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Abstract

Machine learning research has advanced in multi-
ple aspects, including model structures and learn-
ing methods. The effort to automate such re-
search, known as AutoML, has also made sig-
nificant progress. However, this progress has
largely focused on the architecture of neural net-
works, where it has relied on sophisticated expert-
designed layers as building blocks—or similarly
restrictive search spaces. Our goal is to show that
AutoML can go further: it is possible today to au-
tomatically discover complete machine learning
algorithms just using basic mathematical opera-
tions as building blocks. We demonstrate this by
introducing a novel framework that significantly
reduces human bias through a generic search
space. Despite the vastness of this space, evo-
lutionary search can still discover two-layer neu-
ral networks trained by backpropagation. These
simple neural networks can then be surpassed by
evolving directly on tasks of interest, e.g. CIFAR-
10 variants, where modern techniques emerge
in the top algorithms, such as bilinear interac-
tions, normalized gradients, and weight averag-
ing. Moreover, evolution adapts algorithms to
different task types: e.g., dropout-like techniques
appear when little data is available. We believe
these preliminary successes in discovering ma-
chine learning algorithms from scratch indicate a
promising new direction for the field.

1. Introduction

In recent years, neural networks have reached remarkable
performance on key tasks and seen a fast increase in their
popularity [e.g. He et al., 2015; Silver et al., 2016; Wu et al.,
2016]. This success was only possible due to decades of
machine learning (ML) research into many aspects of the
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field, ranging from learning strategies to new architectures
[Rumelhart et al., 1986; LeCun et al., 1995; Hochreiter
& Schmidhuber, 1997, among many others]. The length
and difficulty of ML research prompted a new field, named
AutoML, that aims to automate such progress by spend-
ing machine compute time instead of human research time
(Fahlman & Lebiere, 1990; Hutter et al., 2011; Finn et al.,
2017). This endeavor has been fruitful but, so far, mod-
ern studies have only employed constrained search spaces
heavily reliant on human design. A common example is
architecture search, which typically constrains the space
by only employing sophisticated expert-designed layers as
building blocks and by respecting the rules of backprop-
agation (Zoph & Le, 2016; Real et al., 2017; Tan et al.,
2019). Other AutoML studies similarly have found ways
to constrain their search spaces to isolated algorithmic as-
pects, such as the learning rule used during backpropagation
(Andrychowicz et al., 2016; Ravi & Larochelle, 2017), the
data augmentation (Cubuk et al., 2019a; Park et al., 2019) or
the objective function in reinforcement learning (Houthooft
et al., 2018; Kirsch et al., 2019; Alet et al., 2019); in these
works, all other algorithmic aspects remain hand-designed.
This approach may save compute time but has two draw-
backs. First, human-designed components bias the search
results in favor of human-designed algorithms, possibly re-
ducing the innovation potential of AutoML. Innovation is
also limited by having fewer options (Elsken et al., 2019b).
Indeed, dominant aspects of performance are often left out
(Yang et al., 2020). Second, constrained search spaces need
to be carefully composed (Zoph et al., 2018; So et al., 2019;
Negrinho et al., 2019), thus creating a new burden on re-
searchers and undermining the purported objective of saving
their time.

To address this, we propose to automatically search for
whole ML algorithms using little restriction on form and
only simple mathematical operations as building blocks.
We call this approach AutoML-Zero, following the spirit
of previous work which aims to learn with minimal hu-
man participation [e.g. Silver et al., 2017]. In other words,
AutoML-Zero aims to search a fine-grained space simulta-
neously for the model, optimization procedure, initialization,
and so on, permitting much less human-design and even al-
lowing the discovery of non-neural network algorithms. To
demonstrate that this is possible today, we present an initial
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solution to this challenge that creates algorithms competitive
with backpropagation-trained neural networks.

The genericity of the AutoML-Zero space makes it more dif-
ficult to search than existing AutoML counterparts. Existing
AutoML search spaces have been constructed to be dense
with good solutions, thus deemphasizing the search method
itself. For example, comparisons on the same space found
that advanced techniques are often only marginally superior
to simple random search (RS) (Li & Talwalkar, 2019; Elsken
et al., 2019b; Negrinho et al., 2019). AutoML-Zero is dif-
ferent: the space is so generic that it ends up being quite
sparse. The framework we propose represents ML algo-
rithms as computer programs comprised of three component

functions, Setup, Predict, and Learn, that performs ini-
tialization, prediction and learning. The instructions in these
functions apply basic mathematical operations on a small
memory. The operation and memory addresses used by
each instruction are free parameters in the search space, as
is the size of the component functions. While this reduces
expert design, the consequent sparsity means that RS can-
not make enough progress; e.g. good algorithms to learn
even a trivial task can be as rare as 1 in 1012. To overcome
this difficulty, we use small proxy tasks and migration tech-
niques to build highly-optimized open-source infrastructure
capable of searching through 10,000 models/second/cpu
core. In particular, we present a variant of functional equiv-
alence checking that applies to ML algorithms. It prevents
re-evaluating algorithms that have already been seen, even
if they have different implementations, and results in a 4x
speedup. More importantly, for better efficiency, we move
away from RS.1

