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automated deep neural network design

‣ Select the Artificial Neural Network (ANN) type; 
‣ Choose the sequence, type, and number of layers; 
‣ Fine-tune the parameters of each layer; 
‣ Decide the learning algorithm; 
‣ Optimise the parameters of the learning algorithm.
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convolutional neural network
3

feature extraction / 
representation learning

classification
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ANN structure

DENSER: Deep Evolutionary Network Structured Representation 7

<features> ::=<convolution>

|<pooling>

<convolution> ::= layer:conv [num-filters,int,1,32,256] [filter-shape,int,1,1,5]

[stride,int,1,1,3]<padding><activation><bias>

<batch-normalisation><merge-input>

<batch-normalisation> ::= batch-normalisation:True

| batch-normalisation:False

<merge-input> ::=merge-input:True

|merge-input:False

<pooling> ::=<pool-type> [kernel-size,int,1,1,5] [stride,int,1,1,3]<padding>

<pool-type> ::= layer:pool-avg

| layer:pool-max

<padding> ::= padding:same

| padding:valid
<classification> ::=<fully-connected>

<fully-connected> ::= layer:fc<activation> [num-units,int,1,128,2048<bias>

<activation> ::= act:linear

| act:relu
| act:sigmoid

<bias> ::= bias:True

| bias:False
<softmax> ::= layer:fc act:softmax num-units:10 bias:True

<learning> ::= learning:gradient-descent [lr,float,1,0.0001,0.1]

Fig. 1 Example grammar for the encoding of CNNs.

of the DSGE level genotype. This representation level requires the defini-
tion of the valid structure of the genotype, i.e., the goal of evolution: layers
(which types of layers can be used, and in what order), learning, and data
augmentation. This input is important in case the user wants to include
any prior knowledge into the search space (e.g., sequences of layers that are
known to work well). For example, CNNs are usually composed by convo-
lution and/or pooling layers (responsible for representation learning, i.e.,
for learning the features), and fully-connected layers (that perform classifi-
cation based on the learnt representation). A possible GA structure for the
evolution of CNNs is then: [(features, 1, 10), (classification, 1, 2), (softmax,
1, 1), (learning, 1, 1)]; the numbers stand for the minimum and maximum
number of layers of that type, respectively. The previous GA structure is
able to encode CNNs with a minimum of 3 and a maximum of 14 layers:
from 1 to 10 convolution and pooling (features) layers, followed by 1 or 2
fully-connected (classification) layers, and one softmax layer; the learning
rule is for encoding the learning algorithm and its parameters.
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<features> ::=<convolution>

|<pooling>

<convolution> ::= layer:conv [num-filters,int,1,32,256] [filter-shape,int,1,1,5]

[stride,int,1,1,3]<padding><activation><bias>

<batch-normalisation><merge-input>

<batch-normalisation> ::= batch-normalisation:True

| batch-normalisation:False

<merge-input> ::=merge-input:True

|merge-input:False

<pooling> ::=<pool-type> [kernel-size,int,1,1,5] [stride,int,1,1,3]<padding>

<pool-type> ::= layer:pool-avg

| layer:pool-max

<padding> ::= padding:same

| padding:valid
<classification> ::=<fully-connected>

<fully-connected> ::= layer:fc<activation> [num-units,int,1,128,2048<bias>

<activation> ::= act:linear

| act:relu
| act:sigmoid

<bias> ::= bias:True

| bias:False
<softmax> ::= layer:fc act:softmax num-units:10 bias:True

<learning> ::= learning:gradient-descent [lr,float,1,0.0001,0.1]

Fig. 1 Example grammar for the encoding of CNNs.

of the DSGE level genotype. This representation level requires the defini-
tion of the valid structure of the genotype, i.e., the goal of evolution: layers
(which types of layers can be used, and in what order), learning, and data
augmentation. This input is important in case the user wants to include
any prior knowledge into the search space (e.g., sequences of layers that are
known to work well). For example, CNNs are usually composed by convo-
lution and/or pooling layers (responsible for representation learning, i.e.,
for learning the features), and fully-connected layers (that perform classifi-
cation based on the learnt representation). A possible GA structure for the
evolution of CNNs is then: [(features, 1, 10), (classification, 1, 2), (softmax,
1, 1), (learning, 1, 1)]; the numbers stand for the minimum and maximum
number of layers of that type, respectively. The previous GA structure is
able to encode CNNs with a minimum of 3 and a maximum of 14 layers:
from 1 to 10 convolution and pooling (features) layers, followed by 1 or 2
fully-connected (classification) layers, and one softmax layer; the learning
rule is for encoding the learning algorithm and its parameters.

