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Abstract
Deep Evolutionary Network Structured Repre-
sentation (DENSER) is a novel approach to au-
tomatically design Artificial Neural Networks
(ANNs) using Evolutionary Computation. The
algorithm not only searches for the best network
topology (e.g., number of layers, type of lay-
ers), but also tunes hyper-parameters, such as,
learning parameters or data augmentation param-
eters. The automatic design is achieved using
a representation with two distinct levels, where
the outer level encodes the general structure of
the network, i.e., the sequence of layers, and
the inner level encodes the parameters associated
with each layer. The allowed layers and range
of the hyper-parameters values are defined by
means of a human-readable Context-Free Gram-
mar. DENSER was used to evolve ANNs for
CIFAR-10, obtaining an average test accuracy of
94.13%. The networks evolved for the CIFAR-10
are tested on the MNIST, Fashion-MNIST, and
CIFAR-100; the results are highly competitive,
and on the CIFAR-100 we report a test accuracy
of 78.75%. To the best of our knowledge, our
CIFAR-100 results are the highest performing
models generated by methods that aim at the auto-
matic design of Convolutional Neural Networks
(CNNs), and are amongst the best for manually
designed and fine-tuned CNNs.

1. Introduction
The design of Artificial Neural Networks (ANNs) usually
requires an arduous and iterative trial-and-error process,
where various aspects of the networks have to be considered.
Practitioners have to decide on the network topology, the
specific parameters of each layer, which learning algorithm
should be used and its parameters, and the parameterisation
of other criteria like the data pre-processing and/or aug-
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mentation methods. Such decisions require a high level of
expertise, and if not performed with care, we might design
models that have a poor performance . This task becomes
even more difficult considering that the different decisions
that have to be made are not independent from one another.
One way to avoid this laborious process is to resort to net-
works that have already been constructed for a specific task,
and have shown a good performance. Nevertheless, these
networks tend to be problem specific, and thus, for each
dataset and/or task they might not give the best results. An-
other approach to overcome this challenge is to rely on
automatic methods that seek for the design of ANNs.

There are several iterative approaches that seek the struc-
tured optimisation of ANNs. Constructive (Frean, 1990;
Parekh et al., 2000) methods start from an elementary struc-
ture and add nodes or connections until a network structure
that is capable of solving the problem emerges. In contrast,
Pruning (Reed, 1993; Molchanov et al., 2016) methods start
from a complex network structure, and at each iteration re-
move nodes or connections. These methods are based on the
theory that small networks generalise more easily; however
that is not necessarily true (Sietsma & Dow, 1991). Another
limitation of these methods is that often only a single net-
work is being optimised, and consequently, there is a high
chance of the search becoming stagnated in a local optima.

To address the problem of automatic design of ANNs we
propose Deep Evolutionary Network Structured Representa-
tion (DENSER), a novel approach for the automatic genera-
tion of the topology and hyper-parameters needed to build
effective ANNs. DENSER is a layer-based method. The
evolution of each neuron directly allows for a higher degree
of freedom which results in greater control over the gener-
ated structures. However, when dealing with big datasets
where large scale networks are needed, the involved num-
ber of neurons and connections make evolution at such a
low level unfeasible. This work builds upon our earlier
work (Assunção et al., 2017a), with the demonstration that
deep ANNs generated for specific tasks can generalise to
tasks where they have not been trained on during evolution.

The main contributions of this work are:

• DENSER, a general framework based on evolutionary
principles that automatically searches for the adequate
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Figure 1. Evolutionary algorithms flow-chart.

structure and parameterisation of large scale deep net-
works that can have different layer types (e.g., con-
volutional, pooling, fully-connected), and goals (e.g.,
classification, regression);

• An automatically generated Convolutional Neural Net-
work (CNN) that without any prior knowledge is effec-
tive on the classification of the CIFAR-10 dataset, with
an average test accuracy of 94.13%;

• The demonstration that ANNs evolved with DENSER
generalise well. In concrete, the best network whose
topology was evolved for the CIFAR-10 dataset re-
ports average accuracy values of 99.70%, 95.26%, and
78.75% on the MNIST, Fashio-MNIST, and CIFAR-
100, respectively. To the best of our knowledge, these
are the best results reported by methods that automati-
cally design CNNs.