Perhaps surprisingly, evolutionary methods can find solu-
tions in the AutoML-Zero search space despite its enormous
size and sparsity. By randomly modifying the programs and
periodically selecting the best performing ones on given
tasks/datasets, we discover reasonable algorithms. We will
first show that starting from empty programs and using data
labeled by “teacher” neural networks with random weights,
evolution can discover neural networks trained by gradient
descent (Section 4.1). Next, we will minimize bias toward
known algorithms by switching to binary classification tasks
extracted from CIFAR-10 and allowing a larger set of possi-
ble operations. The result is evolved models that surpass the
performance of a neural network trained with gradient de-
scent by discovering interesting techniques like multiplica-
tive interactions, normalized gradient and weight averaging
(Section 4.2). Having shown that these ML algorithms are
attainable from scratch, we will finally demonstrate that it
is also possible to improve an existing algorithm by initial-
izing the population with it. This way, evolution adapts

1We open-source our code at https://github.
com/google-research/google-research/tree/
master/automl_zero

the algorithm to the type of task provided. For example,
dropout-like operations emerge when the task needs reg-
ularization and learning rate decay appears when the task
requires faster convergence (Section 4.3). Additionally, we
present ablation studies dissecting our method (Section 5)
and baselines at various compute scales for comparisons by
future work (Suppl. Section S10).

In summary, our contributions are:
• AutoML-Zero, the proposal to automatically search for

ML algorithms from scratch with minimal human design;
• A novel framework with open-sourced code1 and a search

space that combines only basic mathematical operations;
• Detailed results to show potential through the discovery

of nuanced ML algorithms using evolutionary search.

2. Related Work

AutoML has utilized a wide array of paradigms, including
growing networks neuron-by-neuron (Stanley & Miikku-
lainen, 2002), hyperparameter optimization (Snoek et al.,
2012; Loshchilov & Hutter, 2016; Jaderberg et al., 2017)
and, neural architecture search (Zoph & Le, 2016; Real
et al., 2017). As discussed in Section 1, AutoML has tar-
geted many aspects of neural networks individually, using
sophisticated coarse-grained building blocks. Mei et al.
(2020), on the other hand, perform a fine-grained search
over the convolutions of a neural network. Orthogonally, a
few studies benefit from extending the search space to two
such aspects simultaneously (Zela et al., 2018; Miikkulainen
et al., 2019; Noy et al., 2019). In our work, we perform a
fine-grained search over all aspects of the algorithm.

An important aspect of an ML algorithm is the optimiza-
tion of its weights, which has been tackled by AutoML in
the form of numerically discovered optimizers (Chalmers,
1991; Andrychowicz et al., 2016; Vanschoren, 2019). The
output of these methods is a set of coefficients or a neu-
ral network that works well but is hard to interpret. These
methods are sometimes described as “learning the learning
algorithm”. However, in our work, we understand algorithm

more broadly, including the structure and initialization of
the model, not just the optimizer. Additionally, our algo-
rithm is not discovered numerically but symbolically. A
symbolically discovered optimizer, like an equation or a
computer program, can be easier to interpret or transfer. An
early example of a symbolically discovered optimizer is that
of Bengio et al. (1994), who optimize a local learning rule
for a 4-neuron neural network using genetic programming
(Holland, 1975; Forsyth et al., 1981; Koza & Koza, 1992).
Our search method is similar but represents the program as
a sequence of instructions. While they use the basic opera-
tions {+,�,⇥,÷}, we allow many more, taking advantage
of dense hardware computations. Risi & Stanley (2010)
tackle the discovery of a biologically informed neural net-

https://github.com/google-research/google-research/tree/master/automl_zero
https://github.com/google-research/google-research/tree/master/automl_zero
https://github.com/google-research/google-research/tree/master/automl_zero
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work learning rule too, but with a very different encoding.
More recently, Bello et al. (2017) also search for a symbolic
optimizer, but in a restricted search space of hand-tuned
operations (e.g. “apply dropout with 30% probability”, “clip
at 0.00001”, etc.). Our search space, on the other hand,
aims to minimize restrictions and manual design. Unlike
these three studies, we do not even assume the existence of
a neural network or of gradients.

We note that our work also relates to program synthesis
efforts. Early approaches have proposed to search for pro-
grams that improve themselves (Lenat, 1983; Schmidhuber,
1987). We share similar goals in searching for learning
algorithms, but focus on common machine learning tasks
and have dropped the self-reflexivity requirement. More re-
cently, program synthesis has focused on solving problems
like sorting (Graves et al., 2014), string manipulation (Gul-
wani et al., 2017; Balog et al., 2017), or structured data
QA (Liang et al., 2016). Unlike these studies, we focus on
synthesizing programs that solve the problem of doing ML.

Suppl. Section S1 contains additional related work.

3. Methods

AutoML-Zero concerns the automatic discovery of algo-
rithms that perform well on a given set of ML tasks T . First,
search experiments explore a very large space of algorithms
A for an optimal and generalizable a⇤ 2 A. The quality of
the algorithms is measured on a subset Tsearch ⇢ T , with
each search experiment producing a candidate algorithm.
In this work, we apply random search as a baseline and
evolutionary search as the main search method due to their
simplicity and scalability. Once the search experiments are
done, we select the best candidate by measuring their perfor-
mances on another subset of tasks Tselect ⇢ T (analogous
to standard ML model selection with a validation set). Un-
less otherwise stated, we use binary classification tasks
extracted from CIFAR-10, a collection of tiny images each
labeled with object classes (Krizhevsky & Hinton, 2009),
and we calculate the average accuracy across a set of tasks
to measure the quality of each algorithm. To lower compute
costs and achieve higher throughput, we create small proxy
tasks for Tsearch and Tselect by using one random matrix for
each task to project the input features to lower dimensional-
ity. The projected dimensionality is 8  F  256. Finally,
we compare the best algorithm’s performance against hand-
designed baselines on the CIFAR-10 data in the original
dimensionality (3072), holding out the CIFAR-10 test set
for the final evaluation. To make sure the improvement is
not specific to CIFAR-10, we further show the gain gener-
alizes to other datasets: SVHN (Netzer et al., 2011), Ima-
geNet (Chrabaszcz et al., 2017), and Fashion MNIST (Xiao
et al., 2017). The Experiment Details paragraphs in Sec-
tion 4 contain the specifics of the tasks. We now describe

the search space and search method with sufficient detail to
understand the results. For reproducibility, we provide the
minutiae in the Supplement and the open-sourced code.

