
Playing Regex Golf with Genetic Programming

Alberto Bartoli
DIA - University of Trieste

Italy
bartoli.alberto@units.it

Andrea De Lorenzo
DIA - University of Trieste

Italy
andrea.delorenzo@phd.units.it

Eric Medvet
DIA - University of Trieste

Italy
emedvet@units.it

Fabiano Tarlao
DIA - University of Trieste

Italy
fabiano.tarlao@phd.units.it

ABSTRACT
Regex golf has recently emerged as a specific kind of code
golf, i.e., unstructured and informal programming competi-
tions aimed at writing the shortest code solving a particular
problem. A problem in regex golf consists in writing the
shortest regular expression which matches all the strings in
a given list and does not match any of the strings in another
given list. The regular expression is expected to follow the
syntax of a specified programming language, e.g., Javascript
or PHP.

In this paper, we propose a regex golf player internally
based on Genetic Programming. We generate a population
of candidate regular expressions represented as trees and
evolve such population based on a multi-objective fitness
which minimizes the errors and the length of the regular
expression.

We assess experimentally our player on a popular regex
golf challenge consisting of 16 problems and compare our
results against those of a recently proposed algorithm—the
only one we are aware of. Our player obtains scores which
improve over the baseline and are highly competitive also
with respect to human players. The time for generating
a solution is usually in the order of tens minutes, which is
arguably comparable to the time required by human players.

Categories and Subject Descriptors
I.5.4 [Pattern Recognition]: Applications—text process-
ing ; H.4.1 [Information Systems Applications]: Office
Automation—word processing

Keywords
Regular Expressions, Genetic Programming, Programming
by Example, Machine Learning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
Copyright 2014 ACM 978-1-4503-2662-9/14/07 ...$15.00.
http://dx.doi.org/10.1145/2576768.2598333 .

1. INTRODUCTION
Regex golf has recently emerged as a specific kind of code

golf, i.e., unstructured and informal programming competi-
tions aimed at writing the shortest code solving a particular
problem. A problem in regex golf usually consists in writing
the shortest regular expression which matches all the strings
in a given list and does not match any of the strings in an-
other given list. Examples of such lists could be the names of
all winners of an US presidential election and of the names
of all losers (the specific constraints on the contents of these
lists will be clarified later, e.g., their intersection must be
empty). A trivial way for generating systematically a regular
expression with these requirements consists in building a
disjunction of all the desired matches—i.e., all the matches
glued together by the | character which, in common regex
syntax, means “or”. To reward non trivial solutions, the
score assigned to a given solution is higher for more compact
expressions.

There has recently been a growing interest toward regex
golf in the programmers’ communities, motivated more by
the challenge itself than by the actual utility of any given
problem. Such interest has been fueled further by a blog post
of a famous researcher—Peter Norvig—in which a simple yet
powerful algorithm for solving regex golf problems systemat-
ically is proposed [16]. Norvig points out that problems of
this sort are related to set cover problems, which are known
to be NP-hard, and describes a greedy algorithm which is
very efficient and works well in a number of cases, while at
the same time identifying the fundamental trade-offs made
in his proposal.

In this paper, we propose a methodology based on Genetic
Programming (GP) for generating solutions to regex golf
problems—a regex golf player. We generate a population
of candidate regular expressions represented as trees and
constructed with carefully selected regular expression opera-
tors and constants. We evolve such population based on a
multi-objective fitness which maximizes the correct handling
of the provided matches and unmatches while minimizing the
length of the regular expression represented by the individual.

We implemented our proposal and assessed its performance
on a recently proposed suite of 16 regex golf problems which
is very popular. We used as baseline the algorithm proposed
by Norvig—the only one we are aware of—and an existing
GP-based system for generating regular expressions for text
extraction tasks by examples [3]. Our proposal compares
very favorably to the baseline and obtains the highest score

on the full suite. We also attempted the construct a baseline
based on scores obtained by human players, which is difficult
because no structured collections of human players results are
available: however, we collected several results by crawling
the web and found that our proposal is ranked in the top
positions.

A prototype of our regex golf player is available at http:

//regex.inginf.units.it/golf.