The best trained models have been released at http://
github.com/fillassuncao/denser-models.

The remainder of the paper is organised as follows. In
Section 2 we introduce the concepts for understanding
DENSER. Next, in Section 3, we describe our novel ap-
proach, DENSER, which is followed by the conducted set
of experiments (reported in Section 4). To end, in Section 5,
conclusions are drawn and future work is addressed.

2. Related Work
DENSER is a NeuroEvolution (NE) approach, and thus
is based on the use of Evolutionary Algorithms (EAs) to
automatically optimise ANNs. Next, we detail the principles
behind EAs and review works that are closely related to ours.

2.1. Evolutionary Algorithms

EAs are stochastic search procedures inspired by the prin-
ciples of natural selection and genetics, that have been suc-
cessfully applied in optimisation, design and learning prob-
lems (Eiben & Smith, 2015). Historically, there are several
variants of EAs, but they share the same common under-
lying idea: the simulation of evolution of a population of

artificial individuals by natural selection (proposed by Dar-
win) via the application of selection, variation operators
(typically crossover and mutation), and reproduction. These
components are guided by a fitness function that evaluates
each individual, measuring the quality of the solution it rep-
resents. The application of these components is repeated
for several iterations, and over time it is expected that the
overall quality of the individuals in the population improves.
The process stops when a predetermined termination crite-
rion is met (e.g., when a maximum number of iterations is
achieved). Each artificial individual in EAs encodes a single
candidate solution to the problem being considered.

The general flow-chart of a simple EA is shown in Figure 1.
The main components are:

Representation – defines how the solutions to the consid-
ered problem should be encoded. The genetic material
used to represent the solutions is known as genotype;
the expression of the genotype is the phenotype.

Evaluation – estimates how good a solution is in solv-
ing the problem under consideration. Usually it is a
mathematical expression and enables the comparison
between problem solutions.

Parent Selection – selects, probabilistically, the popula-
tion individuals (called parents) to participate in the
breeding of a new population.

Variation Operators – create new individuals (offspring)
using the parents. These operators are used in a
stochastic manner, and are usually divided in two types:
crossover, and mutation. Crossover creates variation in
the population by taking two, or more individuals, as
input, and rearranges their information to create new
solutions. Mutation takes one individual as input and
slightly modifies it.

Survivor Selection – determines the solutions that proceed
to the next iteration of the EA. The number of individ-
uals in an EA is typically kept fixed.

2.2. NeuroEvolution

NeuroEvolution (NE) (Floreano et al., 2008) is a sub-field
of Machine Learning (ML) and Evolutionary Computation
(EC) that applies evolutionary methods to the optimisation
of ANNs. NE approaches are commonly grouped according
to the aspects of the ANNs that they optimise: (i) learn-
ing (Radi & Poli, 2003; Gomez et al., 2008; Morse & Stan-
ley, 2016); (ii) topology (Harp et al., 1990; Soltanian et al.,
2013; Rocha et al., 2007); or (iii) both topology and learn-
ing (Whitley et al., 1990; Stanley & Miikkulainen, 2002;
Turner & Miller, 2013).

http://github.com/fillassuncao/denser-models
http://github.com/fillassuncao/denser-models
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The vast majority of NE works target the evolution of small
networks for very specific tasks. With DENSER our goal
is to evolve large scale networks that can deal with vast
amounts of data and challenging tasks. As an example, con-
sider the VGG network (Simonyan & Zisserman, 2014): a
16 to 19 deep CNN that is often used for image recognition
tasks. The number of neurons and connections involved
in a deep architectures usually turns connection (Kitano,
1990; Leung et al., 2003; Fernando et al., 2017) or node-
based (Moriarty & Miikkulainen, 1997; Stanley & Miikku-
lainen, 2002; Assunção et al., 2017b) evolutionary methods
impractical for discovering high performing networks, due
to the large search space that needs to be scanned. There-
fore, for evolving deep networks practitioners often resort
to layer-based encodings (Jung & Reggia, 2006; Suganuma
et al., 2017; Miikkulainen et al., 2017). For similar reasons,
it is unfeasible to directly evolve the weights of the net-
works, which easily reach the range of thousands, or even
millions of parameters; when the training of the networks is
optimised using EC usually only the hyper-parameters are
tuned and the networks trained using gradient-descent algo-
rithms (Miikkulainen et al., 2017; Suganuma et al., 2017).