3.1. Search Space

We represent algorithms as computer programs that act on
a small virtual memory with separate address spaces for
scalar, vector and matrix variables (e.g. s1, v1, m1), all of
which are floating-point and share the dimensionality of
the task’s input features (F ). Programs are sequences of
instructions. Each instruction has an operation—or op—
that determines its function (e.g. “multiply a scalar with a
vector”). To avoid biasing the choice of ops, we use a simple
criterion: those that are typically learned by high-school
level. We purposefully exclude machine learning concepts,
matrix decompositions, and derivatives. Instructions have
op-specific arguments too. These are typically addresses
in the memory (e.g. “read the inputs from scalar address 0
and vector address 3; write the output to vector address 2”).
Some ops also require real-valued constants (e.g. µ and �
for a random Gaussian sampling op), which are searched for
as well. Suppl. Section S2 contains the full list of 65 ops.

# (Setup, Predict, Learn) = input ML algorithm.

# Dtrain / Dvalid = training / validation set.

# sX/vX/mX: scalar/vector/matrix var at address X.

def Evaluate(Setup, Predict, Learn, Dtrain,

Dvalid):

# Zero-initialize all the variables (sX/vX/mX).

initialize_memory()

Setup() # Execute setup instructions.

for (x, y) in Dtrain:

v0 = x # x will now be accessible to Predict.

Predict() # Execute prediction instructions.

# s1 will now be used as the prediction.

s1 = Normalize(s1) # Normalize the prediction.

s0 = y # y will now be accessible to Learn.

Learn() # Execute learning instructions.

sum_loss = 0.0

for (x, y) in Dvalid:

v0 = x

Predict() # Only Predict(), not Learn().

s1 = Normalize(s1)

sum_loss += Loss(y, s1)

mean_loss = sum_loss / len(Dvalid)

# Use validation loss to evaluate the algorithm.

return mean_loss

Figure 1: Algorithm evaluation on one task. We represent an
algorithm as a program with three component functions (Setup,
Predict, Learn). These are evaluated by the pseudo-code above,
producing a mean loss for each task. The search method then uses
the median across tasks as an indication of the algorithm’s quality.

Inspired by supervised learning work, we represent an al-
gorithm as a program with three component functions that
we call Setup, Predict, and Learn (e.g. Figure 5). The
algorithm is evaluated as in Fig 1. There, the two for-loops
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def Setup():
def Predict(v0):

s9 = arctan(s2)
s9 = mean(v5)

def Learn(v0, s0):
v1 = s9 * v1

def Setup():
s4 = 0.5
s5 = 0.5
m4 = gauss(0,1)

def Predict(v0):
v1 = v0 - v9
m4 = s2 * m4

def Learn(v0, s0):
m2 = m2 + m4)

def Setup():
def Predict(v0):
def Learn(v0, s0):

def Setup():
s4 = 0.5

def Predict(v0):
v1 = v0 - v9
v5 = v0 + v9
m1 = s2 * m2

def Learn(v0, s0):
s4 = s0 - s1
s3 = abs(s1)

def Setup():
def Predict(v0):
def Learn(v0, s0):

v4 = v2 - v1
s3 = mean(v2)
s4 = mean(v1)
s3 = s3 + s4)

def Setup():
def Predict(v0):

s9 = arctan(s2)
s9 = mean(v5)

def Learn(v0, s0):
v1 = s9 * v1

def Setup():
s4 = 0.5
s5 = 0.5
m4 = gauss(0,1)

def Predict(v0):
v1 = v0 - v9
m4 = s2 * m4

def Learn(v0, s0):
m2 = m2 + m4)

def Setup():
def Predict(v0):
def Learn(v0, s0):

def Setup():
s4 = 0.5

def Predict(v0):
v1 = v0 - v9
v5 = v0 + v9
m1 = s2 * m2

def Learn(v0, s0):
s4 = s0 - s1
s3 = abs(s1)

def Setup():
def Predict(v0):
def Learn(v0, s0):

v4 = v2 - v1
s3 = mean(v2)
s4 = mean(v1)
s3 = s3 + s4)

Step 1

oldest newest

def Setup():
s4 = 0.5
s5 = 0.5
m4 = gauss(0,1)

def Predict(v0):
v1 = v0 - v9
m4 = s2 * m4

def Learn(v0, s0):
m2 = m2 + m4)

def Setup():
def Predict(v0):
def Learn(v0, s0):

def Setup():
s4 = 0.5

def Predict(v0):
v1 = v0 - v9
v5 = v0 + v9
m1 = s2 * m2

def Learn(v0, s0):
s4 = s0 - s1
s3 = abs(s1)

def Setup():
def Predict(v0):
def Learn(v0, s0):

v4 = v2 - v1
s3 = mean(v2)
s4 = mean(v1)
s3 = s3 + s4)