2. RELATED WORK
The only algorithm explicitly designed for solving regex

golf-related problems which we are aware of is the one by
Peter Norvig mentioned in the introduction. We used this
algorithm as baseline for our proposal.

Several proposals for learning regular expressions from ex-
amples exist for text extraction problems [18, 13, 1, 12, 5, 2,
3]. Text extraction from examples is radically different from
regex golf in several crucial points. First, regex golf assumes
an input stream segmented so that the input strings listed
in the problem specification are processed by the solution
one segment at a time. Text extraction requires instead
the ability to identify and extract specific portions from a
longer stream. In other words, regex golf consists in binary
classifying input strings whereas text extraction requires the
identification in the input string of the boundaries of the
substring(s) to extract, if any. Second, a regex golf problem
places no requirements on how strings not listed in the prob-
lem specification will be classified. Text extraction requires
instead a form of generalization, i.e., the ability of inducing
a general pattern from the provided examples. Third, text
extraction requires the ability to identify a context for the
desired extraction, that is, a given sequence of characters
may or may not constitute a match depending on its sur-
roundings. A requirement of this form is not meaningful in
regex golf.

For example, a regex golf problem requiring the match of
all winners of US presidential elections and no loser may be
solved with a disjunction of ls and several short regexes [16].
Such a regular expression is not useful for the text extraction
problem, because applying it to a superstring of a winner
would provide no information about the substring which actu-
ally identifies the winner. Furthermore, any string containing
the substring ls will thus be matched by the regex. On the
other hand, a regex generated for text extraction might be
applied to regex golf but it would be largely suboptimal: the
solution generation process must induce a general pattern
and there is clearly no syntactical pattern capable of pre-
dicting the names of future US presidents. In other words,
learning approaches tailored to text extraction purposefully
attempt to prevent any overfitting of the examples which is
instead a necessity in regex golf.

Our proposal builds on the text extraction method in [3],
which we modified and specialized by taking the specific
requirements of regex golf into account. We included the cited
method in the baseline because, although it was designed
for a different problem, it is available as a webapp1 and its
inclusion demonstrates that solving regex golf effectively calls
for a specialized solution.

Another proposal for learning regular expressions from
examples is [6], but this work considers a problem whose
requirements are a mix of regex golf and text extraction.

1http://regex.inginf.units.it

On the one hand, the problem consists in merely classifying
input strings without the need of identifying the boundaries
of the matching substrings. On the other hand, the problem
assumes input streams not necessarily segmented in advance
at the granularity of the desired matches and unmatches.
Moreover, and most importantly, the cited work aims at
inferring a general pattern capable of solving the desired task
beyond the provided examples.

Since a regular expression may be obtained from a de-
terministic finite automata (DFA), approaches for learning
a DFA from labelled examples and counterexamples could
be used (e.g., [14, 4]; see [7] for a survey). On the other
hand, such proposals assume the number of states of the
target DFA is known and, most importantly, they are not
concerned with minimizing the length of the regular expres-
sion corresponding to the generated DFA. While approaches
of this form may deserve further investigation, they do not
appear to match the specific requirements of regex golf. Sim-
ilar remarks may be applied also to proposals for induction
of non-deterministic finite automata (NFA) from labelled
examples [10, 17].

Finally, regex golf might be seen as a problem in the
broader category of programming by examples (PBE), where
a program in a given programming language is to be synthe-
sized based on a set of input-output pairs. Notable results in
this area have been obtained recently for problems of string
manipulation [11, 15] and some of the corresponding algo-
rithms have been included in the latest release of Microsoft
Excel (Flash-Fill functionality). While such approaches are
able to deal with context-free grammars and are thus po-
tentially able to solve classification problems of the form
encountered in regex golf, they use an underlying language
which is much richer than regular expressions and thus may
not generate solutions useful for regex golf.

3. THE PROBLEM
While the term “regex golf” may indicate any challenge

requiring the generation of a regular expression, its usual
meaning is the one described in the introduction and formal-
ized as follows.

We consider strings constructed over a large alphabet α =
UTF-8. Strings may potentially include arbitrary characters
in the alphabet, including spaces, newline and so on. A
problem instance is defined by I = (M,U), where M and U
are sets of strings whose intersection is empty.

