
AUTOSTUB: Genetic Programming-Based Stub
Creation for Symbolic Execution

Felix Mächtle, Nils Loose, Jan-Niclas Serr, Jonas Sander, Thomas Eisenbarth
Institute for IT Security, University of Luebeck, Germany

Email: {f.maechtle, n.loose, j.serr, j.sander, thomas.eisenbarth}@uni-luebeck.de

Abstract—Symbolic execution is a powerful technique for
software testing, but suffers from limitations when encounter-
ing external functions, such as native methods or third-party
libraries. Existing solutions often require additional context,
expensive SMT solvers, or manual intervention to approximate
these functions through symbolic stubs. In this work, we propose
a novel approach to automatically generate symbolic stubs
for external functions during symbolic execution that leverages
Genetic Programming. When the symbolic executor encounters
an external function, AUTOSTUB generates training data by exe-
cuting the function on randomly generated inputs and collecting
the outputs. Genetic Programming then derives expressions that
approximate the behavior of the function, serving as symbolic
stubs. These automatically generated stubs allow the symbolic
executor to continue the analysis without manual intervention,
enabling the exploration of program paths that were previously
intractable. We demonstrate that AUTOSTUB can automatically
approximate external functions with over 90% accuracy for
55% of the functions evaluated, and can infer language-specific
behaviors that reveal edge cases crucial for software testing.

I. INTRODUCTION

Symbolic execution is a foundational technique in software
testing and analysis, enabling exhaustive exploration of pro-
gram paths. Instead of executing the program with specific
inputs, symbolic execution represents inputs with symbols and
computes expressions over these symbols, generating symbolic
expressions that capture the behavior of the program along
different execution paths [4]. This results in logical expressions
representing the constraints under which each path is feasible.
By leveraging constraint solvers to systematically explore
execution paths, symbolic execution facilitates automatic test
case generation, bug finding, and formal verification. However,
a significant limitation of symbolic execution arises when
the analyzed program invokes external functions [1], such as
native methods, third-party library calls, or uninstrumented
functions. These act as black boxes, hindering the symbolic
execution by introducing unknown behaviors that cannot be
symbolically evaluated. Therefore, any statements that depend
on the outputs of such functions become unanalyzable.

For illustration, consider the example in Listing 1. To test
any path dependent on the if statement, symbolic execution
generates expressions representing the relationship between
the input variable user_input and the boolean result of
verify_input. However, if verify_input represents
an external function, its internal behavior is inaccessible to
the symbolic execution and no relationships can be created.
Consequently, any code that relies on the result of this

f u n c t i o n main (u s e r i n p u t) :
i f v e r i f y i n p u t (u s e r i n p u t) == True :

d i s p l a y (” Access Gran ted ”)

Listing 1. Illustrative example of symbolic execution encountering an external
function. Without knowledge of verify_input, the analysis is unable to
fully explore all program paths.

function, such as the subsequent call to display("Access
Granted"), cannot be accurately analyzed unless additional
handling or modeling of the external function is provided.

Current approaches to address external functions either
rely on additional context information [11], expensive SMT
solvers [6], [9] or manual intervention [5], where developers
manually provide symbolic stubs to approximate the behav-
ior of external functions. We explore a different path and
introduce AUTOSTUB, a novel approach that automates the
generation of symbolic stubs for external functions during
symbolic execution. We leverage Genetic Programming, a type
of machine learning that discovers expressions best fitting
inputs to outputs from observed data, making it suitable
for approximating the functionality of black-box methods.
When the symbolic executor encounters an external function,
AUTOSTUB generates training data by executing the external
function on randomly generated inputs and collecting the
corresponding outputs. Genetic Programming is then used to
derive expressions that reproduce the relationship between
inputs and outputs. These expressions serve as symbolic stub
for the external function. This workflow can be seamlessly
integrated into the symbolic execution process, allowing the
executor to continue the analysis without manual intervention.
Hence, AUTOSTUB allows exploring program paths that were
previously untractable due to external functions. To the best
of our knowledge, AUTOSTUB is the first system capable
of generating symbolic stubs using Genetic Programming.
All implementation details and datasets are available in our
GitHub repository: https://github.com/UzL-ITS/AutoStub.
To summarize our contributions are:

• We demonstrate that external functionalities can be ap-
proximated using Genetic Programming, enabling au-
tomated generation of symbolic stubs across multiple
primitive data types and strings.

