two types of seeds:

Final Boss: The type of boss that the player can
find at the end of the level. Each final boss con-
tains around 1300 model elements. The developers
provided five different final bosses.

Miniboss: Enemies with less relevance in the
game than a final boss but that are also built fol-
lowing the same stages and language (SDML). Each
Miniboss contains around 500 model elements. The
developers provided five different Minibosses.

Then, we perform a sanity check; we execute a ran-
dom search to determine if the search space is large
enough to benefit from the application of an evolu-
tionary algorithm such as the one proposed here or a
simple random search that is able to yield good re-
sults. To ensure a fair comparison, the random search
is allocated with a budget that is similar to the one
used by our approach. Specifically, the budget is in
terms of the number of times the fitness function is
executed as suggested in the literature [58].

Our approach is executed seven times, using a dif-
ferent seed strategy each time:

100R: The whole initial population is randomly
generated so the seeds from the oracle are not used
in this execution.

1F: A single final boss is randomly selected, out of
the 5 available, and provided as initial seed. To gen-
erate the initial population, the seed is encoded as an
individual and the rest of the population is obtained
through the application of the mutation operation to
the individual.

1M: A single Miniboss is randomly selected, out of
the 5 available, and provided as initial seed. To gen-
erate the initial population, the seed is encoded as an
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individual and the rest of the population is obtained
through the application of the mutation operation to
the individual.

5F: The five final bosses are provided as initial
seed. Similarly, the five final bosses are encoded as
five individuals and the rest of the population is ob-
tained through mutations of those five individuals.

5M: Similarly, the five Minibosses are provided as
initial seed, encoded, and mutated to obtain more
individuals and to complete the population.

95R+5F: The five final bosses are provided as ini-
tial seed. The five final bosses are encoded as indi-
viduals, but the rest of the population is randomly
generated.

95R+5M: Similarly, the five Minibosses are pro-
vided as initial seed and encoded as individuals. The
rest of the population is randomly generated.

As suggested in the literature [59], each execution
of the approach is repeated 30 times to compensate
for the stochastic nature of evolutionary algorithms.
Then, the resulting boss models are measured us-
ing the six Quality measurements [60, 61, 62, 63,
64, 65, 66, 67, 68] (see the middle part of Figure 9).
Similarly, the Boss Models obtained from the oracle
are also subject to the same quality measurements.
Then, all of the results are compared and statistically
analyzed to determine the significance of the results.

In order to define the mathematical expressions
that represent each of those quality measurements
for the game studied, Kromaia, different tests and
surveys were conducted with more than 30 users who
belonged to the main target audience of the commer-
cial case study.

The company responsible for the development of
Kromaia provided data from their Version Control
System with the help of the two engineers who pro-
duced and modified the boss models until the ver-
sions included in the final product were completed.
These engineers have worked in the video game in-
dustry for 15 years and were informed of the purpose
of the present work. Additionally, they signed a con-
sent form before the data was used in this research.
The company and these engineers collaborated in this
work in order to research on possible improvements
in the boss production process.
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5.2. Quality measurements

Previous research works have formalized funda-
mental and measurable indicators of game quality,
like Depth and Decisiveness [60], Tension [64], Inter-
estingness [61], Uncertainty [62], or Interaction [63].
In a more recent research done by Browne et al., the
experimentation with game users showed that the
following criteria stand out as being the most im-
portant: Completion, Duration, Uncertainty, Killer
Moves, Permanence, and Lead Change [57]. Our eval-
uation measures these criteria with values in the in-
terval [0,1].

Completion (Viability): A game against a boss
unit should end with more conclusions (victories for
either the player or the boss) than draws/ties. The
criterion Qcompletion calculates a ratio of conclusions
over total duel count:

Conclusions

Duels (5)

QCompletion =

Duration (Viability): The duration of duels be-
tween players and boss units is expected to be around
a certain optimal value. For the video game case
study, through tests and questionnaires with players,
the developers determined that concentration and en-
gagement for an average boss reach their peak at ap-
proximately 10 minutes (Toptimai), Whereas the max-
imum accepted time was estimated to be 20 minutes
(2 * Toptimalr). Significant deviations from that ref-
erence value are good design-flaw indicators: short
games are probably too easy; and duels that go on
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a lot longer than expected tend to make players lose
interest. The criterion Q) pyration 1S & measure of the
average difference between the duration of each duel
(Tq) and the desired, optimal duration (Toptimai):