The problem consists in generating a regular expression
which:

1. matches all strings in M ;

2. does not match any string in U ; and,

3. is shorter than the regular expression constructed as a
disjunction2 of all strings in M .

Note that, for a given problem instance, it might not be
known whether a regular expression satisfying the above
requirements actually exists. Furthermore, given a solution
r′ satisfying the three requirements, it might not be known
whether there exists a shorter solution r′′ satisfying require-
ments 1 and 2.

2More precisely, the disjunction of all strings in M , where
each string is prefixed by the “start of string” anchor ^ and
postfixed by the “end of string” anchor $.

Solutions may satisfy requirements 1 and 2 in part. That
is, a solution might fail to match one or more strings in
M and/or match one or more strings in U . Solutions are
thus given a score quantifying their behavior in terms of the
desired matches and unmatches, as well as their compactness.

We use the score definition in http://regex.alf.nu, from
which we have also collected the suite of problem instances
for our experimental evaluation. The definition is as follows.
Let r be a candidate solution, let nM and nU denote the
number of elements in M and U , respectively, which are
matched by r. The score of r on instance I = (M,U) is:

wI(nM − nU)− length(r)

where wI is a statically defined value which is meant to
weigh the “difficulty” of the problem instance I. Note that
the numerical value of the score, as well as the range of
possible values, is problem instance-dependent and that a
solution may obtain a negative score.

4. OUR APPROACH
The system requires a description of the problem instance
I = (M,U) and generates a Javascript-compatible regular ex-
pression. A prototype is available at http://regex.inginf.

units.it/golf.
Our proposal builds on the text extraction method in [3],

which we modified and specialized by taking the specific
requirements of regex golf into account. We will summarize
the differences at the end of this section.

Every individual of the GP search process is a tree τ , where
labels of leaf nodes are taken from a specified terminal set
and labels of internal nodes from a specified function set as
follows.

The function set consists of the following regular expres-
sions operators (the central dot · represents a placeholder
for a child node): possessive quantifiers (·*+, ·++, ·?+ and
·{·,·}+), group (·), character class [·] and negated character
class [^·], concatenator ··—a binary node which concate-
nates its children—and disjunction ·|·. We did not include
greedy or lazy quantifiers [9] because, as indicated in [3], these
operators lead to execution times which are not practically
acceptable.

The terminal set consists of a set of terminals which do
not depend on the problem instance I and other terminals
which depend on I. Instance independent terminals are: the
alphabetical ranges a-z and A-Z, the start of string anchor ^

and the end of string anchor $, and the wildcard character ..
Instance dependent terminals are: all characters appearing
in M , partial ranges appearing in M , and n-grams.

Partial ranges are obtained as follows. We (i) build the
sequence C of all characters appearing in M (without rep-
etitions), sorted according to natural order; (ii) for each
maximal subsequence of C which includes all characters be-
tween subsequence head ch and tail ct, build a partial range
ch-ct. For example, if M = {bar, den, foo, can}, then the
partial ranges are a-e and n-o.

n-grams are obtained as follows. We (i) build the set N of
all n-grams occurring in M and U strings, with 2 ≤ n ≤ 4;
(ii) give a score to each n-gram as follows: +1 for each string in
M which contains the n-gram and −1 for each string U which
contains the n-gram; (iii) sort N according to descending
score and (iv) select the smallest subset N ′ of all top-scoring
n-grams such that the sum of their scores is at least |M |
and each individual score is positive. For example, if M =

|

(·) (·)

foo ··

··

b ·++

r

a

Figure 1: Tree representation of the regular expres-
sion (foo)|(ba++r).

{can, banana, and, ball} and U = {indy, call, name, man},
then the n-grams are an and ba, as they are the two top-
scoring n-grams and the sum of their scores is 2 + 2.