layers
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parameters
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<features> ::=<convolution>

|<pooling>

<convolution> ::= layer:conv [num-filters,int,1,32,256] [filter-shape,int,1,1,5]

[stride,int,1,1,3]<padding><activation><bias>

<batch-normalisation><merge-input>

<batch-normalisation> ::= batch-normalisation:True

| batch-normalisation:False

<merge-input> ::=merge-input:True

|merge-input:False

<pooling> ::=<pool-type> [kernel-size,int,1,1,5] [stride,int,1,1,3]<padding>

<pool-type> ::= layer:pool-avg

| layer:pool-max

<padding> ::= padding:same

| padding:valid
<classification> ::=<fully-connected>

<fully-connected> ::= layer:fc<activation> [num-units,int,1,128,2048<bias>

<activation> ::= act:linear

| act:relu
| act:sigmoid

<bias> ::= bias:True

| bias:False
<softmax> ::= layer:fc act:softmax num-units:10 bias:True

<learning> ::= learning:gradient-descent [lr,float,1,0.0001,0.1]

Fig. 1 Example grammar for the encoding of CNNs.

of the DSGE level genotype. This representation level requires the defini-
tion of the valid structure of the genotype, i.e., the goal of evolution: layers
(which types of layers can be used, and in what order), learning, and data
augmentation. This input is important in case the user wants to include
any prior knowledge into the search space (e.g., sequences of layers that are
known to work well). For example, CNNs are usually composed by convo-
lution and/or pooling layers (responsible for representation learning, i.e.,
for learning the features), and fully-connected layers (that perform classifi-
cation based on the learnt representation). A possible GA structure for the
evolution of CNNs is then: [(features, 1, 10), (classification, 1, 2), (softmax,
1, 1), (learning, 1, 1)]; the numbers stand for the minimum and maximum
number of layers of that type, respectively. The previous GA structure is
able to encode CNNs with a minimum of 3 and a maximum of 14 layers:
from 1 to 10 convolution and pooling (features) layers, followed by 1 or 2
fully-connected (classification) layers, and one softmax layer; the learning
rule is for encoding the learning algorithm and its parameters.
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<features> ::=<convolution>
|<pooling>

<convolution> ::= layer:conv [num-filters,int,1,32,256]
[filter-shape,int,1,1,5] [stride,int,1,1,3]
<padding><activation><bias>
<batch-normalisation><merge-input>

<batch-normalisation> ::= batch-normalisation:True
| batch-normalisation:False

<merge-input> ::= merge-input:True
| merge-input:False

<pooling> ::=<pool-type> [kernel-size,int,1,1,5]
[stride,int,1,1,3] <padding>

<pool-type> ::= layer:pool-avg
| layer:pool-max

<padding> ::= padding:same
| padding:valid

<classification> ::=<fully-connected>
<fully-connected> ::= layer:fc <activation>

[num-units,int,1,128,2048] <bias>
<activation> ::= act:linear

| act:relu
| act:sigmoid

<bias> ::= bias:True
| bias:False

<softmax> ::= layer:fc act:softmax num-units:10 bias:True
<learning> ::= learning:gradient-descent [lr,float,1,0.0001,0.1]

Figure 2. Example grammar for the encoding of CNNs.

non-empty set of non-terminal symbols, T is a non-empty
set of terminal symbols, S 2 N is the starting symbol, and
P is the set of production rules of the form A ::= ↵, with
A 2 N and ↵ 2 (N [ T )⇤. N and T are disjoint. Each
grammar G defines a language L(G) composed by all se-
quences of terminal symbols that can be derived from the
starting symbol: L(G) = {w : S

⇤) w, w 2 T ⇤}. Next,
we further detail each component of DENSER.

