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ABSTRACT
Feedback-directed random test generation is a widely used
technique to generate random method sequences. It lever-
ages feedback to guide generation. However, the validity of
feedback guidance has not been challenged yet. In this pa-
per, we investigate the characteristics of feedback-directed
random test generation and propose a method that exploits
the obtained knowledge that excessive feedback limits the
diversity of tests. First, we show that the feedback loop
of feedback-directed generation algorithm is a positive feed-
back loop and amplifies the bias that emerges in the candi-
date value pool. This over-directs the generation and limits
the diversity of generated tests. Thus, limiting the amount
of feedback can improve diversity and e↵ectiveness of gener-
ated tests. Second, we propose a method named feedback-
controlled random test generation, which aggressively con-
trols the feedback in order to promote diversity of generated
tests. Experiments on eight di↵erent, real-world application
libraries indicate that our method increases branch cover-
age by 78% to 204% over the original feedback-directed al-
gorithm on large-scale utility libraries.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Algorithms, Reliability, Verification

Keywords
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1. INTRODUCTION
Feedback-directed random testing [17] is a promising tech-

nique to automatically generate software tests. The tech-
nique can create random method sequences using public
methods from the classes of a system-under-test (SUT). It
is a general and test oracle independent technique to gen-
erate software tests. Due to its generality and flexibility,
many researchers have used feedback-directed random test-
ing. Some researchers leveraged feedback-directed random
testing as a part of their proposed methods [5, 25]. Others
used feedback-directed random testing to prove their the-
ories on random testing [11, 12]. There is an interesting
study that mined SUT specifications by analyzing the dy-
namic behavior of SUT observed during feedback-directed
random testing [18]. In addition, feedback-directed random
testing has already been adopted by industries and under-
gone intensive use [19].
Despite its importance, characteristics of feedback-directed

random testing have seldom been studied. To the best of
our knowledge, some studies have proposed extensions to
feedback-directed random testing [14, 27], but they failed
to analyze the nature of feedback-directed random testing.
Specifically, the idea of feedback guidance had never been
challenged. In this paper we investigate characteristics of
feedback-directed random testing by using a model SUT and
propose a new technique that exploits the obtained knowl-
edge that excessive feedback over-directs generation, ampli-
fies bias, and limits the diversity of generated tests.
We address two research questions in this paper.

RQ1: Why does the test e↵ectiveness stop increasing at
di↵erent points depending on random seeds?

RQ2: Can our proposed technique lessen the dependency
on random seeds and improve the overall performance
of test generation?

The resulting test e↵ectiveness of feedback-directed random
testing should di↵er because of its randomness. However,
the observed di↵erence is much larger than expected. For
example, the interquartile range marks 10% in our prelim-
inary experiment on the model SUT. This spoils the credi-
bility of feedback-directed random testing.
There are three contributions in this paper.

• We hypothesize that feedback guidance over-directs the
generation and limits the diversity of generated tests
and show that both average score and variance of test
e↵ectiveness improve by limiting the amount of feed-
back.
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ABSTRACT
Feedback-directed random test generation is a widely used
technique to generate random method sequences. It lever-
ages feedback to guide generation. However, the validity of
feedback guidance has not been challenged yet. In this pa-
per, we investigate the characteristics of feedback-directed
random test generation and propose a method that exploits
the obtained knowledge that excessive feedback limits the
diversity of tests. First, we show that the feedback loop
of feedback-directed generation algorithm is a positive feed-
back loop and amplifies the bias that emerges in the candi-
date value pool. This over-directs the generation and limits
the diversity of generated tests. Thus, limiting the amount
of feedback can improve diversity and e↵ectiveness of gener-
ated tests. Second, we propose a method named feedback-
controlled random test generation, which aggressively con-
trols the feedback in order to promote diversity of generated
tests. Experiments on eight di↵erent, real-world application
libraries indicate that our method increases branch cover-
age by 78% to 204% over the original feedback-directed al-
gorithm on large-scale utility libraries.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Algorithms, Reliability, Verification

Keywords
Random testing, Test generation, Diversity
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1. INTRODUCTION
Feedback-directed random testing [17] is a promising tech-

nique to automatically generate software tests. The tech-
nique can create random method sequences using public
methods from the classes of a system-under-test (SUT). It
is a general and test oracle independent technique to gen-
erate software tests. Due to its generality and flexibility,
many researchers have used feedback-directed random test-
ing. Some researchers leveraged feedback-directed random
testing as a part of their proposed methods [5, 25]. Others
used feedback-directed random testing to prove their the-
ories on random testing [11, 12]. There is an interesting
study that mined SUT specifications by analyzing the dy-
namic behavior of SUT observed during feedback-directed
random testing [18]. In addition, feedback-directed random
testing has already been adopted by industries and under-
gone intensive use [19].
Despite its importance, characteristics of feedback-directed

random testing have seldom been studied. To the best of
our knowledge, some studies have proposed extensions to
feedback-directed random testing [14, 27], but they failed
to analyze the nature of feedback-directed random testing.
Specifically, the idea of feedback guidance had never been
challenged. In this paper we investigate characteristics of
feedback-directed random testing by using a model SUT and
propose a new technique that exploits the obtained knowl-
edge that excessive feedback over-directs generation, ampli-
fies bias, and limits the diversity of generated tests.
We address two research questions in this paper.