A tree τ is transformed into a string rτ which represents a
regular expression by means of a depth-first post order visit—
Figure 1 shows an example of a tree and the corresponding
regular expression (in the caption). In our implementation,
each regular expression is evaluated by the Java regular
expression engine, which works with possessive quantifiers.
However, the regex golf competition being considered accepts
only Javascript-compatible regular expressions and Javascript
regular expression engine does not work with possessive
quantifiers. Hence, we further transform rτ into a Javascript-
compatible regular expression by means of a mechanical
transformation [9].

The initial population is generated as follows. Let nP =
500 be the size of the population to be generated. For each
string s in M , we generate an individual corresponding to s,
built using only the concatenator node and single characters
of s as terminals. We generate the remaining nP − |M |
individuals randomly, with the ramped half-and-half method
and depth of 1–5 levels.

We drive the evolutionary search based on two fitness in-
dexes associated with each individual. Let r be an individual
and let nM and nU be the number of elements in M and
U , respectively, which are matched by r. The two fitness
indexes are: nM −nU , which has to be maximized (the upper
bound being |M |), and the length of r (in the Javascript-
compatible version), which has to be minimized. We use the
Non-Dominated Sorting Genetic Algorithm II (NSGA-II) [8]
to rank individuals according to their fitness values.

We evolve the population for a number of generations
ng = 1000, according to the following iterative procedure.
Let P be the current population. We generate an evolved
population P ′ as follows: 10% of the individuals are generated
at random, 10% of the individuals are generated by applying
the genetic operator “mutation” to individuals of P , and
80% of the individuals are generated by applying the genetic
operator “crossover” to a pair of individuals of P . We select
individuals for mutation and crossover with a tournament
of size 7, i.e., we pick 7 individuals at random and then
select the best individual in this set, according to NSGA-

Table 1: Salient information for the 16 problems.
Problem name |M | |U | wI Ideal score Best human score Best human solution

1 Plain strings 21 21 10 210 207 foo

2 Anchors 21 21 10 210 208 k$

3 Ranges 21 21 10 210 202 ^[a-f]*$

4 Backrefs 21 21 10 210 201 (...).*\1

5 Abba 21 22 10 210 193 ^(?!.*(.)(.)\2\1)

6 A man, a plan 19 21 10 190 177 ^(.)[^p].*$

7 Prime 20 20 15 300 286 ^(?!(..+)\1$

8 Four 21 21 10 210 199 (.)(.\1){3}

9 Order 21 21 10 210 199 ^.5[^e]?$

10 Triples 21 21 30 630 596 00($|3|6|9|12|15)|4.2|.1.+4|55|.17

11 Glob 21 21 20 420 397 ai|c$|^p|[bcnrw][bnopr]

12 Balance 32 32 10 320 289 ^(<(<(<(<<?>?>|.9)>)>)>)$

13 Powers 11 11 10 110 93 ^(?!(.(..)+)\1*$)

14 Long count 1 20 270 270 254 ((.+)0 \2?1){7}

15 Long count v2 1 21 270 270 254 ((.+)0 \2?1){7}

16 Alphabetical 17 17 20 340 317 .r.{32}r|a.{10}te|n.n..

Total 4320 4072

II. Finally, we generate the next population by choosing
the individuals with highest fitness among those in P and
P ′. The size of the population is kept constant during the
evolution. Upon generation of a new individual, we check
the syntactic correctness of the corresponding expression: if
the check fails, we discard the individual and generate a new
one.

In order to generate a solution for a problem instance I,
we evolve ne = 32 independent populations, with different
random seeds, obtaining 32 candidate regular expressions.
Finally, we choose the regular expression with the highest
score.

We remark the key features of our proposal (w.r.t. [3]):

1. a method for constructing the terminal set based on
the problem instance I, rather than being defined once
and for all;

2. a method for initializing the population based on the
problem instance I, rather than being completely ran-
dom;

3. a different functions set which includes, in particular,
a disjunction operator—which is difficult to use in text
extraction because it tends to promote overfitting;

4. fitness definitions based on the number of examples
handled correctly—definitions proven to be inadequate
for text extraction [3];

5. usage of all learning information for synthesizing candi-
date solutions, that is, without reserving any partition
as validation set for assessing the generalization capa-
bilities of those solutions.