Step 2

best

def Setup():
s4 = 0.5
s5 = 0.5
m4 = gauss(0,1)

def Predict(v0):
v1 = v0 - v9
m4 = s2 * m4

def Learn(v0, s0):
m2 = m2 + m4)

def Setup():
def Predict(v0):
def Learn(v0, s0):

def Setup():
s4 = 0.5

def Predict(v0):
v1 = v0 - v9
v5 = v0 + v9
m1 = s2 * m2

def Learn(v0, s0):
s4 = s0 - s1
s3 = abs(s1)

def Setup():
def Predict(v0):
def Learn(v0, s0):

v4 = v2 - v1
s3 = mean(v2)
s4 = mean(v1)
s3 = s3 + s4)

def Setup():
s4 = 0.5

def Predict(v0):
v1 = v0 - v9
v5 = v0 + v9
m1 = s2 * m2

def Learn(v0, s0):
s4 = s0 - s1
s3 = abs(s1)

Step 3

copy best

def Setup():
s4 = 0.5
s5 = 0.5
m4 = gauss(0,1)

def Predict(v0):
v1 = v0 - v9
m4 = s2 * m4

def Learn(v0, s0):
m2 = m2 + m4)

def Setup():
def Predict(v0):
def Learn(v0, s0):

def Setup():
s4 = 0.5

def Predict(v0):
v1 = v0 - v9
v5 = v0 + v9
m1 = s2 * m2

def Learn(v0, s0):
s4 = s0 - s1
s3 = abs(s1)

def Setup():
def Predict(v0):
def Learn(v0, s0):

v4 = v2 - v1
s3 = mean(v2)
s4 = mean(v1)
s3 = s3 + s4)

def Setup():
s4 = 0.5

def Predict(v0):
v1 = v0 - v9
v5 = v0 + v9
m1 = s2 * m2

def Learn(v0, s0):
s3 = abs(s1)

Step 4

mutate

Figure 2: One cycle of the evolutionary method (Goldberg & Deb,
1991; Real et al., 2019). A population of P algorithms (here,
P=5; laid out from left to right in the order they were discovered)
undergoes many cycles like this one. First, we remove the oldest
algorithm (step 1). Then, we choose a random subset of size T
(here, T=3) and select the best of them (step 2). The best is copied
(step 3) and mutated (step 4).

implement the training and validation phases, processing
the task’s examples one-at-a-time for simplicity. The train-
ing phase alternates Predict and Learn executions. Note
that Predict just takes in the features of an example (i.e.
x)—its label (i.e. y) is only seen by Learn afterward.

Then, the validation loop executes Predict over the val-
idation examples. After each Predict execution, what-

ever value is in scalar address 1 (i.e. s1) is considered
the prediction—Predict has no restrictions on what it
can write there. For classification tasks, this prediction
in (�1,1) is normalized to a probability in (0, 1) through
a sigmoid (binary classification) or a softmax (multi-class).
This is implemented as the s1 = Normalize(s1) instruc-
tion. The virtual memory is zero-initialized and persis-
tent, and shared globally throughout the whole evalua-
tion. This way, Setup can initialize memory variables (e.g.
the weights), Learn can adjust them during training, and
Predict can use them. This procedure yields an accuracy
for each task. The median across D tasks is used as a mea-
sure of the algorithm’s quality by the search method.

3.2. Search Method

Search experiments must discover algorithms by modify-
ing the instructions in the component functions (Setup,

def Setup():

s4 = 0.5

def Predict(v0):

m1 = s2 * m2

def Learn(v0, s0):

s4 = s0 - s1

s3 = abs(s1)

def Setup():

s4 = 0.5

def Predict(v0):

m1 = s2 * m2

def Learn(v0, s0):

s4 = s0 - s1

s2 = sin(v1)

s3 = abs(s1)

def Setup():

s4 = 0.5

def Predict(v0):

m1 = s2 * m2

def Learn(v0, s0):

s4 = s0 - s1

v3 = abs(s1)

def Setup():

s4 = 0.5

def Predict(v0):

m1 = s2 * m2

def Learn(v0, s0):

s0 = mean(m1)

s5 = arctan(s7)

def Setup():

s4 = 0.5

def Predict(v0):

m1 = s2 * m2

def Learn(v0, s0):

s4 = s0 - s1

s3 = abs(s1)

def Setup():

s4 = 0.5

def Predict(v0):

m1 = s7 * m2

def Learn(v0, s0):

s4 = s0 - s1

s3 = abs(s1)

Type (i)

Type (ii)

Type (iii)

parent

child

Figure 3: Mutation examples. Parent algorithm is on the left; child
on the right. (i) Insert a random instruction (removal also possible).
(ii) Randomize a component function. (iii) Modify an argument.

Predict, and Learn; e.g. Figure 5). Unless otherwise
stated, we use the regularized evolution search method be-
cause of its simplicity and recent success on architecture
search benchmarks (Real et al., 2019; Ying et al., 2019; So
et al., 2019). This method is illustrated in Figure 2. It keeps
a population of P algorithms, all initially empty—i.e. none
of the three component functions has any instructions/code
lines. The population is then improved through cycles. Each
cycle picks T < P algorithms at random and selects the
best performing one as the parent, i.e. tournament selection

(Goldberg & Deb, 1991). This parent is then copied and
mutated to produce a child algorithm that is added to the
population, while the oldest algorithm in the population is
removed. The mutations that produce the child from the
parent must be tailored to the search space; we use a random
choice among three types of actions: (i) insert a random
instruction or remove an instruction at a random location
in a component function, (ii) randomize all the instructions
in a component function, or (iii) modify one of the argu-
ments of an instruction by replacing it with a random choice
(e.g. “swap the output address” or “change the value of a
constant”). These are illustrated in Figure 3.