Loshchilov and Hutter (Loshchilov & Hutter, 2016) devel-
oped an approach based on Evolutionary Strategies (Hansen
& Ostermeier, 2001) to optimise the hyper-parameters of
deep networks; the tuned parameters are concerned with
the topology (e.g., number of filters in the convolution lay-
ers, and number of neurons in fully-connected layers) and
learning (e.g., batch size, and learning rates). This approach
requires the a-priori definition of the network structure that
may be suitable for solving the problem, and consequently
there is no optimisation of the sequence of layers and con-
nections between them.

The idea of optimising hyper-parameters for deep networks
is further extended in Coevolution DeepNEAT (CoDeep-
NEAT) (Miikkulainen et al., 2017), where the structure
of the network is searched combining the ideas behind
Symbiotic, Adaptive Neuro-Evolution (SANE) (Moriarty &
Miikkulainen, 1997) and NeuroEvolution of Augmenting
Topologies (NEAT) (Stanley & Miikkulainen, 2002). Two
populations are evolved in simultaneous: one of modules
and another one of blueprints, which specify the modules
that should be used. Learning and data augmentation param-
eters are also optimised.

A similar approach is proposed in CGP-NN (Suganuma
et al., 2017), where Cartesian Genetic Programming
(CGP) (Miller & Thomson, 2000) is used in the evolution
of the architecture of CNNs. However, instead of automati-
cally searching the modules, they are specified by the user,
and just their combination and parameterisation is evolved.

In this work we want to make the automatic generation of
deep networks as easy and transparent as possible. That is

Table 1. Classification accuracy of various CNNs on MNIST,
Fashion-MNIST, CIFAR-10, and CIFAR-100. Automatic ap-
proaches are marked with an *.

Approach Dataset Accuracy
(Simard et al., 2003) MNIST 99.60%

(Graham, 2014) 99.68%
(Krizhevsky et al., 2012)

Fashion-MNIST
89.90%

(Simonyan & Zisserman, 2014) 93.50%
(He et al., 2016) 94.90%

(Loshchilov & Hutter, 2016)*

CIFAR-10

90.70%
(Miikkulainen et al., 2017)* 92.70%

(Snoek et al., 2015)* 93.63%
(Suganuma et al., 2017)* 94.02%

(Real et al., 2017)* 95.60%
(Graham, 2014) 96.53%

(Snoek et al., 2015)*
CIFAR-100

72.60%
(Graham, 2014) 73.61%

(Real et al., 2017)* 77.00%

the reason why we adopt a grammar-based approach. Gram-
mars allow us to specify different network types, such as
AutoEncoders or CNNs, without the need to change any
implementation details. Further, grammar-based methods
make it easy to incorporate knowledge, allowing the specifi-
cation of modules and/or parameters that we may know or
suspect that work well on certain problem domains.

There are several approaches concerned with the evolution
of ANNs using Grammatical Evolution (GE) (O’Neill &
Ryan, 2003). The vast majority of them focus on the tun-
ing of a single hidden-layer, i.e., on the number of neu-
rons and their connections from the input to the hidden-
nodes and from the hidden-nodes to the outputs (Soltanian
et al., 2013; Ahmadizar et al., 2015; Assunção et al., 2017a).
In (Assunção et al., 2017b) a grammar-based method that
is able to evolve networks with more than one hidden-layer
is described. Despite theoretically suit to generate deep
networks, the involved amount of neurons and connections
make the domain space too large to be searched within an
acceptable time.

Table 1 reports on the performance of different models for
the classification of the MNIST, Fashion-MNIST, CIFAR-
10 and CIFAR-100. Those models discovered by automatic
approaches are marked with an *. We only report results for
the datasets that are used in the conducted experiments.