5. EXPERIMENTAL EVALUATION
We considered the 16 problem instances along with the ac-

companying scores proposed in http://regex.alf.nu. Salient
properties of these instances are summarized in Table 1. The
table shows, for each problem instance, the ideal score—i.e.,
the score equal to wI |M | which could be obtained with a
zero-length regular expression matching all strings in M and
no strings in U . The table also shows, for each problem

instance, the highest score obtained by (different) human
players3.

5.1 Baseline
We used as baseline the algorithm by Peter Norvig, which

we call Norvig-RegexGolf, and the system for generating
regular expressions for text extraction presented in [3], which
we call GP-RegexExtract.

We provide a brief outline of Norvig-RegexGolf below.
Full details, including the (partially for fun) motivations
and design trade-offs can be found in [16]. The solution
for a given problem instance I = (M,U) is obtained as a
disjunction of a set of components, a component being a
short regular expression which matches at least one string
in M and does not match any string in U . Initially, a pool
of components is built with several heuristics, including the
generation of a component for each n-gram of each string in
M (up to n=4) and, for each such component, the generation
of a component for every possible substitution of a single
character with the dot character (meaning “match any” in
regular expression syntax). Next a set of components from
that pool is built, such that each string in M is matched by at
least one component in the set. Components in the resulting
set are then glued together by the or regular expression
operator |.

Concerning GP-RegexExtract, we reimplemented the al-
gorithm according to the details presented in [3] (see also
Section 2). We set those parameters which determine the
computational weight of GP to the same values for GP-
RegexExtract and GP-RegexGolf, in order to allow a fair com-
parison of the results w.r.t. computational weight: ne = 32,
ng = 500 and nP = 500. Note that GP-RegexExtract re-
quires that examples are partitioned in a training set and a
validation set: while using it as a regex golf player, we chose
to use half of M and half of U strings as training set, and
the remaining string as validation set.

5.2 Results

3The information is obtained from https://gist.github.
com/jonathanmorley/8058871.

We executed each of the algorithms on each problem in-
stance and computed the score of the corresponding solu-
tion. Table 2 summarizes the resulting scores, which are
presented as absolute value and as the percentage of the
ideal and the best human score associated with each problem
instance. Table 3 shows the regular expressions generated
by GP-RegexGolf for each problem.

It can be seen that GP-RegexGolf outperforms both Norvig-
RegexGolf and GP-RegexExtract: 3090 vs. −665 and 249,
respectively. In particular, considering individual problem in-
stances, GP-RegexGolf performs better than Norvig-RegexGolf
in 6 problems, worse in 8 problems and obtains the same
score in 2 problems. Despite obtaining a better score in 8
problems, Norvig-RegexGolf obtains a negative score on the
full suite because on three problems (7, 12 and 13) it is not
able to generate a non trivial solution: in these problems,
the regular expression generated by Norvig-RegexGolf is the
disjunction of all the M strings. Our algorithm, on the
contrary, generates non trivial solutions for these problems.
Concerning GP-RegexExtract, both its score on the full suite
and its score on individual instances make it clear that this
approach does not the requirements of regex golf.

Table 2 lists also, for each algorithm, the competitive ratio
of the solutions [16], defined as the ratio between the length
of a trivial solution (disjoining all the strings in M) and
the length of the corresponding solution. Note that this
index does not take matches or unmatches into account. It
can be seen that both Norvig-RegexGolf and GP-RegexGolf
generate solutions which are much shorter than the trivial
solution for several problems: regular expressions generated
by GP-RegexGolf are shorter than those of Norvig-RegexGolf
in 9 problems, longer in 5 problems and with the same length
in 2 problems.

Table 4 shows the time required by GP-RegexGolf and
GP-RegexExtract for generating a solution. It is similar
for all the problems (around 50 min) with the exception
of 13, 14 and 15. For the latter problems, in which M is
composed by very long strings, GP-RegexExtract attempts
to generate a regular expression which extracts (rather than
just matching) the each M string entirely: this leads to a
population composed by very long regular expressions which
require long times to be evaluated. The time required by
Norvig-RegexGolf is practically negligible (less than a second
per problem). All the experiments have been performed on a
quad core Intel Xeon E5-2440 (2.40GHz) with 4 GB of RAM.