In order to reach a throughput of 2k–10k algorithms/sec-
ond/cpu core, besides the use of small proxy tasks, we apply
two additional upgrades: (1) We introduce a version of func-

tional equivalence checking (FEC) that detects equivalent
supervised ML algorithms, even if they have different imple-
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mentations, achieving a 4x speedup. To do this, we record
the predictions of an algorithm after executing 10 training
and 10 validation steps on a fixed set of examples. These
are then truncated and hashed into a fingerprint for the al-
gorithm to detect duplicates in the population and reuse
previous evaluation scores. (2) We add hurdles (So et al.,
2019) to reach further 5x throughput. In addition to (1) and
(2), to attain higher speeds through parallelism, we distribute
experiments across worker processes that exchange models
through migration (Alba & Tomassini, 2002); each process
has its own P-sized population and runs on a commodity
CPU core. We denote the number of processes by W . Typi-
cally, 100<W<1000 (we indicate the exact numbers with
each experiment2). Workers periodically upload randomly
selected algorithms to a central server. The server replies
with algorithms randomly sampled across all workers, re-
placing half the local population (i.e. random migration).
To additionally improve the quality of the search, we allow
some workers to search on projected binary MNIST tasks,
in addition to projected binary CIFAR-10, to promote diver-
sity (see e.g. (Wang et al., 2019)). More details about these
techniques can be found in Suppl. Section S3. Section 5 and
Suppl. Section S9 contain ablation studies showing that all
these techniques are beneficial.

For each experimental result, we include an Experiment

Details paragraph with the exact values for meta-parameters
like P and T . None of the meta-parameters were tuned
in the final set of experiments at full compute scale. Most
of them were either decided in smaller experiments (e.g.
P ), taken from previous work (e.g. T ), or simply not tuned
at all. In some cases, when uncertain about a parameter’s
appropriate value, we used a range of values instead (e.g.
“100  P  1000”); different worker processes within the
experiment use different values within the range.

Details: Generally, we use T=10, 100  P  1000. Each

child algorithm is mutated with probability U=0.9. Run time: 5
days. Migration rate adjusted so that each worker process has

fewer than 1 migration/s and at least 100 migrations throughout

the expt. Specifics for each expt. in Suppl. Section S5. Suppl.

Section S3 describes additional more general methods minutiae.

4. Results

In the next three sections, we will perform experiments to
answer the following three questions, respectively: “how
difficult is searching the AutoML-Zero space?”, “can we
use our framework to discover reasonable algorithms with
minimal human input?”, and “can we discover different
algorithms by varying the type of task we use during the
search experiment?”

2The electricity consumption for our experiments (which were
run in 2019) was matched with purchases of renewable energy.

4.1. Finding Simple Neural Nets in a Difficult Space

We now demonstrate the difficulty of the search space
through random search (RS) experiments and we show that,
nonetheless, interesting algorithms can be found, especially
with evolutionary search. We will explore the benefits of
evolution as we vary the task difficulty. We start by search-
ing for algorithms to solve relatively easy problems, such as
fitting linear regression data. Note that without the following
simplifications, RS would not be able to find solutions.

Experiment Details: we generate simple regression tasks

with 1000 training and 100 validation examples with random 8-

dim. feature vectors {xi} and scalar labels {L(xi)}. L is fixed

for each task but varies between them. To get affine tasks, L(xi)=
u·xi+a, where u and a are a random vector and scalar. For linear

tasks, a=0. All random numbers were Gaussian (µ=0, �=1).

Evaluations use RMS error and the Normalize() instruction in

Figure 1 is the identity. We restrict the search space by only

using necessary ops and fixing component function lengths to

those of known solutions. E.g., for a linear dataset, Learn has 4

instructions because linear SGD requires 4 instructions. To keep

lengths fixed, insert/remove-instruction mutations are not allowed

and component functions are initialized randomly. RS generates

programs where all instructions are random (see Section 3.2) and

selects the best at the end. Evolution expts. are small (W=1; D=
3; 10k algs./expt.); We repeat expts. until statistical significance

is achieved. Full configs. in Suppl. Section S5. Note that the

restrictions above apply *only* to this section (4.1).

We quantify a task’s difficulty by running a long RS experi-
ment. We count the number of acceptable algorithms, i.e.
those with lower mean RMS error than a hand-designed
reference (e.g. linear regressor or neural network). The
ratio of acceptable algorithms to the total number of algo-
rithms evaluated gives us an RS success rate. It can also
be interpreted as an estimate of the “density of acceptable
algorithms” in the search space. We use this density as a
measure of problem difficulty. For example, in the linear
regression case, we looked for all algorithms that do better
than a linear regressor with gradient descent. Even in this
trivial task type, we found only 1 acceptable algorithm ev-
ery 107, so we define 107 to be the difficulty of the linear
regression task. We then run the evolution experiments with
the same combined total number of evaluations as for RS.
We measure the ratio of acceptable algorithms to the total
number of algorithms evaluated, to get an evolution success

rate. However, we only count at most 1 acceptable algo-
rithm from each experiment; this biases the results against

evolution but is necessary because a single experiment may
yield multiple copies of a single acceptable algorithm. Even
in the simple case of linear regression, we find that evolution
is 5 times more efficient than RS. This stands in contrast
to many previous AutoML studies, where the solutions are
dense enough that RS can be competitive (Section 1).