RQ1: Why does the test e↵ectiveness stop increasing at
di↵erent points depending on random seeds?

RQ2: Can our proposed technique lessen the dependency
on random seeds and improve the overall performance
of test generation?

The resulting test e↵ectiveness of feedback-directed random
testing should di↵er because of its randomness. However,
the observed di↵erence is much larger than expected. For
example, the interquartile range marks 10% in our prelim-
inary experiment on the model SUT. This spoils the credi-
bility of feedback-directed random testing.
There are three contributions in this paper.

• We hypothesize that feedback guidance over-directs the
generation and limits the diversity of generated tests
and show that both average score and variance of test
e↵ectiveness improve by limiting the amount of feed-
back.
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ABSTRACT
Feedback-directed random test generation is a widely used
technique to generate random method sequences. It lever-
ages feedback to guide generation. However, the validity of
feedback guidance has not been challenged yet. In this pa-
per, we investigate the characteristics of feedback-directed
random test generation and propose a method that exploits
the obtained knowledge that excessive feedback limits the
diversity of tests. First, we show that the feedback loop
of feedback-directed generation algorithm is a positive feed-
back loop and amplifies the bias that emerges in the candi-
date value pool. This over-directs the generation and limits
the diversity of generated tests. Thus, limiting the amount
of feedback can improve diversity and e↵ectiveness of gener-
ated tests. Second, we propose a method named feedback-
controlled random test generation, which aggressively con-
trols the feedback in order to promote diversity of generated
tests. Experiments on eight di↵erent, real-world application
libraries indicate that our method increases branch cover-
age by 78% to 204% over the original feedback-directed al-
gorithm on large-scale utility libraries.
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1. INTRODUCTION
Feedback-directed random testing [17] is a promising tech-

nique to automatically generate software tests. The tech-
nique can create random method sequences using public
methods from the classes of a system-under-test (SUT). It
is a general and test oracle independent technique to gen-
erate software tests. Due to its generality and flexibility,
many researchers have used feedback-directed random test-
ing. Some researchers leveraged feedback-directed random
testing as a part of their proposed methods [5, 25]. Others
used feedback-directed random testing to prove their the-
ories on random testing [11, 12]. There is an interesting
study that mined SUT specifications by analyzing the dy-
namic behavior of SUT observed during feedback-directed
random testing [18]. In addition, feedback-directed random
testing has already been adopted by industries and under-
gone intensive use [19].
Despite its importance, characteristics of feedback-directed

random testing have seldom been studied. To the best of
our knowledge, some studies have proposed extensions to
feedback-directed random testing [14, 27], but they failed
to analyze the nature of feedback-directed random testing.
Specifically, the idea of feedback guidance had never been
challenged. In this paper we investigate characteristics of
feedback-directed random testing by using a model SUT and
propose a new technique that exploits the obtained knowl-
edge that excessive feedback over-directs generation, ampli-
fies bias, and limits the diversity of generated tests.
We address two research questions in this paper.

RQ1: Why does the test e↵ectiveness stop increasing at
di↵erent points depending on random seeds?

RQ2: Can our proposed technique lessen the dependency
on random seeds and improve the overall performance
of test generation?

The resulting test e↵ectiveness of feedback-directed random
testing should di↵er because of its randomness. However,
the observed di↵erence is much larger than expected. For
example, the interquartile range marks 10% in our prelim-
inary experiment on the model SUT. This spoils the credi-
bility of feedback-directed random testing.
There are three contributions in this paper.

• We hypothesize that feedback guidance over-directs the
generation and limits the diversity of generated tests
and show that both average score and variance of test
e↵ectiveness improve by limiting the amount of feed-
back.
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ABSTRACT
Feedback-directed random test generation is a widely used
technique to generate random method sequences. It lever-
ages feedback to guide generation. However, the validity of
feedback guidance has not been challenged yet. In this pa-
per, we investigate the characteristics of feedback-directed
random test generation and propose a method that exploits
the obtained knowledge that excessive feedback limits the
diversity of tests. First, we show that the feedback loop
of feedback-directed generation algorithm is a positive feed-
back loop and amplifies the bias that emerges in the candi-
date value pool. This over-directs the generation and limits
the diversity of generated tests. Thus, limiting the amount
of feedback can improve diversity and e↵ectiveness of gener-
ated tests. Second, we propose a method named feedback-
controlled random test generation, which aggressively con-
trols the feedback in order to promote diversity of generated
tests. Experiments on eight di↵erent, real-world application
libraries indicate that our method increases branch cover-
age by 78% to 204% over the original feedback-directed al-
gorithm on large-scale utility libraries.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
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1. INTRODUCTION
Feedback-directed random testing [17] is a promising tech-