• We create a benchmark dataset consisting of 2730 small
programs to evaluate correct external functionality han-
dling in symbolic execution.

II. GENETIC PROGRAMMING

Genetic Programming (GP) is an evolutionary computation
technique that uses the principles of natural selection and
genetics to automatically evolve computer programs to solve
complex problems. Candidate programs are typically repre-
sented as hierarchical tree structures encoding expressions or
code segments. These programs evolve over successive gener-
ations through genetic operators such as selection, crossover,
and mutation, guided by a fitness function that measures their
performance on a given task.

The objective is to find a program P (x) that accurately maps
inputs x to an output variable y, based solely on observed
data. Our approach explores a vast space of expressions
constructed from a predefined set of operators, constants,
and input variables. For example, given a training dataset
consisting of input-output pairs (xy, yi) where yi = x2

i , one
could use GP to find the program P (x) = x2 by searching for
combinations of operations and variables that minimize the
error between the predicted and actual outputs.

Grammar-Guided Genetic Programming (G3P) [10] is an
extension that integrates formal grammars into the GP frame-
work. By defining a context-free grammar that specifies
the syntax and allowable constructs, G3P ensures that all
generated programs are syntactically correct. This method
is particularly useful when evolving programs that involve
multiple data types or need to adhere to specific syntactic rules,
as it guides the genetic operators to produce valid offspring
while exploring the search space more efficiently.

III. AUTOSTUB

Grammar-Guided Genetic Programming (G3P) [10] is used
in AUTOSTUB to generate symbolic stubs from input-output
data. This method allows the system to seamlessly han-
dle multiple data types while maintaining type consistency
throughout the generation process. A comprehensive set of
operators serves as building blocks for symbolic expressions.
Specifically, a subset of 40 operators from the SMT-Lib
Standard [2] is used, selected to cover the majority of Java
scenarios. These operators include mathematical, logical, and
string manipulation functions.

To ensure type consistency across generated expressions,
we defined a grammar and used it in conjunction with G3P
to generate expression trees of operators. The fitness func-
tion used for evaluation is tailored to the output type of
each function: for numeric data types, the Normalized Root
Mean Squared Error (NRMSE) measures the approximation
accuracy; for Boolean outputs, the classification accuracy is
used; and for string outputs, the Levenshtein distance is used.
Selection is performed using tournament selection, where
multiple candidates compete and only the best one is chosen.
Mutation is accomplished by replacing certain parts of the
expression tree with newly generated sub-expressions, while
crossover is implemented via one-point crossover, where a
randomly selected subtree from one parent is exchanged with
a corresponding subtree from the other parent. This allows the
offspring to inherit characteristics from both parents.

A. Input Generation

To generate diverse and representative inputs, we employ a
stratified sampling approach tailored for different data types.
For integer types (byte, short, int, long), we first
randomly select a bit-length n within the allowed range
of the data type, effectively dividing the entire range into
intervals. For each selected bit length, we uniformly generate
a random number between 0 and 2n − 1. For signed integers,
we randomly assign a sign. This method ensures coverage
across different magnitudes, ensuring that both small and large
values are represented, which is crucial for effectively ap-
proximating functions with varying behaviors across different
scales. For floating-point types (float, double), a similar
stratified sampling technique is used. First, a random exponent
is selected within the allowed range using the technique
described for numeric values. Then a random mantissa with
a random sign is assigned. For strings, random sequences of
characters of variable length are constructed. Boolean values
are randomly assigned. In addition, special values are included
with a 5% probability, such as NaN, Infinity, the max/min value
of the data type, and 0, 1, or -1. Generating 10000 samples
took an average of 13ms per method.

