
Automatic Generator of Loading Rules and Its
Applications on Logistics Operations

Anibal Tavares de Azevedo(B)

State University of Campinas, Limeira, SP 13484-350, Brazil
atanibal@unicamp.br

Abstract. This paper presents an algorithm useful for many logistic processes:
from loading containers into a ship to organizing cargo into stacks in a warehouse
or packing cargo in a vehicle cargo. It was analyzed the feasible sequences to
perform such operations and how it limits the possible sequences that could be
created. Furthermore, it was showed the computational performance to propose a
feasible solution for large-scale problems of regular spaces with 28,800 cells that
are related to loading cargo into a container ship problem.

Keywords: Loading rules · Logistics operations · Stowage planning problem

1 Introduction

In several logistic processes, it is necessary to indicate how a given space should be
occupied. Some examples of context and its application of such operation are in sup-
ply chain logistics, packing cargo, and warehouse operations [1, 3, 4, 6, 8]. The next
subsections will detail these contexts and the article’s contribution to them.

1.1 Motivation and Context

– Container port logistics

• Container ship: is necessary to know the order in which the cargoes will fill their
regular spaces organized in stacks as described in Fig. 1 [1, 2];

Fig. 1. Arrangement of containers in a ship.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. R. González et al. (Eds.): DCAI 2021, LNNS 332, pp. 141–150, 2022.
https://doi.org/10.1007/978-3-030-86887-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86887-1_13&domain=pdf
http://orcid.org/0000-0003-1678-7795
https://doi.org/10.1007/978-3-030-86887-1_13


142 A. T. de Azevedo

• Container port yard: this space serves as a place for the temporary storage of containers
to facilitate importation and exportation flow in a port as described in Fig. 2. Several
policies to organize containers could be employed like separating containers per blocks
according to its destination [8];

Fig. 2. Organization of containers in a port yard.

– Packing cargo

• On a truck: the containers should be organized in a manner that respects some stability
and stacks constraints to avoid damage during cargo transportation [6] as shown in
Fig. 3.

Fig. 3. Organization of packages in a truck.

• On a container: several packages and products should be organized inside a container
as done in Fig. 4. Some important aspects to observe are: placing bigger boxes at
the bottom of the container, a box organized in a stack should not overpass a weight
limit [3, 6]. These containers will be transported by trucks or they will be loaded at a
container ship.

Fig. 4. Organizing packages in a container.

– Warehouse operations

• Storage area: the inbound flow of the products from the factory should be stored for
future requisitions of client products [4] as shown in Fig. 5.



Automatic Generator of Loading Rules and Its Applications 143

Fig. 5. Organization of packages into hacks of the storage area.

The picking area is an area where clients’ orders are mounted from temporary stacks
from the storage area as shown in Fig. 6. These orders will be grouped and loaded at a
truck that will deliver orders [4].

Fig. 6. Order assembly using the temporary stacks of the picking area.

1.2 Contribution

A common situation to all problems described previously is the decision of which
sequence should be used to organize the cargo in a given space divided as a grid. This
approach could be applied to any regular space [7].

Although for each problem several mathematical formulations or simulation models
were used to propose solutions that meet criteria of optimality or evaluation of these
solutions, none of the methodologies was concerned with strictly generating a general
and automatic procedure that could produce feasible solutions in any context.

The main contribution of this paper is the development of a general and automatic
procedure that is context-free and could be employed in a wide array of problems.

Section 2 describes the problem, its complexity, and some computational results.
Section 3 shows results for one context: the stowage planning problem. Section 4 presents
conclusions and future works.

2 Problem Description

A feasible solution to organize cargo in a space divided as a grid consists in create a
loading cargo sequence that should meet two physical constraints:

(i) One cargo cannot occupy the same space as another cargo at the same time;
(ii) A cargo that will occupy a position only if another cargo support it or the position

is the bottom of a pile.



144 A. T. de Azevedo

To create an algorithm that fulfills these two constraints, a study should be carried
to know how they limit the possible sequences that could be generated. Subsection 2.1
introduces notation and Subsect. 2.2 employs it to explain the complexity of algorithms
based on different strategies.

2.1 Notation and Definitions

Let it be a space that is composed of smaller units with the same dimensions, called cells,
organized in m rows and n columns. Suppose the cargo is such that it occupies only the
space of one cell. We want to apply an algorithm that generates a feasible sequence to
fill the space.

Mathematically, this consists of generating a sequence of coordinates ((x1, y1), (x2,
y2),…, (xn, yn)), where xi is the row position and yj is the column position, such that
both criteria (i) and (ii) are met.

An example of the space-filling sequence is given in Fig. 7 for space with five
columns (stacks), and with four rows (cargo capacity). The dimensions will be m = 4
and n = 5 and row and column zero index are in the left bottom of the space.

Fig. 7. An example of how to fill a regular space.

However, the filling sequence presented in Fig. 6 cannot be applied, since the first
cargos should occupy the cells on the top of the stacks without any other cargo to support
them.

There is no study in the literature of how many rules are possible without constraint
(ii), or even how many rules can be generated considering constraints (i) and (ii) [1].