nique to automatically generate software tests. The tech-
nique can create random method sequences using public
methods from the classes of a system-under-test (SUT). It
is a general and test oracle independent technique to gen-
erate software tests. Due to its generality and flexibility,
many researchers have used feedback-directed random test-
ing. Some researchers leveraged feedback-directed random
testing as a part of their proposed methods [5, 25]. Others
used feedback-directed random testing to prove their the-
ories on random testing [11, 12]. There is an interesting
study that mined SUT specifications by analyzing the dy-
namic behavior of SUT observed during feedback-directed
random testing [18]. In addition, feedback-directed random
testing has already been adopted by industries and under-
gone intensive use [19].
Despite its importance, characteristics of feedback-directed

random testing have seldom been studied. To the best of
our knowledge, some studies have proposed extensions to
feedback-directed random testing [14, 27], but they failed
to analyze the nature of feedback-directed random testing.
Specifically, the idea of feedback guidance had never been
challenged. In this paper we investigate characteristics of
feedback-directed random testing by using a model SUT and
propose a new technique that exploits the obtained knowl-
edge that excessive feedback over-directs generation, ampli-
fies bias, and limits the diversity of generated tests.
We address two research questions in this paper.

RQ1: Why does the test e↵ectiveness stop increasing at
di↵erent points depending on random seeds?

RQ2: Can our proposed technique lessen the dependency
on random seeds and improve the overall performance
of test generation?

The resulting test e↵ectiveness of feedback-directed random
testing should di↵er because of its randomness. However,
the observed di↵erence is much larger than expected. For
example, the interquartile range marks 10% in our prelim-
inary experiment on the model SUT. This spoils the credi-
bility of feedback-directed random testing.
There are three contributions in this paper.

• We hypothesize that feedback guidance over-directs the
generation and limits the diversity of generated tests
and show that both average score and variance of test
e↵ectiveness improve by limiting the amount of feed-
back.
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(H) The result holds its own or wins a 
regulated competition involving human 

contestants (in the form of either live human 
players or human-written computer 

programs).

(C) The result is equal to or better than a 
result that was placed into a database or 

archive of results maintained by an 
internationally recognised panel of scientific 

experts
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μSCALPEL predates transplantation competitions.

The printing press predated font design competitions.

We hope so 
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Regulated Competition

MSU Sixth MPEG-4 AVC/H.264 
 Video Codecs Comparison [4]

x264 won with ~24% better encoding 
than second place
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Regulated Competition

2.4% faster We automatically transplanted 
new functionality!

MSU Sixth MPEG-4 AVC/H.264 
 Video Codecs Comparison [4]
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2.4% faster

MSU Sixth MPEG-4 AVC/H.264 
 Video Codecs Comparison [4]
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(E) The result is equal to or better than the most 
recent human-created solution to a long-

standing problem for which there has been a 
succession of increasingly better human-

created solutions.

(F) The result is equal to or better 
than a result that was considered an 
achievement in its field at the time it 

was first discovered.
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Why is Autotransplantation 
the Best?

x264 VLC
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Why is Autotransplantation 
the Best?

x264 VLC

Organ: H264

Code reuse is a seminal problem in computer science.

Automatic moving code is a difficult problem.

First transplant of useful, non-trivial functionality between two unrelated systems.

First application of GP to transplant functionality between two unrelated systems.
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Why is Autotransplantation 
the Best?

Popular, substantial, real world systems.

Media encoding is an increasingly important problem.

Media encoders compared in various competitions [2,3,4].

As a side effect of GP we are 2.4% faster than the best H.264 encoder.

63K LOCs 422K LOCs23k LOCs

x264 VLC

Organ: H264
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We automatically transplanted H.264 
encoder from x264 into VLC.
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We automatically transplanted H.264 
encoder from x264 into VLC.

As a side-effect of GP, our transplant is 
faster than the winner of many encoder 

competitions.
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Why is Autotransplantation 
the Best?

article, with more than 2000 shares

More shares for  
Autotransplantation!

“the BBC’s biggest global 
brand with sales of the TV show, DVDs, 

books, live shows and other merchandise 
worth more than £50m a year” [5]

Are We Really Human-
Competitive? “Am I Obsolete?”
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Autotransplantation vs 
Human Transplantation

26 hours of cheap  
machine time

Upgrade of x264 within  
VLC: average of 20 days of 

elapsed time
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As a side-effect of GP, our transplant is faster 
than the winner of many encoder competitions.

We automatically transplanted H.
264 encoder from x264 into VLC.

VLC

Start from 
scratch

Why Autotransplantation?
Check open 

source repositories 
Why not 
handle
 H.264?

~100 players
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