Figure 4 summarizes the result of this analysis for 4 task
types: the discovery of a full-algorithm/only-the-learning
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Figure 4: Relative success rate of evolution and random search
(RS). Each point represents a different task type and the x-axis
measures its difficulty (defined in the main text). As the task
type becomes more difficult, evolution vastly outperforms RS,
illustrating the complexity of AutoML-Zero when compared to
more traditional AutoML spaces.

for linear/affine regression data. The AutoML-Zero search
space is generic but this comes at a cost: even for easy prob-
lems, good algorithms are sparse. As the problem becomes
more difficult, the solutions become vastly more sparse and
evolution greatly outperforms RS.

As soon as we advance to nonlinear data, the gap widens
and we can no longer find solutions with RS. To make sure
a good solution exists, we generate regression tasks using
teacher neural networks and then verify that evolution can
rediscover the teacher’s code.

Experiment Details: tasks as above but the labeling function

is now a teacher network: L(xi)=u·ReLU(Mxi), where M is a

random 8 ⇥ 8 matrix, u is a random vector. Number of training

examples up to 100k. Single expt. Same search space restrictions

as above, but now allowing ops used in 2-layer fully connected

neural nets. After searching, we select the algorithm with the

smallest RMS loss. Full configs. in Suppl. Section S5. Note that

the restrictions above apply *only* to this section (4.1).

When the search method uses only 1 task in Tsearch (i.e.
D=1), the algorithm evolves the exact prediction function
used by the teacher and hard-codes its weights. The results
become more surprising as we increase the number of tasks
in Tsearch (e.g. to D=100), as now the algorithm must find
different weights for each task. In this case, evolution not
only discovers the forward pass, but also “invents” back-
propagation code to learn the weights (Figure 5). Despite
its difficulty, we conclude that searching the AutoML-Zero
space seems feasible and we should use evolutionary search
instead of RS for more complex tasks.

4.2. Searching with Minimal Human Input

Teacher datasets and carefully chosen ops bias the results
in favor of known algorithms, so in this section we replace
them with more generic options. We now search among a

# sX/vX/mX = scalar/vector/matrix at address X.

# “gaussian” produces Gaussian IID random numbers.

def Setup():

# Initialize variables.

m1 = gaussian(-1e-10, 9e-09) # 1st layer weights

s3 = 4.1 # Set learning rate

v4 = gaussian(-0.033, 0.01) # 2nd layer weights

def Predict(): # v0=features

v6 = dot(m1, v0) # Apply 1st layer weights

v7 = maximum(0, v6) # Apply ReLU

s1 = dot(v7, v4) # Compute prediction

def Learn(): # s0=label

v3 = heaviside(v6, 1.0) # ReLU gradient

s1 = s0 - s1 # Compute error

s2 = s1 * s3 # Scale by learning rate

v2 = s2 * v3 # Approx. 2nd layer weight delta

v3 = v2 * v4 # Gradient w.r.t. activations

m0 = outer(v3, v0) # 1st layer weight delta

m1 = m1 + m0 # Update 1st layer weights

v4 = v2 + v4 # Update 2nd layer weights

Figure 5: Rediscovered neural network algorithm. It implements
backpropagation by gradient descent. Comments added manually.

long list of ops selected based on the simplicity criterion
described in Section 3.1. The increase in ops makes the
search more difficult but allows the discovery of solutions
other than neural networks. For more realistic datasets, we
use binary classification tasks extracted from CIFAR-10 and
MNIST.

Experiment Details: We extract tasks from the CIFAR-10

and MNIST training sets; each of the datasets are searched on

by half of the processes. For both datasets, the 45 pairs of the 10

classes yield tasks with 8000 train / 2000 valid examples. 36 pairs

are randomly selected to constitute Tsearch, i.e. search tasks; 9
pairs are held out for Tselect, ı.e tasks for model selection. The

CIFAR-10 test set is reserved for final evaluation to report results.

Features are projected to 8  F  256 dim. Each evaluation is

on 1  D  10 tasks. W=10k. From now on, we use the full

setup described in Section 3.2. In particular, we allow variable

component function length. Number of possible ops: 7/ 58/ 58 for

Setup/ Predict/ Learn, resp. Full config. in Suppl. Section S5.

Figure 6 shows the progress of an experiment. It starts with
a population of empty programs and automatically invents
improvements, several of which are highlighted in the plot.
These intermediate discoveries are stepping stones available
to evolution and they explain why evolution outperforms
RS in this space. Each experiment produces a candidate
algorithm using Tsearch. We then evaluate these algorithms
on unseen pairs of classes (Tselect) and compare the results
to a hand-designed reference, a 2-layer fully connected
neural network trained by gradient descent. The candidate
algorithms perform better in 13 out of 20 experiments. To
make sure the improvement is not specific to the small proxy
tasks, we select the best algorithm for a final evaluation on
binary classification with the original CIFAR-10 data.

Since we are evaluating on tasks with different dimensional-
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def Setup():

def Predict():

def Learn():

def Setup():

# Init weights

v1 = gaussian(0.0, 0.01)

s2 = -1.3

def Predict(): # v0=features

s1 = dot(v0, v1) # Prediction

def Learn(): # s0=label

s3 = s1 / s2 # Scale predict.

s1 = s0 + s3 # Compute error

v2 = s1 * v0 # Gradient

v1 = v1 + v2 # Update weights
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def Setup():

s4 = 1.8e-3 # Learning rate

def Predict(): # v0=features

v2 = v0 + v1 # Add noise

v3 = v0 - v1 # Subtract noise

v4 = dot(m0, v2) # Linear

s1 = dot(v3, v4) # Mult.interac.