We wanted to investigate whether our approach can achieve
better scores at the expense of increased computational
weight. To this end, we repeated the experiments by setting
nP = 1000 and nP = 1500, i.e., with an enlarged population:
Table 5 shows the results in terms of score and competitive
ratio. It can be seen that the full score does improve for
larger values of nP . Moreover, with nP = 1500, the num-
ber of problems for which GP-RegexGolf score is not worse
than Norvig-RegexGolf score is 11 vs. 8 with nP = 500.
The computation time for the full suite goes from 820 min
for nP = 500 to 1551 min and 2611 min for np = 1000 and
np = 1500, respectively. As expected, with higher values
for nP GP-RegexGolf takes longer to generate a solution:
yet, it is fair to claim that even such longer times may be
acceptable for playing to a game of this kind.

Finally, we attempted to assess the performance of our
proposal with respect to scores of highly skilled human play-
ers. We remark that there are several caveat concerning the

Table 4: Execution times of GP-RegexGolf and GP-
RegexExtract algorithms in minutes.

Problem GP-RegexGolf GP-RegexExtract
1 53 51
2 52 52
3 53 65
4 38 25
5 34 18
6 20 23
7 33 43
8 19 27
9 46 21

10 45 25
11 44 47
12 56 71
13 71 269
14 94 289
15 95 173
16 66 64

Total 820 1262

Table 5: Scores and competitive ratio (C.R.) of GP-
RegexGolf with different values for nP .

nP = 1000 nP = 1500
Problem Score C.R. Score C.R.

1 207 66.3 207 66.3
2 208 105.5 208 105.5
3 196 11.5 197 12.4
4 146 5.2 147 6.5
5 188 12.5 186 11.5
6 142 6.0 151 4.3
7 188 24.1 188 24.1
8 183 11.7 180 10.5
9 190 8.7 190 8.7

10 456 10.5 354 27.2
11 355 28.2 522 3.2
12 36 7.3 223 26.5
13 65 46.2 40 29.7
14 191 1.0 191 1.0
15 191 1.0 191 1.0
16 259 21.1 237 10.4

Total 3201 - 3412 -

Table 2: Results of the three algorithms as score, score %, score % w.r.t. to best human score and competitive
ratio (C.R., see text). For each problem, the score of the best algorithm is shown in bold.

Norvig-RegexGolf GP-RegexGolf GP-RegexExtract
Problem Score Score % Hum. % C.R. Score Score % Hum. % C.R. Score Score % Hum. % C.R.

1 207 98.6 100.0 66.3 207 98.6 100.0 66.3 170 81.0 82.1 5.0
2 208 99.1 100.0 105.5 208 99.1 100.0 105.5 185 88.1 88.9 8.4
3 191 91.0 94.6 8.5 195 92.9 96.5 10.7 107 51.0 53.0 7.0
4 175 83.3 87.0 8.0 138 65.7 68.7 6.7 −70 <0 <0 4.0
5 186 88.6 96.4 11.5 184 87.6 95.3 17.2 77 36.7 39.9 4.4
6 157 82.6 88.7 5.1 136 71.6 76.8 7.0 −246 <0 <0 0.7
7 −398 <0 <0 1.0 188 35.3 37.0 24.1 −52 <0 <0 13.4
8 192 91.4 96.5 17.5 183 87.1 92.0 11.7 −45 <0 <0 7.0
9 190 90.5 95.5 8.7 186 88.6 93.5 7.3 −39 <0 <0 4.5

10 589 93.5 98.8 6.1 430 68.3 72.2 12.6 −106 <0 <0 2.4
11 392 93.3 98.7 25.2 340 81.0 85.6 17.7 −163 <0 <0 4.3
12 −1457 <0 <0 1.0 130 40.6 45.0 11.1 −85 <0 <0 20.9
13 −1969 <0 <0 1.0 51 46.4 54.8 109.4 −47 <0 <0 44.2
14 189 70.0 74.4 1.0 191 70.7 75.2 1.0 191 70.7 75.2 1.0
15 189 70.0 74.4 1.0 191 70.7 75.2 1.0 191 70.7 75.2 1.0
16 294 86.5 92.7 18.8 132 38.8 41.6 8.0 181 53.2 57.1 11.0