3. Deep Evolutionary Network Structured
Representation

Deep Evolutionary Network Structured Representation
(DENSER) is a novel representation that combines the basic
principles of two EAs: Genetic Algorithms (GAs) (Mitchell,
1998) and Dynamic Structured Grammatical Evolution
(DSGE) (Assunção et al., 2017b). DSGE is a variant of
GE (O’Neill & Ryan, 2003; Lourenço et al., 2016), and thus
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<features> ::=<convolution>

|<pooling>

<convolution> ::= layer:conv [num-filters,int,1,32,256]

[filter-shape,int,1,1,5] [stride,int,1,1,3]

<padding><activation><bias>

<batch-normalisation><merge-input>

<batch-normalisation> ::= batch-normalisation:True

| batch-normalisation:False

<merge-input> ::= merge-input:True

|merge-input:False

<pooling> ::=<pool-type> [kernel-size,int,1,1,5]

[stride,int,1,1,3] <padding>

<pool-type> ::= layer:pool-avg

| layer:pool-max

<padding> ::= padding:same

| padding:valid

<classification> ::=<fully-connected>

<fully-connected> ::= layer:fc <activation>

[num-units,int,1,128,2048] <bias>

<activation> ::= act:linear

| act:relu

| act:sigmoid

<bias> ::= bias:True

| bias:False

<softmax> ::= layer:fc act:softmax num-units:10 bias:True

<learning> ::= learning:gradient-descent [lr,float,1,0.0001,0.1]

Figure 2. Example grammar for the encoding of CNNs.

a form of Genetic Programming (GP) (Koza, 1992). Whilst
in the vanilla version of GP the solutions are encoded via a
syntax-tree, in GE approaches the candidate solutions are en-
coded using variable length integer arrays, which represent
derivations of a user-defined Context-Free Grammar (CFG).
Formally, a CFG is a tuple G = (N,T, S, P ), where N is a
non-empty set of non-terminal symbols, T is a non-empty
set of terminal symbols, S ∈ N is the starting symbol, and
P is the set of production rules of the form A ::= α, with
A ∈ N and α ∈ (N ∪ T )∗. N and T are disjoint. Each
grammar G defines a language L(G) composed by all se-
quences of terminal symbols that can be derived from the
starting symbol: L(G) = {w : S

∗⇒ w, w ∈ T ∗}. Next,
we further detail each component of DENSER.

3.1. Representation

Each solution encodes an ANN by means of an ordered
sequence of feedforward layers and their respective parame-
ters; the learning, data augmentation, and any other hyper-
parameters can be encoded with each individual too. The
representation of the candidate solution is made at two dif-
ferent levels:

GA Level – encodes the macro structure of the networks
and is responsible for representing the sequence of

<features> <features> <features> <classification> <softmax> <learning>

<features> <pooling> <pooling-type> <padding>

[{DSGE: 0, 
 {kernel-size: 4,
  stride: 2}]

[{DSGE: 1, 
  {}]

[{DSGE: 1, 
  {}]

[{DSGE: 0, 
  {}]

Figure 3. Example of the genotype of a candidate solution that
encodes a CNN.

Layer type: pooling
Pooling func.: max
Kernel size: 4 x 4
Stride: 2 x 2
Padding: same

... ...

Figure 4. Phenotype corresponding to the only layer specified in
Figure 3.

layers that later serves as an indicator to the grammat-
ical starting symbol. It requires the definition of the
allowed structure of the networks, i.e., the valid se-
quence of layers. For example, for evolving CNNs the
following GA structure may be specified: [(features,
1, 10), (classification, 1, 2), (softmax, 1, 1), (learning,
1, 1)], where each tuple indicates the valid starting
symbols, and the minimum and maximum number of
times they can be used. Using the grammar of Fig-
ure 2, this GA structure can evolve networks with up to
10 convolution or pooling layers, followed by up to 2
fully-connected layers, and the classification layer soft-
max, that usually has a number of outputs that matches
the number of problem classes; the learning tuple is
responsible for codifying the parameters that should be
used to train the network.