B. Datasets

Expression Dataset. To train and evaluate the correctness of
the generated stubs, we utilized all functions from Java internal
libraries [8], specifically focusing on classes related to primi-
tives and mathematical operations. Support for these functions
is essential for successful symbolic execution, making them
an ideal target. We use all functions from java.util.*, where
* represents a primitive or a string type, as well as functions
from java.lang.Math and java.lang.StrictMath. We extracted
all methods from these classes and filtered them based on
specific criteria: the methods must return a primitive or a
string, their parameters must be primitives or strings, they must
not have side effects on the caller, and they must not throw
errors during execution in our input generation pipeline. From
a total of 654 methods in the packages, 273 met the specified
criteria. For each of these selected methods, random input
values were generated to record their corresponding outputs.
Symbolic Execution Dataset. To evaluate the effectiveness
of AUTOSTUB in the context of symbolic execution, we
constructed an additional benchmark dataset encompassing
test cases for all functions in the aforementioned scope.
Similar to Listing 1, the goal of each test case is to verify
whether an input passed to an external function results in the
desired output. For every external function f , we generated
two random input values and observed the corresponding
output values (o1, o2). We repeated this process until we found
two distinct outputs (o1 ̸= o2). Using these outputs, we created
a benchmark dataset consisting of Java classes that check
whether the external function f returns the desired output
values (o1, o2) for given inputs.

Each Java class reads its arguments (x1, x2) and invokes
the external function to obtain y1 = f(x1) and y2 = f(x2).
These outputs are then compared against the predetermined

0.0 0.2 0.4 0.6 0.8 1.0
Correctness rate

0

50

100
Co

un
t

Figure 1. Accuracy distribution of generated expressions over 106 runs, with
55% of expressions achieving over 90% correctness in predictions.

values (y1 = o1 ∧ y2 = o2). As both values (o1, o2) are
distinct, this setup ensures that the test cannot be passed
using trivial solutions like a fixed value. We adopted this
conservative approach to avoid inflated success rates; for
example, the function isNaN(double): boolean returns
false for all but one input, so testing only one output could
be misleading. To enhance test granularity and increase the
number of scenarios, we create ten such tests for each function.

IV. EXPERIMENTS

In order to evaluate AUTOSTUB we propose the following
Research Questions:

• RQ1: How accurately does AUTOSTUB approximate a
function’s input-output behavior?

• RQ2: How effective are the generated expressions for
symbolic execution?

A. Accuracy of Generated Expressions

To address RQ1, we evaluated the accuracy of the generated
expressions. Using our input generation strategy, we created
106 new input-output pairs for evaluation. Each generated
expression was executed on these inputs, and we recorded the
number of times the output matched the expected value. The
results, shown in Figure 1, show that while some methods
rarely returned the correct value, a significant portion per-
formed well. Specifically, 55% of the expressions returned the
correct value more than 90% of the time. To establish a lower
bound on performance, we also evaluated a random baseline
where fitness values were randomly assigned, resulting in
15% of the generated formulas achieving over 90% accuracy,
demonstrating that even naive approaches can stumble upon
partial solutions, but the targeted search strategy in our system
significantly outperforms random chance.

Upon manual inspection of the expressions, we found
that 79 methods were fully correct. Out of these, 28
instances simply returned the identity value, such as
Boolean.booleanValue(boolean): boolean. In 8
instances, the expressions returned a value closely related to
the identity, e.g., Integer.doubleValue(integer):
double. Additionally, 28 instances corresponded directly
to a single operator, like an integer multiplication. Finally,
14 instances captured more advanced functionalities, such as
checking whether a value is NaN. These categories show
that while most of the approximated functions are relatively
straightforward, some achieve more advanced approximations.