m0 = s2 * m2 # Copy weights

def Learn(): # s0=label

s3 = s0 - s1 # Compute error

m0 = outer(v3, v0) # Approx grad

s2 = norm(m0) # Approx grad norm

s5 = s3 / s2 # Normalized error

v5 = s5 * v3

m0 = outer(v5, v2) # Grad

m1 = m1 + m0 # Update weights

m2 = m2 + m1 # Accumulate wghts.

m0 = s4 * m1

# Generate noise

v1 = uniform(2.4e-3, 0.67)

Figure 6: Progress of one evolution experiment on projected binary CIFAR-10. Callouts indicate some beneficial discoveries. We also
print the code for the initial, an intermediate, and the final algorithm. The last is explained in the flow diagram. It outperforms a simple
fully connected neural network on held-out test data and transfers to features 10x its size. Code notation is the same as in Figure 5. The
x-axis gap is due to infrequent recording due to disk throughput limitations.

ity in the final evaluation, we treat all the constants in the
best evolved algorithm as hyperparameters and tune them
jointly through RS using the validation set. For compari-
son, we tune two hand-designed baselines, one linear and
one nonlinear, using the same total compute that went into
discovering and tuning the evolved algorithm. We finally
evaluate them all on unseen CIFAR-10 test data. Evaluating
with 5 different random seeds, the best evolved algorithm’s
accuracy (84.06± 0.10%) significantly outperforms the lin-
ear baseline (logistic regression, 77.65 ± 0.22%) and the
nonlinear baseline (2-layer fully connected neural network,
82.22± 0.17%). This gain also generalizes to binary classi-
fication tasks extracted from other datasets: SVHN (Netzer
et al., 2011) (88.12% for the best evolved algorithm vs.
59.58% for the linear baseline vs. 85.14% for the nonlinear
baseline), downsampled ImageNet (Chrabaszcz et al., 2017)
(80.78% vs. 76.44% vs. 78.44%), Fashion MNIST (Xiao
et al., 2017) (98.60% vs. 97.90% vs. 98.21%). This algo-
rithm is limited by our simple search space, which cannot
currently represent some techniques that are crucial in state-
of-the-art models, like batch normalization or convolution.
Nevertheless, the algorithm shows interesting characteris-

tics, which we describe below.

As a case study, we delve into the best algorithm, shown
in Figure 6. The code has been cleaned for readability; we
removed and rearranged instructions when this caused no
difference in performance (raw code in Suppl. Section S6).
The algorithm has the following notable features, whose
usefulness we verified through ablations (more details in
Suppl. Section S8): (1) Noise is added to the input, which,
we suspect, acts as a regularizer:

a = x+ u;b = x� u;u ⇠ U(↵,�)

where x is the input, u is a random vector drawn from a
uniform distribution. (2) Multiplicative interactions (Jayaku-
mar et al., 2020) emerge in a bilinear form: o = a|Wb,
where o is the output, and W is the weight matrix. (3) The
gradient g w.r.t. the weight matrix W is computed correctly
and is then normalized to be a unit vector:

gw =
g

|g| ;g = �ab|; � = y⇤ � y;

where � is the error, y is the predicted probability, and y⇤

is the label. Normalizing gradients is a common heuris-
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tic in non-convex optimization (Hazan et al., 2015; Levy,
2016). (4) The weight matrix W0 used during inference
is the accumulation of all the weight matrices {Wt} after
each training step t, i.e.: W0 =

P
t Wt. This is reminis-

cent of the averaged perceptron (Collins, 2002) and neural
network weight averaging during training (Polyak & Judit-
sky, 1992; Goodfellow et al., 2016). Unlike these studies,
the evolved algorithm accumulates instead of averaging, but
this difference has no effect when measuring the accuracy
of classification tasks (it does not change the prediction).
As in those techniques, different weights are used at train-
ing and validation time. The evolved algorithm achieves
this by setting the weights W equal to W0 at the end of
the Predict component function and resetting them to Wt

right after that, at the beginning of the Learn component
function. This has no effect during training, when Predict
and Learn alternate in execution. However, during val-
idation, Learn is never called and Predict is executed
repeatedly, causing W to remain as W0.

In conclusion, even though the task used during search is
simple, the results show that our framework can discover
commonly used algorithms from scratch.

4.3. Discovering Algorithm Adaptations

In this section, we will show wider applicability by search-
ing on three different task types. Each task type will impose
its own challenge (e.g. “too little data”). We will show that
evolution specifically adapts the algorithms to meet the chal-
lenges. Since we already reached reasonable models from
scratch above, now we save time by simply initializing the
populations with the working neural network of Figure 5.

Experiment Details: The basic expt. configuration and

datasets (binary CIFAR-10) are as in Section 4.2, with the fol-

lowing exceptions: W =1k; F =16; 10  D  100; critical

alterations to the data are explained in each task type below. Full

configs. in Suppl. Section S5.

Few training examples. We use only 80 of the training
examples and repeat them for 100 epochs. Under these
conditions, algorithms evolve an adaptation that augments
the data through the injection of noise (Figure 7a). This is
referred to in the literature as a noisy ReLU (Nair & Hinton,
2010; Bengio et al., 2013) and is reminiscent of Dropout
(Srivastava et al., 2014). Was this adaptation a result of the
small number of examples or did we simply get lucky? To
answer this, we perform 30 repeats of this experiment and
of a control experiment. The control has 800 examples/100
epochs. We find that the noisy ReLU is reproducible and
arises preferentially in the case of little data (expt: 8/30,
control: 0/30, p<0.0005).

Fast training. Training on 800 examples/10 epochs leads
to the repeated emergence of learning-rate decay, a well-
known strategy for the timely training of an ML model
(Bengio, 2012). An example can be seen in Figure 7b. As
a control, we increase the number of epochs to 100. With
overwhelming confidence, the decay appears much more
often in the cases with fewer training steps (expt: 30/30,
control: 3/30, p<10�14).