DSGE Level – encodes the parameters associated to a layer.
The parameters and their allowed values or ranges are
codified in the grammar that must be defined by the
user. Looking at the grammar of Figure 2, for the
pooling layers we tune the kernel size, the stride, and
the type of padding. The same exercise can be made
to the remaining layers defined in the grammar. The
parameters can have closed values (e.g., the padding
that can be only valid or same), or can assume a value
in an integer or real interval.

The novel combination of a GA with DSGE enables a
two-fold gain: (i) the GA level encapsulates the genetic
material of each layer, making it easier to apply the varia-
tion operators (described next); and (ii) the DSGE makes the
approach easily generalisable, as it is only needed to change
the grammar to enable the evolution of different types of
networks, or of networks to solve different tasks; it also
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<F1,A>

Features Classification Softmax Learning

Features Classification Softmax Learning

Features Classification Softmax Learning

Features Classification Softmax Learning

cut-point

Features Classification Softmax Learning

Features Classification Softmax Learning

Parent A:

Parent B:

One-point offspring:

Bit-mask offspring:

<F2,A> <C1,A> <C2,A> <S1,A> <L1,A>

<F1,B> <C1,B> <C2,B> <C3,B> <S1,B> <L1,B>

<F1,A> <F2,A> <C1,A> <C2,B> <C3,B> <S1,A> <L1,A>

<F1,B> <C1,B> <C2,A> <S1,B> <L1,B>

<F1,A> <F2,A> <C1,B> <C2,B> <C3,B> <S1,B> <L1,A>

<F1,B> <C2,A> <S1,A> <L1,B><C1,A>

cut-point

Figure 5. Example of the introduced crossover operators. The
example focuses on the GA level of the genotype. For the bit-mask
crossover the mask is 1001, which is associated to the features,
classification, softmax and learning modules, respectively.

facilitates the incorporation of domain specific knowledge.

An example of the genotype is shown in Figure 3. This
example is based on the grammar of Figure 2 and on the
above detailed GA structure. Figure 4 depicts the phenotype
corresponding to the layer which has the DSGE genotype
detailed in Figure 3.

3.2. Variation Operators

To promote the evolution of the solutions we design varia-
tion operators that act on the two levels of the genotype.

Crossover

We designed two crossover operators, both of them based on
the premise that the genetic material is encapsulated, which
facilitates the exchange between individuals. In the context
of this work a module does not refer to a set of layers that
can be replicated multiple times, but is rather the set of
layers that belongs to the same GA structure index.

To exchange layers within the same module we use a one-
point crossover. Imagining that we are evolving bitstrings,
if the parents are 111|000 and 101|010, and | represents the
cut-point, the offspring results from changing the genetic
material delimited by the cut-point, i.e., 111010 and 101000.
The same module in different individuals may vary in size;
the cut-point is generated at random taking into account the
smallest module.

To exchange modules between two parents we use a
bit-mask crossover. In the bit-mask crossover, as the name

suggests first we need to create a mask of bits of the size
of the number of number of codons (i.e., modules) that are
to be exchanged (in the case of the above GA structure, 4).
Then the first offspring is created by copying a codon from
the first parent if the bit is 1, and if the bit is 0 the codon is
copied from the second parent. The opposite is done for the
second offspring: we copy from the first parent if the bit is
0, and from the second parent if the bit is 1.

An example of the application of the crossover operators is
depicted in Figure 5.

Mutation

We develop two sets of mutation operators that act upon the
GA and DSGE levels, respectively. The mutations on the
GA level are three:

Add layer – generates a new layer randomly, subjected to
the constraints of the module where it will be placed.

Replicate layer – selects a module and copies an existing
layer to another position of the module; the copy is
made by reference, meaning that any change in the
parameters of the layer is propagated to the copies.

Remove layer – deletes a random layer from a module,
without violating the minimum number of layers.

The mutations on the DSGE level are two:

Grammatical mutation – as in standard DSGE, an expan-
sion possibility is replaced by another valid one;

Integer/float mutation – an integer/float block is replaced
by a new one. For integers we generate new integers at
random; for floats a Gaussian perturbation is used.