0 2 4 6 8 10
Correct runs

0

50

Co
un

t Correct
90% correct

Figure 2. Number of benchmark runs successfully solved during symbolic
execution. Zero indicates no solves for this expression whereas ten indicates
that the generated expression successfully solved all test cases.

To further demonstrate its efficacy, we highlight one func-
tion where AUTOSTUB produced a particularly insightful
approximation, Double.isNaN(double): This method
checks whether a given double value is NaN (Not-a-Number).
The generated expression is !(−1 < |x|). It effectively captures
the behavior that any comparison operation involving NaN
returns false in Java. By using the absolute value and
a comparison to -1.0, the expression exploits the unique
properties of NaN to determine its presence without explicit
knowledge of the Double.isNaN method. This approxi-
mation is particularly impressive because it infers language-
specific behavior through Genetic Programming. Such insights
are particularly valuable in software testing, as they can reveal
edge cases and unintended behavior in software systems.

AUTOSTUB can automatically approximate external
functions, achieving over 90% accuracy for 55% of
the functions evaluated.

B. Symbolic Execution with Generated Expressions

To answer RQ2, which investigates whether the generated
expressions can be employed in symbolic execution, we uti-
lized the benchmark dataset described in Section III-B. We
selected all expressions from RQ1 that achieved an accuracy
higher than 90% and integrated them into SWAT [5], a sym-
bolic execution engine for Java. Using SWAT, we symbolically
executed all test cases in the benchmark dataset, employing
the generated expressions as symbolic stubs for the external
functions. As illustrated in Figure 2, the majority of samples
were fully solvable using the generated expressions with a
timeout of one second. On average, each expression required
0.04 seconds to solve, with the maximum solving time being
0.41 seconds on an AMD Ryzen 7 7735U.

A small subset of nine of the generated functional ex-
pressions occasionally caused benchmarks to fail, either due
to timeouts or because the expressions missed certain edge
cases. For example, our enforced timeout proved insufficient
for some computations, such as the multiplication of two
large integers (x × y = 391,768,351,037,400,960). In other
cases, the solutions found were locally helpful but not entirely
accurate, leading to failures. A third group of functions could
not be solved correctly. These functions primarily involved
operations such as checking for NaN or Infinity. The issue

arises because Java and the SMT solver used, namely Z3,
handle those numbers differently. While AUTOSTUB suc-
cessfully identified these relations within the Java context
(see RQ1), Z3 handles these specific semantics differently.
This discrepancy means that Z3 cannot accurately interpret
the language-specific behaviors associated with these values.
Therefore, although symbolic stubs can be directly utilized
for symbolic execution, expressions that depend on language-
specific semantics must be approached with additional care
and may require specialized handling within the solver.

The generated symbolic stubs allow the exploration of
program paths that were previously intractable due to
external functions, as long as the SMT solver is able
to accurately handle the language-specific semantics
involved.

V. LIMITATIONS

AUTOSTUB is currently limited to stateless functions. For
example, classes like StringBuilder which retain an inter-
nal state, fall outside the scope. This limitation arises because
AUTOSTUB is designed to approximate functions based solely
on their input-output behavior in isolation. Extending AU-
TOSTUB to handle stateful objects remains an open challenge
for future work. A possible approach is to build test cases
that eventually reduce stateful objects to primitives (e.g., the
final output of StringBuilder.toString()). Instead of
approximating a single function, a sequence of calls would be
approximated to the final output, which can then be compared
to the expected result. The internal state must then be passed
between calls, e.g., as an argument.

Additionally, the generated symbolic stubs are limited to ex-
pressions of regular complexity within the Chomsky hierarchy.
In contrast, the functions we approximate may exhibit Turing-
complete behavior, such as loops or recursion. This restriction
is an intentional design choice to ensure that the generated
expressions remain computationally simple, thereby allowing
for fast solving.