Multiple classes. When we use all 10 classes of the CIFAR-
10 dataset, evolved algorithms tend to use the transformed
mean of the weight matrix as the learning rate (Figure 7c).
(Note that to support multiple classes, labels and outputs are
now vectors, not scalars.) While we do not know the rea-
son, the preference is statistically significant (expt: 24/30,
control: 0/30, p<10�11).

Altogether, these experiments show that the resulting algo-
rithms seem to adapt well to the different types of tasks.

def Predict():

... # Omitted/irrelevant code

# v0=features; m1=weight matrix

v6 = dot(m1, v0) # Apply weights

# Random vector, m=-0.5 and s=0.41

v8 = gaussian(-0.5, 0.41)

v6 = v6 + v8 # Add it to activations

v7 = maximum(v9, v6) # ReLU, v9⇡0

...

5H/8�
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(a) Adaptation to few examples.

def Setup():

# LR = learning rate

s2 = 0.37 # Init. LR

...

def Learn():

# Decay LR

s2 = arctan(s2)

...
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(b) Adaptation to fast training.

def Learn():

s3 = mean(m1) # m1 is the weights.

s3 = abs(s3)

s3 = sin(s3)

# From here down, s3 is used as

# the learning rate.

...
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(c) Adaptation to multiple classes.

Figure 7: Adaptations to different task types. (a) When few examples are available, evolution creates a noisy ReLU. (b) When fast training
is needed, we get a learning rate decay schedule implemented as an iterated arctan map (top) that is nearly exponential (bottom). (c) With
multiple classes, the mean of the weight matrix is transformed and then used as the learning rate. Same notation as in Figure 5; full
algorithms in Suppl. Section S6.
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5. Conclusion and Discussion

In this paper, we proposed an ambitious goal for AutoML:
the automatic discovery of whole ML algorithms from basic
operations with minimal restrictions on form. The objective
was to reduce human bias in the search space, in the hope
that this will eventually lead to new ML concepts. As a start,
we demonstrated the potential of this research direction by
constructing a novel framework that represents an ML algo-
rithm as a computer program comprised of three component
functions (Setup, Predict, Learn). Starting from empty
component functions and using only basic mathematical
operations, we evolved neural networks, gradient descent,
multiplicative interactions, weight averaging, normalized
gradients, and the like. These results are promising, but
there is still much work to be done. In the remainder of
this section, we motivate future work with concrete observa-
tions.

The search method was not the focus of this study but to
reach our results, it helped to (1) add parallelism through
migration, (2) use FEC, (3) increase diversity, and (4) ap-
ply hurdles, as we detailed in Section 3.2. The effects can
be seen in Figure 8. Suppl. Section S9 shows that these
improvements work across compute scales (today’s high-
compute regime is likely to be tomorrow’s low-compute
regime, so ideas that do not scale with compute will be
shorter-lived). Preliminary implementations of crossover
and geographic structure did not help in our experiments.
The silver lining is that the AutoML-Zero search space pro-
vides ample room for algorithms to distinguish themselves
(e.g. Section 4.1), allowing future work to attempt more so-
phisticated evolutionary approaches, reinforcement learning,
Bayesian optimization, and other methods that have helped
AutoML before.
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Figure 8: Search method ablation study. From left to right, each
column adds an upgrade, as described in the main text.

Evaluating evolved algorithms on new tasks requires hy-
perparameter tuning, as is common for machine learning
algorithms, but without inspection we may not know what
each variable means (e.g. “Is s7 the learning rate?”). Tun-
ing all constants in the program was insufficient due to
hyperparameter coupling, where an expression happens to

produce a good value for a hyperparameter on a specific
set of tasks but won’t generalize. For example, evolution
may choose s7=v2·v2 because v2·v2 coincides with a good
value for the hyperparameter s7. We address this through
manual decoupling (e.g. recognizing the problematic code
line and instead setting s7 to a constant that can be tuned
later). This required time-consuming analysis that could be
automated by future work. More details can be found in
Suppl. Section S7.

Interpreting evolved algorithms also required effort due
to the complexity of their raw code (Suppl. Section S8).
The code was first automatically simplified by removing
redundant instructions through static analysis. Then, to de-
cide upon interesting code snippets, Section 4.3 focused on
motifs that reappeared in independent search experiments.
Such convergent evolution provided a hypothesis that a code
section may be beneficial. To verify this hypothesis, we
used ablations/knock-outs and knock-ins, the latter being
the insertion of code sections into simpler algorithms to
see if they are beneficial there too. This is analogous to
homonymous molecular biology techniques used to study
gene function. Further work may incorporate other tech-
niques from the natural sciences or machine learning where
interpretation of complex systems is key.

Search space enhancements have improved architecture
search dramatically. In only two years, for example, compa-
rable experiments went from requiring hundreds of GPUs
(Zoph et al., 2018) to only one (Liu et al., 2019b). Sim-
ilarly, enhancing the search space could bring significant
improvements to AutoML-Zero. Also note that, despite our
best effort to reduce human bias, there is still implicit bias
in our current search space that limits the potential to dis-
cover certain types of algorithms. For instance, to keep our
search space simple, we process one example at a time, so
discovering techniques that work on batches of examples
(like batch-norm) would require adding loops or higher-
order tensors. As another case in point, in the current search
space, a multi-layer neural network can only be found by
discovering each layer independently; the addition of loops
or function calls could make it easier to unlock such deeper
structures.
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