It is important to highlight that the possible number of combinations of filling in a
m × n matrix is (m × n)!, but without considering only the constraint (ii) as done in
Fig. 6.

2.2 Strategies to Create Feasible Sequences and Their Complexity

To obtain sequences to fill a regular space considering both physical constraints, it is
possible to apply a step-by-step process in which cargo is placed in each cell, and then
the n candidate cells are listed for the next cargo to occupy. If space has dimension m×
n, then, at first, from n candidate cells to be occupied one will choose (cell (0, 2)), as
illustrated in Fig. 8.



Automatic Generator of Loading Rules and Its Applications 145

Fig. 8. Randomly choosing the first cell to put cargo from n possible cells.

After choosing the first place to put a cargo, then it is necessary to choose another
place, from n possible cells, as done in Fig. 9.

Fig. 9. Possible spaces for the second cell to put cargo from n possible cells.

If the option of filling the space per row is made (“FlatWay”), then, at each step there
were n alternatives until (m−1) × n cells are filled and only n cells are left as provided
in Fig. 10.

Fig. 10. Remaining spaces after employing filling according to “Flat Way”.

From Fig. 10, the number of all possible feasible filling sequences, until n cells
remain, is given by n(m−1) × n. For the remaining n remaining cells, the number of
possible sequences is given by n!. Therefore, the total of possible filling sequences is
given by n(m−1) × n + n!.

However, if a strategy of filling the space by columns is adopted (“Wall Way”), then,
until the first column is filled at each step, there are n candidate cells as given in Fig. 11.
After the first column is filled, m cells filled, the next m cells will have only n-1 cell
alternatives for the next step.

Fig. 11. The remaining space after filling m cells in one column.

Therefore, this filling strategywill result inm× (n2+n) / 2 possiblefilling sequences.
It is important to note that the ‘Wall Way’ strategy is a special case of the ‘Flat Way’



146 A. T. de Azevedo

strategy since a column is selected it will be filled. Anyway, the ‘Wall Way’ strategy
could be useful for certain purposes like group cargo by area.

Thus, there is a lower and an upper limit on the number of possible sequences to fill
a space that meets physical constraints (i) and (ii). It is worth noting that this number is
much smaller than the total of possible sequences that do not comply with either of the
two fulfillment criteria (Complete Strategy) as given in Table 1.

Table 1. Several possible sequences for each strategy.

Strategy Number of sequences

Complete (m × n)!

Flat Way n(m−1) × n + n!

Wall Way m × (n2 + n)/2

2.3 Computational Results

For illustration only, suppose that m= 4 and n= 4. Then, the total number of sequences
in each strategy is given in Table 2.

Table 2. The number of possible sequences for each strategy in a space with dimensions 4 × 4.

Strategy Number of sequences

Complete 20,922,789,888,000

Flat Way 16,777,240

Wall Way 40

In Table 2, it is possible to observe an advantage regarding the consideration of the
two physical constraints: the considerable reduction in the maximum number of possible
fill sequences from approximately 21 trillion to only approximately 17 million. Still, the
number of possible sequences is considerably large.

Based on the previous analysis, to generate all possible combinations of sequences,
that consider both constraints (i) and (ii), an algorithm to Generate Sequences for Filling
Regular 3D Spaces (GSFIRES 3D), was created.

GSFIRES 3D consists of a step-by-step procedure in which cargo is placed in each
cell and then the n candidate cells are listed for the next cargo to occupy. This cell
selection process uses a random uniform distribution and its Python code is described
in Fig. 12.



Automatic Generator of Loading Rules and Its Applications 147

def GenRules(b,m,n):
# Initial matrix M.
M = [ [ [ (k,i,j) for i in range(m) ] for j in range(n) ] for k in range(b) ] 
# Random choosing the candidates available spaces from M to vR.
vR = []
for k in range(0,m*n*b):

i = random.randint(0, len(M)-1) 
 j = random.randint(0, len(M[i])-1) 
vR.append(M[i][j][0])

return vR

Fig. 12. GSFIRES 3D for filling a 3D regular space with b × m × n dimension.

Table 3 gives the computational effort of GSFIRES 3D for several space sizes to
create afilling rule. The environment usedwasGoogleComputeEnginePython3 through
Google Colab with 12 GB of RAM.

Table 3. The computational effort of GSFIRES 3D for each space size.

Dimension Number of
elements

Time (s)

1 × 3 × 4 12 0.0006

2 × 3 × 4 24 0.0010

4 × 3 × 4 48 0.0011

8 × 3 × 4 96 0.0011

16 × 3 × 4 192 0.0022

16 × 10 × 15 2400 0.0480

32 × 10 × 15 4800 0.1662

32 × 15 × 15 7200 0.2594

64 × 15 × 15 14400 0.9465

128 × 15 × 15 28800 3.9606

This computational effort study was important to show that this approach is viable
to be employed in a Maritime Logistic Problem known as Stowage Planning [2].

3 Application on Stowage Planning

The implementation of the loading rules in the Stowage Planning depends on the ship
dimensions. Typically, a container ship could store 20’ feet containers in an amount
between 2,400 to 28,800, and organized per bays, rows, and columns.