Duel
%E: s [ Toptimar—Tal
TOptim,al
QDuration = Clamp[o 1] 1- 4=l
’ Duels

(6)
Uncertainty (Quality): In order to keep play-
ers engaged with a duel, neither the player nor the
boss unit should get extremely close to victory or de-
feat too early before the duel is settled, with (T})
being its duration. Therefore, a duel is considered
to be more uncertain the longer the time until the
player’s or the boss unit’s health levels reach a dan-
gerous/critical status (P; and By, respectively). For
each duel, Quncertainty measures the average devia-
tion between the time at which it is detected that
one of the contenders is on the verge of defeat and
the time corresponding to the duration of the duel.

Duel
f * Ty—min(Py,Ba)
Tq
inty = Cl 1-— 4=t
QUncertaznty = CLampio,1] - Duels

(7)

Killer Moves: Qg poves measures the proportion
of killer moves by any contender (K), taking into ac-
count the moves that are considered to be remarkable



highlights (H) but that are less important than killer
moves. In the video game case study, the develop-
ers considered that a highlight move happens when
either the boss unit or the player experiences a de-
crease in health; killer moves are those that make
the difference in health between the contenders reach
30%.

1- (8)

QKMovcs = Clamp[o,l]

Permanence: Duels with a high permanence
value are games in which the advantages given by
significant actions or moves by one of the contenders
are unlikely to be immediately reverted by the op-
ponent in terms of dominance. In the video game
case study, the developers considered every highlight
move and killer move to be meaningful actions, with
recovery moves (R) being those that quickly cancelled
the advantages given by other previous killer or high-
light moves. The criterion Q permanence 1S measured
as follows:

Duels

> ik
Hg+K,

= d d

1—
Duels

(9)

QPermanence = Cla'mp[o,l]

Lead Change: The lack of lead changes indicates
low dramatic value. In the video game case study,
the lead is determined at any given moment by con-
sidering the contender with the highest health level.
This criterion is measured taking into account those
highlight or killer moves that cause the lead to change
(L) during the course of a duel:

QLChange = clampyg 1)

Our approach evaluated these six (N) criteria for
each boss unit that is included in the commercial re-
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lease of the video game case study in order to obtain a
quality threshold that is useful for verifying whether
the results obtained by our approach reach the same
quality levels. Qouyerqn calculates an average quality
value for a model, including all of the quality criterion
studied:
N
Zl Qi
i=
L (11)
The above quality measure is used to determine
how many of the models produced by our approach
are comparable in quality to those present in the case
study.

QOverall =

5.8. Implementation Details

In order to implement the approach, we used the
TinyXML parser to process SDML models. In addi-
tion, the specifications of the computer used in the
evaluation process were the following: Toshiba Satel-
lite Pro L830 laptop, with an Intel®) Core™ i5-3317U
processor with 4GB RAM and Windows 8 64bit.

For the parameters of the EA, since the focus of
this work is not the tuning of parameters, we used
values from the literature that have proven to provide
good results with models [49, 50, 51]. The mutation
probability (p,,) depends on the number of hulls in
the boss: 1/(Hulls Number).

In general, there are two atomic types of perfor-
mance measures that are used to evaluate search al-
gorithms: measures regarding speed and measures
regarding quality of the solution. Since the focus
of this paper is on the quality of the solution, we
allocated a budget for each execution of the ap-
proach. Specifically, after running some prior tests,
we identified the time of convergence, which is the
point where the search reaches the peak and no fur-
ther improvements occur, to be around 40 minutes
of execution. To ensure convergence, the amount
of wall clock time for each of the runs was set to
one hour. A prototype of EMoGen can be found at:
https://bitbucket.org/svitusj/EMoGen

5.4. Results:

Figure 10 shows the results of the execution of
our approach for each of the seven combinations of
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Figure 10: The results of the application of EMoGen with seven different seed strategies to generate final boss models. The
results are grouped based on the 6 quality measures; the horizontal line in each group represents the value obtained by the

original final boss models from Kromaia.

seeds and population strategy (100R, 1F, 1M, 5F,
5M, 95R+5F, 95R+-5M). The executions are grouped
to show the performance for a specific quality mea-
surement (Completion, Duration, Uncertainty, Killer
Moves, Permanence, Lead Change). The last col-
umn, with shaded background, shows the average of
all of the quality measures for each execution. In ad-
dition, each population strategy for a specific quality
is crossed by a horizontal line that indicates the value
obtained by the human-generated final boss models
that were obtained from the Kromaia oracle (see top-
left of Figure 9).