3.1. Representation

Each solution encodes an ANN by means of an ordered
sequence of feedforward layers and their respective param-
eters; the learning and any other hyper-parameters can be
encoded with each individual too. The representation of the
candidate solution is made at two different levels:

GA Level – encodes the macro structure of the networks
and is responsible for representing the sequence of
layers that later serves as an indicator to the grammat-
ical starting symbol. It requires the definition of the
allowed structure of the networks, i.e., the valid se-
quence of layers. For example, for evolving CNNs the
following GA structure may be specified: [(features,
1, 10), (classification, 1, 2), (softmax, 1, 1), (learning,
1, 1)], where each tuple indicates the valid starting

<features> <features> <features> <classification> <softmax> <learning>

<features> <pooling> <pooling-type> <padding>

[{DSGE: 0, 
 {kernel-size: 4,
  stride: 2}]

[{DSGE: 1, 
  {}]

[{DSGE: 1, 
  {}]

[{DSGE: 0, 
  {}]

Figure 3. Example of the genotype of a candidate solution that
encodes a CNN.

Layer type: pooling
Pooling func.: max
Kernel size: 4 x 4
Stride: 2 x 2
Padding: same

... ...

Figure 4. Phenotype corresponding to the only layer specified in
Figure 3.

symbols, and the minimum and maximum number of
times they can be used. Using the grammar of Fig-
ure 2, this GA structure can evolve networks with up to
10 convolution or pooling layers, followed by up to 2
fully-connected layers, and the classification layer soft-
max, that usually has a number of outputs that matches
the number of problem classes; the learning tuple is
responsible for codifying the parameters that should be
used to train the network.

DSGE Level – encodes the parameters associated to a layer.
The parameters and their allowed values or ranges are
codified in the grammar that must be defined by the
user. Looking at the grammar of Figure 2, for the
pooling layers we tune the kernel size, the stride, and
the type of padding. The same exercise can be made
to the remaining layers defined in the grammar. The
parameters can have closed values (e.g., the padding
that can be only valid or same), or can assume a value
in an integer or real interval.

The novel combination of a GA with DSGE enables a
two-fold gain: (i) the GA level encapsulates the genetic
material of each layer, making it easier to apply the varia-
tion operators (described next); and (ii) the DSGE makes the
approach easily generalisable, as it is only needed to change
the grammar to enable the evolution of different types of
networks, or of networks to solve different tasks; it also
facilitates the incorporation of domain specific knowledge.

An example of the genotype is shown in Figure 3. This
example is based on the grammar of Figure 2 and on the
above detailed GA structure. Figure 4 depicts the phenotype
corresponding to the layer which has the DSGE genotype
detailed in Figure 3.
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<features> ::=<convolution>
|<pooling>

<convolution> ::= layer:conv [num-filters,int,1,32,256]
[filter-shape,int,1,1,5] [stride,int,1,1,3]
<padding><activation><bias>
<batch-normalisation><merge-input>

<batch-normalisation> ::= batch-normalisation:True
| batch-normalisation:False

<merge-input> ::= merge-input:True
| merge-input:False

<pooling> ::=<pool-type> [kernel-size,int,1,1,5]
[stride,int,1,1,3] <padding>

<pool-type> ::= layer:pool-avg
| layer:pool-max

<padding> ::= padding:same
| padding:valid

<classification> ::=<fully-connected>
<fully-connected> ::= layer:fc <activation>

[num-units,int,1,128,2048] <bias>
<activation> ::= act:linear

| act:relu
| act:sigmoid

<bias> ::= bias:True
| bias:False

<softmax> ::= layer:fc act:softmax num-units:10 bias:True
<learning> ::= learning:gradient-descent [lr,float,1,0.0001,0.1]

Figure 2. Example grammar for the encoding of CNNs.

non-empty set of non-terminal symbols, T is a non-empty
set of terminal symbols, S 2 N is the starting symbol, and
P is the set of production rules of the form A ::= ↵, with
A 2 N and ↵ 2 (N [ T )⇤. N and T are disjoint. Each
grammar G defines a language L(G) composed by all se-
quences of terminal symbols that can be derived from the
starting symbol: L(G) = {w : S

⇤) w, w 2 T ⇤}. Next,
we further detail each component of DENSER.