Total −665 - - - 3090 - - - 249 - - -

Table 3: Regular expressions generated by GP-RegexGolf.
Problem Regular expression

1 foo

2 k$

3 (^..[a-f][a-f])

4 v|[^b][^o][^p]t|ngo|lo|[n]o|rp|rb|ro|ro|rf

5 z|.u|nv|st|ca|it

6 oo|x|^k|ed|^m|ah|^r|v|^t

7 ^(?=((?:x[A-Zx])+))\1x

8 ell|j|W|ele|o.o|Ma|si|de|do

9 ch|[l-p]o|ad|fi|ac|ty|os

10 24|55|02|54|00|95|17

11 lo|ro|^p|(?=((c)+))\1r|en|^w|y.|le|^p|rr

12 ((?=((?:<<\>\>\>)*))\2(?=((?:<<<(?=(<*))\4\>\><<<<)*))\3(?=((?:<<<<<\>\>\>(?=(<*))\6\>\>\>)*))

\5(?=((?:<<<<<<)*))\7^(?=((?:<<\><<)*))\8(?=((?:<<<\>\>\>)*))\9<<)

13 ^(?=(((x|^)x)+))\1$

14 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

15 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

16 tena|[^et][^etren](?=((?:(?:ren|eren.(?=((?:(?:ren|[^ren]))+))\2|eren.(?=((?:(?:ren|

[^ren]))+))\3))+))\1|eas

assessment of the results obtained by human players. The
web site hosting the challenge does not, at the time of this
writing, provide a score ranking computed on the full suite
of problems—on the other hand, there exists a collection of
“Best possible answers collected so far for regex golf” (see
Table 1) which shows, for each problem, the best solution.
Results by human players are advertised on web forums by
players themselves, often without providing any actual evi-
dence of their results. On the other hand, there are players
which do make some very good solutions publicly available,
thereby simplifying the job of other players, which may either
attempt to improve those solutions further or may use them
for the corresponding problem instance while focusing their
efforts on the remaining instances. In other words, the score
obtained by a given player may actually result from efforts
by multiple players. Finally, human players generally do not
care to indicate the time they spent for generating a solution.

We collected several human players scores on the full suite
from different web locations (including Reddit, Hacker News,
Github) which we obtained by querying Google and Twitter

with the search string “regex golf”. Table 6 shows the 10 best
scores we found, along with the total ideal score (i.e., the sum
of ideal scores on the 16 problems), the best human score
(i.e., the sum of the highest human player scores on the 16
problems) and the score of the three considered algorithms.

It can be seen that GP-RegexGolf would rank from 6th to
8th among human players (with nP = 1500 and nP = 500,
respectively), whereas the scores of the other two algorithms
are significantly lower than those of human players. In
other words, leaving aside any caveat about how we gathered
human scores, GP-RegexGolf is in the top ten of worldwide
regex golf players.

6. CONCLUDING REMARKS
We have proposed and assessed experimentally an ap-

proach based on Genetic Programming for playing regex golf
automatically, i.e., for generating automatically solutions to
challenges which have recently become popular in the pro-
grammers’ communities. The challenges consist in writing

Table 6: Total scores obtained by the 10 best hu-
mans and by the three algorithms.

Player Score
Total ideal score 4320
Best human score 4072

1 geniusleonid 4006
2 k hanazuki 3785
3 bisqwit 3753
4 AlanDeSmet 3736
5 adamhiker 3693

GP-RegexGolf (nP = 1500) 3412
GP-RegexGolf (nP = 1000) 3201

6 adamschwartz 3181
7 flyingmeteor 3171

GP-RegexGolf (nP = 500) 3090
8 jpsim 3060
9 ItsIllak 2939

10 bg666 2683
GP-RegexExtract 249
Norvig-RegexGolf −665

the shortest regular expression that matches all strings in a
given list and does not match any string in another given
list.

