

DENSER: Deep Evolutionary Network Structured Representation

Filipe Assunção, Nuno Lourenço, Penousal Machado and Bernardete Ribeiro University of Coimbra, Coimbra, Portugal {fga, naml, machado, bribeiro}@dei.uc.pt

2

AUTOMATED DEEP NEURAL NETWORK DESIGN

- Select the Artificial Neural Network (ANN) type;
- Choose the sequence, type, and number of layers;
- Fine-tune the parameters of each layer;
- Decide the learning algorithm;
- Optimise the parameters of the learning algorithm.

3

CONVOLUTIONAL NEURAL NETWORK

DENSER

<pre><features> ::= <convolution></convolution></features></pre>
<pooling></pooling>
<convolution $> ::=$ layer:conv [num-filters,int,1,32,256] [filter-shape,int,1,1,5]
$[{\tt stride, int, 1, 1, 3}] < {\tt padding} > < {\tt activation} > < {\tt bias} >$
<batch-normalisation $>$ $<$ merge-input $>$
< batch-normalisation > ::= batch-normalisation: True
batch-normalisation:False
<merge-input $>$::= merge-input:True
merge-input:False
$<\!\!\operatorname{pooling}\!\!>::=<\!\!\operatorname{pool-type}\!\!>\![\operatorname{kernel-size,int},\!1,\!1,\!5][\operatorname{stride,int},\!1,\!1,\!3]\!<\!\operatorname{padding}\!\!>$
<pool-type $> ::=$ layer:pool-avg
layer:pool-max
< padding > ::= padding: same
padding:valid
\rightarrow <classification> ::= <fully-connected></fully-connected></classification>
$<\!\!\mathrm{fully-connected}\!\!>\!\!::=\!\mathrm{layer:}\!\mathrm{fc}<\!\!\mathrm{activation}\!\!>\!\![\mathrm{num-units},\!\mathrm{int},\!1,\!128,\!2048<\!\!\mathrm{bias}\!\!>$
< activation > ::= act: linear
act:relu
act:sigmoid
<bias $> ::=$ bias:True
bias:False
$<\!\!\mathrm{softmax}\!\!>::=\!\mathrm{layer:}\mathrm{fc}\mathrm{act:}\mathrm{softmax}\mathrm{num-units:}10\mathrm{bias:}\mathrm{True}$
$<\!\!\text{learning}\!\!>::=\!\!\text{learning}:\!\!\text{gradient-descent}\left[\text{lr,float},\!1,\!0.0001,\!0.1\right]$

ANN structure

DENSER

DENSER

7

EXAMPLE OF A CANDIDATE SOLUTION

HINTON

HINTON

DENSER BENCHMARKING

DENSER VS. OTHER AUTOMATIC DESIGN METHODS (CIFAR-10)

DENSER VS. HUMAN-DESIGNED NETWORKS (CIFAR-10)

DENSER VS. HUMAN-DESIGNED NETWORKS (MNIST)

DENSER VS. HUMAN-DESIGNED NETWORKS (FASHION-MNIST)

DENSER VS. HUMAN-DESIGNED NETWORKS (CIFAR-100)

ROBUSTNESS, GENERALISATION, SCALABILITY

WHY THE BEST ENTRY?

HUMIES @ GECCO 2018

- General purpose-framework for the automatisation of the search of Deep Artificial Neural Networks (DANNs);
- Results show that, without any prior-knowledge, DENSER can effectively discover (and even surpass) other automatic and human-designed DANNs;
- The CIFAR-100 result defines a new state-of-the-art;
- The evolved DANNs have proven to be robust, generalisable, and scalable;
- Low cost evolutionary ML approach.

WHY THE BEST ENTRY?

DENSER: Deep Evolutionary Network Structured Representation

cdv.dei.uc.pt/denser

Filipe Assunção, Nuno Lourenço, Penousal Machado and Bernardete Ribeiro University of Coimbra, Coimbra, Portugal {fga, naml, machado, bribeiro}@dei.uc.pt