VI. RELATED WORK

Handling external functions in symbolic execution is a
well-recognized challenge, and various methods have been
proposed to address this issue. One common method is the
use of manual stubs to approximate the behavior of external
functions. Developers create symbolic stubs for external func-
tions, allowing the symbolic executor to proceed with the anal-
ysis [5]. While effective, this approach is time-consuming and
error-prone, as it requires significant manual effort and may
lead to incomplete analysis if some functions are overlooked.

To automate the generation of stubs, SMT-based solutions
have been proposed [6], [9]. In these approaches, constraints
that describe the external functionality are generated, and an
SMT solver is used to obtain a model of the external function.
However, these methods rely on expensive SMT solving,
which can be computationally intensive and may not scale well

for complex functions. As a cheaper alternative, rule-based
techniques have been explored [3], [7]. While this approach
is computationally cheaper, it is limited by the predefined
rules, which may cover only a narrow portion of the possible
behaviors of external functions.

In Java, Zhai et al. [11] used natural language processing
(NLP) techniques to match Javadoc comments with code tem-
plates, to generate symbolic stubs for internal data structures
like lists and sets. However, this approach requires additional
context in the form of Javadocs and focuses primarily on
data structures, whereas our work concentrates on methods
of internal data types and does not need extra information.

VII. CONCLUSION

This work presents AUTOSTUB, a novel approach that lever-
ages Genetic Programming to automatically generate symbolic
stubs for external functions encountered during symbolic
execution. Our method addresses a limitation in symbolic
execution by enabling the analysis of program paths that
involve external functions without requiring manual interven-
tion or extensive contextual information. Experiments show
that AUTOSTUB effectively approximates external functions,
achieving over 90% accuracy for 55% of evaluated functions
and integrating seamlessly with symbolic execution engines.

Future work should improve the accuracy of the approx-
imations, extend AUTOSTUB to support stateful objects and
address semantic discrepancies between the SMT solver and
the programming language.

ACKNOWLEDGEMENTS

Generative AI was utilized during programming, editing,
and grammar enhancement of this work. This work has been
supported by funding from the Agentur für Innovation in der
Cybersicherheit GmbH (Cyberagentur).

REFERENCES

[1] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Deme-
trescu, and Irene Finocchi. A survey of symbolic execution techniques.
2018.

[2] Clark Barrett, Aaron Stump, Cesare Tinelli, et al. The smt-lib standard:
Version 2.0. 2010.

[3] Jinseong Jeon, Xiaokang Qiu, Jonathan Fetter-Degges, Jeffrey S. Foster,
and Armando Solar-Lezama. Synthesizing framework models for
symbolic execution. 2016.

[4] James C. King. Symbolic execution and program testing. 1976.
[5] Nils Loose, Felix Mächtle, Florian Sieck, and Thomas Eisenbarth.

SWAT: modular dynamic symbolic execution for java applications using
dynamic instrumentation (competition contribution). 2024.

[6] Sergey Mechtaev, Alberto Griggio, Alessandro Cimatti, and Abhik
Roychoudhury. Symbolic execution with existential second-order con-
straints. 2018.

[7] Anh T. V. Nguyen and Mizuhito Ogawa. Automatic stub generation for
dynamic symbolic execution of ARM binary. 2022.

[8] Oracle. java.lang (Java SE 17 & JDK 17). https://docs.oracle.com/en/
java/javase/17/docs/api/java.base/java/lang/package-summary.html. Ac-
cessed 10/2024.

[9] Dawei Qi, William N. Sumner, Feng Qin, Mai Zheng, Xiangyu Zhang,
and Abhik Roychoudhury. Modeling software execution environment.
2012.

[10] Peter A Whigham et al. Grammatically-based genetic programming.
1995.

[11] Juan Zhai, Jianjun Huang, Shiqing Ma, Xiangyu Zhang, Lin Tan, Jianhua
Zhao, and Feng Qin. Automatic model generation from documentation
for java API functions. 2016.