Each boxplot is generated from the results of 30
executions [59] where each execution yields 100 in-
dividuals as a result. Therefore, each boxplot repre-
sents 3000 values of a specific quality in a final boss
model. Figure 10 shows in each column how the qual-
ity values obtained for each of the seven strategies
studied differ from the values for the models gener-
ated by the developers, which are represented by the
horizontal lines that cross each column. The boxplots
that are closer to the horizontal lines are more similar
in quality to the models produced by the developers.

Additionally, the use of boxplots allows for the rep-
resentation of the different results for the strategies
used.

Similarly, Table 1 shows the values obtained by
each seed strategy (rows) and each of the quality mea-
surements (columns). Each value is reported from 0
to 1, which are the worst and best possible values,
respectively.

In addition, the first row shows the results for the
sanity check: a Random search executed with a bud-
get that is similar to our approach in terms of fitness
executions (i.e., 3 million fitness executions). The
purpose of the sanity check is to determine whether
there is a need for a complex search strategy or the so-
lutions to the problem can be found by mere chance.
In our case, none of the individuals that were gen-
erated as part of the random search were able to be
validated by our model interpreter; therefore, their
score is 0.

The answer to Q1, which asks about the qual-
ity of the models generated by our approach, can be
seen in the boxplots of Figure 10 and in Table 1: they
show the values of each of the metrics for the different

17



seed strategies. Similarly, the answer to Q2, which
asks about the quality of the models produced by de-
velopers, can be seen as the horizontal lines of Figure
10, which cross each column 10, and the associated
values from Table 1 (last row, Kromaia Oracle). To
address Goal 1, we compared the results obtained by
our approach with those from the oracle. The val-
ues were similar, particularly in terms of the overall
quality, with differences of around 5% at maximum.
Therefore, we can conclude that the approach is able
to generate final boss models that are comparable
to those from Kromaia, the video game case study,
whose final boss models were created manually by
software engineers.

5.5. Statistical Analysis

To answer Q3 and to compare the impact of each
of the seed strategies on the quality of the results, the
empirical data was analyzed following the guidelines
from the literature [69]. The statistical analysis in-
cluded a significance test, the corresponding post-hoc
analysis, and an effect size measure.

5.5.1. Statistical Significance

We applied a statistical test to the results of the
seven seed strategies to determine if there were sig-
nificant differences among the final boss models pro-
duced in terms of the quality measurements presented
(i.e., the differences in the results were not obtained
by mere chance).

After running the approaches a large enough num-
ber of times (30 as suggested by the literature [69]),
we applied the Quade test since our data does not
follow a normal distribution and the Quade test has
proven [70] to be better than the rest of the non-
parametric tests when working with real data.

The Quade test results in a p-value between 0 and
1, with 0 indicating that there are significant differ-
ences among the different seeds strategies and 1 indi-
cating that there are no such differences. The thresh-
old accepted by the research community is 0.05 [69],
meaning that p-values below that number are statis-
tically significant.

The results of the Quade test give a p-value below
the 0.05 threshold for all of the measurements (<
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2.22010716) indicating that the differences observed
in the results are significant enough to be caused by
the seed strategy and are not due to mere chance.
The test was not applied for the Completion quality
measure since all of the results were 1 and there was
no variance.

5.5.2. Post-hoc analysis

The Quade test only determined that there are dif-
ferences among all of the seed strategies. To identify
the specific seed strategies yielding significant differ-
ences, we applied a post-hoc analysis. This analy-
sis consists of pair-wise comparisons of the results of
each seed strategy to determine if there are statisti-
cally significant differences among the results of each
pair of strategies.