148 A. T. de Azevedo

In the regular space of the container ship, each square with a number indicates that
space is occupied with a container. The number inside a square specifies the destination
port of a container.

Just to illustrate how the random generation of sequences will fill the container ship
according to the setting of random seed coded in Python. Several instances of container
ship dimensions and the number of containers are presented in Table 4.

Table 4. Features of container ship instances to test GSFIRES 3D.

Instance Seed # Bays # Rows #
Columns

# Containers per port destination

Port 2 Port 3 Port 4 Port 5 Port 6 Port 7

1 0 2 3 4 2 4 3 2 1 1

2 1

3 0 16 10 15 480 320 320 160 160 160

4 1

5 0 128 15 15 720 480 480 240 240 240

6 1

Figure 13 and 14 show results for instances 1 and 2, respectively. Table 5 presents the
total computational time to create and employ the sequence generated to load a container
ship.

Fig. 13. GSFIRES 3D for filling a 3D regular space for instance 1.

Fig. 14. GSFIRES 3D for filling a 3D regular space for instance 2.



Automatic Generator of Loading Rules and Its Applications 149

Table 5. The computational effort of GSFIRES 3D for each container ship size.

Instance Ship size Total # of
containers

Time (s)

1 2 × 3 × 4 24 0.0019

2 0.0023

3 16 × 10 × 15 2400 0.0528

4 0.0589

5 128 × 15 × 15 28800 3.6603

6 3.6881

4 Conclusions

It was proposed a general procedure to generate a feasible sequence to fill regular spaces
with applications on several logistic processes: on ports: container ship and yard; on
packing cargo: truck and container; on warehouse: storage and picking area. It was made
a complexity analysis that helped to understand how certain filling strategies works and
how to employ their properties to create randomly feasible filling sequences.

The complexity also enabled us to understand how the huge combinatorial number of
strategies could be significantly reduced by the accomplishment of physical constraints
related with all logistics context: a cargo that will occupy a position only if another cargo
support it or the position is the bottom of a pile.

Furthermore, a code in Python programming language, called GSFIRES 3D, enables
the random creation of feasible filling sequences, and its computational effort had been
shown in a general filling problem.

The GSFIRES 3D was also adapted and computational tests carried attest to the
algorithm speed and adequacy to propose and load a container ship ranging from 24
cells to 28,800 cells. For example, the algorithm was able to produce a feasible rule in
less than four seconds for a container ship with a capacity of 28,800 containers.

For future works, this algorithm will be employed in a simulation-optimization
scheme for port logistics planning. The programwill be able to develop its own operating
rules and select the best combination of them without human interference.

References

1. Azevedo, A.T., Salles, L.L.N., Chaves, A.A., Moretti, A.C.: Solving the 3D stowage planning
problem integrated with the quay crane scheduling problem by representation by rules and
genetic algorithm. Appl. Soft Comput. 65, 495–516 (2018)

2. Azevedo, A.T., Ribeiro, C.M., Sena, G.J., Chaves, A.A., Salles, L.L.N., Moretti, A.C.: Solving
the 3DContainer ship loading planning problemby representation by rules andmeta-heuristics.
Int. J. Data Anal. Techn. Strat. 6(3), 228–260 (2014)

3. Junqueira, L., Morabito, R.: Heuristic algorithms for a three-dimensional loading capacitated
vehicle routing problem in a carrier. Comput. Ind. Eng. 88(C), 110–130 (2015)



150 A. T. de Azevedo

4. Karasek, J.: An overview ofwarehouse optimization. J. Adv. Telecommun. Electrotech. Signals
Syst. 2(3), 111–117 (2013)

5. Lee, B.K., Kim, K.H.: Optimizing the yard layout in container terminals. OR Spectr. 35(2),
363–398 (2013)

6. Pollaris, H., Braekers, K., Caris, A., Janssens, G.K., Limbourg, S.: Vehicle routing problems
with loading constraints: state-of-the-art and future directions. OR Spectr. 37(2), 297–330
(2014). https://doi.org/10.1007/s00291-014-0386-3

7. Toledo, F.M.B., Carravilla, M.A., Ribeiro, C., Oliveira, J.F., Gomes, A.M.: The dotted-board
model: a new MIP model for nesting irregular shapes. Int. J. Prod. Econ. 145(2), 478–487
(2013)

8. Zhen, L., Jiang,X., Lee, L.H., Chew, E.P.: A reviewon yardmanagement in container terminals.
Ind. Eng. Manag. Syst. 12(4), 289–305 (2013). Korean Institute of Industrial Engineers

https://doi.org/10.1007/s00291-014-0386-3

	Automatic Generator of Loading Rules and Its Applications on Logistics Operations
	1 Introduction
	1.1 Motivation and Context
	1.2 Contribution

	2 Problem Description
	2.1 Notation and Definitions
	2.2 Strategies to Create Feasible Sequences and Their Complexity
	2.3 Computational Results

	3 Application on Stowage Planning
	4 Conclusions
	References