3.1. Representation

Each solution encodes an ANN by means of an ordered
sequence of feedforward layers and their respective param-
eters; the learning and any other hyper-parameters can be
encoded with each individual too. The representation of the
candidate solution is made at two different levels:

GA Level – encodes the macro structure of the networks
and is responsible for representing the sequence of
layers that later serves as an indicator to the grammat-
ical starting symbol. It requires the definition of the
allowed structure of the networks, i.e., the valid se-
quence of layers. For example, for evolving CNNs the
following GA structure may be specified: [(features,
1, 10), (classification, 1, 2), (softmax, 1, 1), (learning,
1, 1)], where each tuple indicates the valid starting

<features> <features> <features> <classification> <softmax> <learning>

<features> <pooling> <pooling-type> <padding>

[{DSGE: 0, 
 {kernel-size: 4,
  stride: 2}]

[{DSGE: 1, 
  {}]

[{DSGE: 1, 
  {}]

[{DSGE: 0, 
  {}]

Figure 3. Example of the genotype of a candidate solution that
encodes a CNN.

Layer type: pooling
Pooling func.: max
Kernel size: 4 x 4
Stride: 2 x 2
Padding: same

... ...

Figure 4. Phenotype corresponding to the only layer specified in
Figure 3.

symbols, and the minimum and maximum number of
times they can be used. Using the grammar of Fig-
ure 2, this GA structure can evolve networks with up to
10 convolution or pooling layers, followed by up to 2
fully-connected layers, and the classification layer soft-
max, that usually has a number of outputs that matches
the number of problem classes; the learning tuple is
responsible for codifying the parameters that should be
used to train the network.

DSGE Level – encodes the parameters associated to a layer.
The parameters and their allowed values or ranges are
codified in the grammar that must be defined by the
user. Looking at the grammar of Figure 2, for the
pooling layers we tune the kernel size, the stride, and
the type of padding. The same exercise can be made
to the remaining layers defined in the grammar. The
parameters can have closed values (e.g., the padding
that can be only valid or same), or can assume a value
in an integer or real interval.

The novel combination of a GA with DSGE enables a
two-fold gain: (i) the GA level encapsulates the genetic
material of each layer, making it easier to apply the varia-
tion operators (described next); and (ii) the DSGE makes the
approach easily generalisable, as it is only needed to change
the grammar to enable the evolution of different types of
networks, or of networks to solve different tasks; it also
facilitates the incorporation of domain specific knowledge.

An example of the genotype is shown in Figure 3. This
example is based on the grammar of Figure 2 and on the
above detailed GA structure. Figure 4 depicts the phenotype
corresponding to the layer which has the DSGE genotype
detailed in Figure 3.
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robustness, generalisation, scalability
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why the best entry?

‣ General purpose-framework for the automatisation of the 
search of Deep Artificial Neural Networks (DANNs); 

‣ Results show that, without any prior-knowledge,  
DENSER can effectively discover (and even surpass)  
other automatic and human-designed DANNs; 

‣ The CIFAR-100 result defines a new state-of-the-art; 
‣ The evolved DANNs have proven to be robust, 

generalisable, and scalable; 
‣ Low cost evolutionary ML approach.
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18 F. Assunção et al.

Conv:165:5:1:valid:norm:bias

Input

Merge

Activation: ReLU

Conv:250:5:1:same:none:none

Merge

Activation: Linear

MaxPool:5:1:valid

Conv:165:5:1:same:norm:bias

Merge

Activation: ReLU

Conv:218:5:3:same:norm:bias

Activation: Linear

Conv:165:5:1:same:norm:bias

Merge

Activation: ReLU

Conv:157:4:2:same:none:bias Merge

Activation: Linear

MaxPool:5:2:same

FC:1948:bias

Activation: ReLU

Activation: Sigmoid

FC:10:bias

Activation: Softmax

MaxPool:3:2:same

MaxPool:3:2:same

MaxPool:4:3:same

MaxPool:3:2:same

MaxPool:2:1:same

FC:495:bias

Argmax

Output

Fig. 9 Topology of the fittest network found during evolution. The current net-
work has 5 layer types: convolution (Conv), max. pooling (MaxPool), fully-
connected (FC), merge, and activation. The layer blocks have the following for-
mat: Conv:num-filters:filter-shape:stride:padding:batch-normalisation:bias; MaxPool:kernel-
size:stride:padding; FC:num-units:bias; Activation:type. For more information about the
padding type refer to the Keras documentation; when batch-normalization or bias is not
used we set the parameter to none.
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