We applied the Holm’s post-hoc analysis, which is
the most common post-hoc analysis applied after a
Quade test [71]. Again to interpret the results, a
value below 0.05 indicates that the differences be-
tween the two strategies are significant enough to be
considered to be caused by the seed strategies. Table
2 shows the results of the post-hoc analysis. Each
column shows the p-value for a specific quality mea-
surement, while each row shows one of the pair-wise
combinations of two seed strategies (the order does
not matter for this test). Table 2 shows only the
pairs of seed strategies that obtained values above
0.5, which cannot be considered significant enough
to determine that the differences are due to the seed
strategy. Pairs of strategies not shown in the table
obtained values below 0.5 for all of the measurements,
so the differences are due to the seed strategy applied.

For instance, the differences between 1M and
5M seed strategies cannot be considered significant
enough for some of the measurements like uncer-
tainty, killer moves, permanence, or lead change (see
row labeled as 1M vs 5M in the middle of Table 2). It
is common to obtain these results because the differ-
ences between some pairs of seed strategies are subtle.

These results partially answer Q3. Taking into ac-
count the differences in the results from Table 1 and
the fact that they are significant as shown by the
Holm’s post-hoc analysis (see Table 2), we can con-
clude that the selection of the seed strategy does have



Table 1: Mean Values and Standard Deviations for each of the quality metrics (columns), and each of the seed strategies (rows).
The seed strategies that achieve the best and worst results for each metric are highlighted in grey.

COMPLETION DURATION UNCERTAINTY KILLER MOVES PERMANENCE LEAD CHANGE OVERALL
Random Search 0+0 0+0 0+0 0+0 0+0 0+0 0+0
100R 1+0 0.21 £+ 0.01 0.07 + 0.08 0.77 £+ 0.04 0.95 + 0.01 0.28 + 0.13 0.55 £+ 0.04
1F 1+0 0.28 £+ 0.02 0.36 + 0.04 0.93 £ 0.01 0.95 £+ 0.01 0.10 £+ 0.01 0.60 £ 0.01
1M 1+0 0.16 £+ 0.02 0.30 + 0.03 0.88 £+ 0.01 0.92 £+ 0.01 0.18 £+ 0.02 0.57 £+ 0.01
5F 1+0 0.53 £+ 0.05 0.30 £+ 0.07 0.89 £+ 0.01 0.94 £+ 0.01 0.21 £+ 0.03 0.64 £ 0.02
5M 1£0 0.26 &+ 0.02 0.28 + 0.04 0.88 + 0.01 0.92 + 0.01 0.18 + 0.02 0.59 + 0.01
95R+5F 1+0 0.17 £ 0.02 0.23 £+ 0.07 0.79 £ 0.02 0.90 £ 0.02 0.34 £+ 0.05 0.57 £ 0.01
95R+5M 1+0 0.13 £ 0.01 0.05 £+ 0.03 0.78 £ 0.01 0.93 £+ 0.01 0.35 £+ 0.04 0.54 £+ 0.01
Kromaia Oracle 1 0.41 0.10 0.91 0.97 0.11 0.58

Table 2: Holms Post Hoc pValues for each quality metric (columns) and each pair of seed strategies (rows) whose value is
above the threshold (0.05). Missing pairs of seed strategies obtain values below the threshold and are omitted for legibility.

DURATION UNCERTAINTY KILLER MOVES PERMANENCE LEAD CHANGE OVERALL
100R vs 1F < 22210716 < 22210716 < 22210716 0.116 < 22210716 < 22210716
100R vs 95R+5M < 22210716 0.36651 1.321076 2.32x10~12 0.0033 1
1M vs 5F < 22210716 0.36651 0.092 < 2.2210716 2121077 < 2.2¢10716
1M vs 5M < 22210716 0.36651 0.726 0.998 0.8621 5.3210~¢
1M vs 95R+5F 0.367 8.62x1077 < 2.2210716 9.92107° < 2.2210716 1
95R+-5F vs 95R+5M 1.82101° 8.8x10~16 0.187 < 22210716 0.8621 1.8210~ 11

an impact on the quality of the final boss model pro-
duced in terms of the quality measurements included
in this study.