Our approach collects a score that is highly competitive
against human players and improve significantly over a chal-
lenging baseline including a recently proposed algorithm
tailored to this specific problem class and a recent proposal
for automatic generation of regular expressions tailored to
text extraction tasks. The time for generating a solution is
in the order of tens of minutes and a prototype is available
at http://regex.inginf.units.it/golf.

We think that our work shows how a GP-based approach
running on modern IT machinery may deliver results, at least
for this task, which are practically useful and can compete
with humans.

7. REFERENCES
[1] D.F. Barrero, David Camacho, and M.D. R-Moreno.

Automatic Web Data Extraction Based on Genetic
Algorithms and Regular Expressions. Data Mining and
Multi-agent Integration, pages 143–154, 2009.

[2] A. Bartoli, G. Davanzo, A. De Lorenzo, M. Mauri,
E. Medvet, and E. Sorio. Automatic generation of
regular expressions from examples with genetic
programming. In International Conference on Genetic
and evolutionary computation, pages 1477–1478. ACM,
2012.

[3] A. Bartoli, G. Davanzo, A. De Lorenzo, E. Medvet, and
E. Sorio. Automatic synthesis of regular expressions
from examples. Computer, Early Access Online, 2013.

[4] Josh Bongard and Hod Lipson. Active coevolutionary
learning of deterministic finite automata. The Journal
of Machine Learning Research, 6:1651–1678, 2005.

[5] Falk Brauer, Robert Rieger, Adrian Mocan, and W.M.
Barczynski. Enabling information extraction by
inference of regular expressions from sample entities. In
ACM International Conference on Information and
knowledge management, pages 1285–1294. ACM, 2011.

[6] Ahmet Cetinkaya. Regular expression generation
through grammatical evolution. In International

Conference on Genetic and evolutionary computation,
GECCO, pages 2643–2646, New York, NY, USA, 2007.
ACM.

[7] Orlando Cicchello and Stefan C Kremer. Inducing
grammars from sparse data sets: a survey of algorithms
and results. The Journal of Machine Learning Research,
4:603–632, 2003.

[8] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm:
Nsga-ii. IEEE Transactions on Evolutionary
Computation, 6(2):182 –197, apr 2002.

[9] Jeffrey Friedl. Mastering Regular Expressions. O’Reilly
Media, Inc., 2006.

[10] Pedro Garćıa, Manuel Vázquez de Parga, Gloria I.

Álvarez, and José Ruiz. Universal automata and {nfa}
learning. Theoretical Computer Science, 407(1–3):192 –
202, 2008.

[11] Sumit Gulwani. Automating string processing in
spreadsheets using input-output examples. In
Proceedings of the 38th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’11, pages 317–330,
New York, NY, USA, 2011. ACM.

[12] Efim Kinber. Learning regular expressions from
representative examples and membership queries.
Grammatical Inference: Theoretical Results and
Applications, pages 94–108, 2010.

[13] Yunyao Li, Rajasekar Krishnamurthy, Sriram
Raghavan, Shivakumar Vaithyanathan, and Ann Arbor.
Regular Expression Learning for Information
Extraction. Computational Linguistics,
(October):21–30, 2008.

[14] Simon M Lucas and T Jeff Reynolds. Learning
deterministic finite automata with a smart state
labeling evolutionary algorithm. IEEE Transactions on
Pattern Analysis and Machine Intelligence,
27(7):1063–1074, 2005.

[15] Aditya Menon, Omer Tamuz, Sumit Gulwani, Butler
Lampson, and Adam Kalai. A machine learning
framework for programming by example. In Proceedings
of the 30th International Conference on Machine
Learning (ICML-13), pages 187–95, 2013.

[16] Peter Norvig. xkcd 1313: Regex golf.
http://nbviewer.ipython.org/url/norvig.com/

ipython/xkcd1313.ipynb, January 2014.

[17] Wojciech Wieczorek. Induction of non-deterministic
finite automata on supercomputers. Journal of Machine
Learning Research-Proceedings Track, 21:237–242, 2012.

[18] Tianhao Wu and W.M. Pottenger. A semi-supervised
active learning algorithm for information extraction
from textual data. Journal of the American Society for
Information Science and Technology, 56(3):258–271,
2005.