5.5.8. Effect Size

It has been proven that statistically significant dif-
ferences can be obtained even if they are so small as
to be of no practical value [69]. To completely study
Goal 2, we analyzed the effect size to determine the
magnitude of the improvement of one seed strategy
over the others. To do this, we measured the Vargha
and Delaneys A;5 non-parametric effect size [72, 73].
Ajs can be used to measure the probability of one
seed strategy yielding better results than another one
in terms of the quality measurements analyzed.

The Aqo between a pair of seed strategies is ex-
pressed as a value between 0 and 1 and indicates the
probability of the first seed strategy yielding better
results than the second. Table 3 shows the Ajs re-
sults for each pair of seed strategies and measurement
(i.e., if the results showed significant differences in
the Holm’s test). Extreme values indicate where the
higher differences reside and are highlighted. The
values above 90% are shown in dark grey, and the
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values below 10% are highlighted in light grey.

For instance, the fourth row (Table 3) is labeled as
100R vs 5M, so each of the cells shows the percent-
age of times that applying the 100R seed strategy
produces better results than applying the 5M seed
strategy for a specific quality measurement. For in-
stance, the value of Duration (first column) is 1.38%,
so 100R yields better Duration values than 5M only
1.38% of the times. It is important to note that the
values can be read both ways, so the 5M strategy
produce better results than the 100R strategy for the
Duration quality measurement 98.62% of the times.

To address Goal 2, which deals with determin-
ing the impact of the seed strategy on the quality
of the boss models, we need to answer Q3, which
asks about the quality of the models for each of the
strategies studied: On average, the 5F seed strat-
egy provides the best results (better than any other
strategy 99% of the times), followed by the 1F strat-
egy (around 80% of the times), followed by the 5M
strategy (around 60% of the times), followed by 1M
and 95R+5F (around 40% of the times), followed by
the 100R (around 20% of the times) and the 95R+5M
strategy (only around 12% of the times).



Table 3: The Ay statistic for each quality metric (columns) and pair of seed strategies (rows) with significant differences
according to the Holms post hoc. Values above 90% are highlighted in dark grey and values below 10% are highlighted in light

grey.
DURATION UNCERTAINTY KILLER MOVES PERMANENCE LEAD CHANGE OVERALL
100R vs 1M 1.68 % 0% 23.04 %
100R vs 5F 0% 3.16 % 0% 77.11 % 65.7 % 3.04 %
100R vs 5M 1.38 % 2.74 % 0% 22.68 %
100R vs 95R+5M 45.72 % 25.82 % 82.74 % 23.24 % 29.31 %
1F vs 1M 88.92 % 0%
1F vs 5F 0% 75.90 % 0% 2.67 %
1F vs 5M 72.06 % 0%
1F vs 95R+5F 0%
1F vs 95R+5M 0%
1M vs 95R+5M 15.29 % 0%
5F vs 5M 59.51 % 84.82 %
5F vs 95R+5F 76.89 % 0.74 %
5F vs 95R+5M 68.26 % 0.06 %
5M vs 95R+5F 82.76 % 0.19 %
5M vs 95R+5M 14.71 % 0.02 % L9927 %

To address Goal 3, which deals with determin-
ing if the time needed by the developers to generate
boss models is reduced by our approach, we need to
answer Q4 and Q5, which ask about the time that
the developers and our approach need in order to
produce boss models, respectively: It was necessary
to analyze the Version Control System used by the
developers to determine the time that was originally
spent to build the five final boss models. The sum
of the time spent in the three development stages in-
volved in this study (Spatial Organization, Behaviour
Specification, and Equipment Balance) that led to
the original final bosses that were commercially re-
leased was 10 months. Our approach needed approx-
imately one hour for the execution of each of the seed
strategies. Therefore, to have a fair comparison, we
would need to execute the EA five different times to
generate five different final bosses, as in the original
game, resulting in five hours. In other words, the ap-
proach is able to yield comparable results in less than
a thousandth part of the original time required.

6. Discussion

Before conducting the experiment studied in this
work, we thought that human-competitive results
might be achievable by taking one or several final

boss models as the starting point. This coincides
with the idea of Genetic Improvement [74], for which
the results are obtained using seeds that are similar
enough to solutions. Paradoxically, the main disad-
vantage associated to using final boss models as seeds
is that it is necessary to obtain those models in ad-
vance, and it is time-consuming for humans to gen-
erate such complete models. A random sample taken
from the results suggested that using final boss mod-
els as seeds could lead to final bosses that are very
similar to those seeds, which is another disadvantage
if the final bosses only provide small variations in-
stead of new, varied video game content that is found
to be engaging and not repetitive by users.

We also used miniboss models as seeds. These
models include over 500 model elements, whereas a
final boss model could involve around 1300 model
elements. Using various different miniboss models
as seeds shows that the final boss models obtained
include characteristics found in the seeds. These
bosses, which are significantly less complex to design,
could be useful for controlling the characteristics in
the final boss models generated. However, we must
study this possibility carefully in future works.

We also tested our approach with an initial popu-
lation that consisted of models that were generated
randomly. The combination of our fitness and re-
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pair operations makes it possible for these models to
evolve in order to achieve models that are comparable
to those provided by the developers. This coincides
with the idea of Genetic Programming [75], which
generates a complete program using genetic encod-
ing. In our case, this is Genetic Software Modeling
since, in our work, we deal with software models. The
results obtained in our work do not claim that it is
possible to obtain a complete model of a whole video
game with our EMoGen approach. However, our re-
sults do show that it is possible to perform Genetic
Software Modeling to achieve results that are com-
parable to the bosses in the commercial releases of
Kromaia. This is feasible because we apply our ap-
proach to models, which have less noise than source
code because software models abstract from imple-
mentation details.

An issue to be addressed in the future is the use of
our approach in other industrial contexts. Commer-
cial engines, like Unity [9] or Unreal, which uses its
own DSL named BluePrints [8], are widely adopted
by development teams, and their architecture is simi-
lar to that shown in Figure 4. These DSLs are similar
to SDML in terms of level of detail, and allow for the
description of every element present in a game. Since
the ideas proposed in this work are general, their ap-
plication to different commercial DSLs is part of our
future work.

7. Threats to validity

Following the guidelines suggested by De Oliveira
et al. [76], we have identified the following threats to
validity:

Not accounting for random wvariation: We ad-
dressed this threat by performing 30 runs for each
of the executions of our approach.

Lack of a meaningful comparison baseline: We ad-
dressed this threat by comparing our approach with
a random search and also by comparing the results
with the final bosses from the developers of the com-
mercial release of the video game case study.

Lack of clarity on data collection: We addressed
this threat by using the data provided by the SDML
models of the contenders to perform the simulation
and two main indicators that were obtained from the

21

developers and used to give value to configurations:
victory percentage and health level.

Lack of real problem instances: The case study
used in the evaluation is an industrial video game,
and the problem artifacts were directly obtained from
the video game industry.

Lack of assessing the validity of cost measures: We
performed a fair comparison between the final bosses
from Kromaia and the bosses generated by our ap-
proach, studying the time spent by the developers
and our algorithms to obtain the results.

Lack of assessing effective measurements: We ad-
dressed this threat by using quality measures that
are presented in the literature of video game research
[57].

8. Conclusion

Our EMoGen approach produces content for video
games, whole models of final bosses that could be
used in Kromaia, the video game case study. The
production of these models is relevant for the cre-
ation of the video game, and processes like updates
or expansions, which are demanding in terms of qual-
ity and release schedule.

The quality of the bosses obtained by our approach
is comparable to that achieved by the professional
video game developers that produced the final bosses
that were included in the commercial release of the
case study.

The results show that the seeds used, the final boss
models which the evolutionary algorithm of our ap-
proach is fed with as starting points, have an impact
in the quality of the bosses produced: the use of the
final bosses or minibosses included in the commer-
cial video game case study helps our approach obtain
boss models of higher quality in comparison to those
produced when the seeds are random models.

EMoGen, which uses DSL models, propose ideas
which do not make our approach depend on the video
game studied in this work. Therefore, the applicabil-
ity of our approach could be studied in the context
of other commercial frameworks.

Our approach only takes five hours of unattended
time in comparison with ten months of work by



the video game developers. Our work also of-
fers a relevant result for genetic software modeling
since human-competitive software models can even be
achieved from randomly generated models, i.e., with-
out a starting modeling effort from developers. We
have made two model examples and an implementa-
tion of EMoGen freely available in order to facilitate
the adoption of our approach.
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