3.3. Evaluation

In DENSER, as in the majority of layer-based NE ap-
proaches, we only allow the evolution of the learning
hyper-parameters. Therefore, to evaluate the candidate so-
lutions we must train them on the task that we are trying to
solve. In this work we are going to perform object recog-
nition tasks, using the CIFAR-10 (Krizhevsky & Hinton,
2009). The quality of the solutions is measured based on
the accuracy metric. The training and evaluation are per-
formed by mapping the solutions generated by DENSER,
i.e., strings that result from the grammatical derivation of
the defined grammar, into a Keras (Chollet et al., 2015)
model running on top of TensorFlow (Abadi et al., 2016),
and then executed on a GPU. Each network is trained during
10 epochs; in the end we return the best accuracy on the
validation set.

While in traditional ML approaches we often only need two
dataset partitions (train and test), in NE we need three:
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Train – used to train the network using the defined or
evolved learning parameters;

Validation – used to evaluate the performance of the net-
work during evolution, i.e., the accuracy on the valida-
tion set is used as the fitness metric;

Test – kept aside from the evolutionary process, and used to
evaluate the performance of the best models on unseen
data, so we can understand the generalisation ability.

If we define no test set and only use two partitions it is
impossible to test the evolved models on data that is not
presented to the model during evolution. Thus the reported
results would be biased. Cross-validation is not applied
due to the associated computational cost. Moreover, we
followed the same data augmentation method reported by
(Suganuma et al., 2017), which includes: padding, horizon-
tal flips, and random crops.

4. Experiments
To analyse the performance of DENSER we perform exper-
iments on the generation of CNNs for the classification of
the CIFAR-10 dataset. Then, to assess the generalisation
and scalability ability of the networks that are evolved using
DENSER we take the best model found for the classifica-
tion of the CIFAR-10 dataset and re-train it on the MNIST,
Fashion-MNIST, and CIFAR-100.

4.1. Datasets

The CIFAR-10 (Krizhevsky & Hinton, 2009) is composed
by 32 × 32 RGB colour images, in a total of 60000 in-
stances; each real-world image contains one of the follow-
ing objects: airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, or truck. MNIST (LeCun et al., 1998) is com-
posed by 60000 grayscale images, each with a handwritten
digit (between 0 and 9). MNIST is known for being an
easy to solve problem; therefore we also investigate the
performance of the CNNs on Fashion-MNIST (Xiao et al.,
2017): similar to MNIST (i.e., 28 × 28 grayscale images),
but where the digits digits are replace by fashion clothing
items from Zalando’s: t-shirt/top, trouser, pullover, dress,
coat, sandal, shirt, sneaker, bag, or ankle boot.

The previous datasets are all composed by instances of 10
independent classes; to test the ability of DENSER to solve
problems with more classes we use CIFAR-100 (Krizhevsky
& Hinton, 2009), that has the same 60000 instances as
CIFAR-10, but where the instance labels have a higher reso-
lution. The goal in all tasks is to maximise the accuracy of
the recognition.

Table 2. Experimental parameters.

Evolutionary Engine Parameter Value
Number of runs 10

Number of generations 100
Population size 100
Crossover rate 70%
Mutation rate 30%

Tournament size 3
Elite size 1%

Dataset Parameter Value
Train set 42500 instances

Validation set 7500 instances
Test set 10000 instances

Training Parameter Value
Number of epochs 10

Loss Categorical Cross-entropy
Batch size 125

Learning rate 0.01
Momentum 0.9

Data Augmentation Parameter Value
Padding 4

Random crop 4
Horizontal flipping 50%

4.2. Experimental Setup

The experimental parameters used are detailed in Table 2.
We use the grammar of Figure 2 and the following GA
structure: [(features, 1, 30), (classification, 1, 10), (softmax,
1, 1)]. This way our search space encompasses CNNs that
have up to 40 hidden-layers: at most 30 convolution or
pooling layers followed by up to 10 fully-connected layers.
The minimum number of layers of the networks is 3.

The train of a CNN is a computationally expensive task.
For that reason, during the evolutionary process we only
perform 10 epochs for each network. In the end of each
evolutionary run, we take the best network and perform
longer trains, with 400 epochs and the same learning rate
policy. For these extended trains, the train and validation
sets used in the evolutionary runs are merged, so that more
data is available for learning.

4.3. Evolution of CNNs for the CIFAR-10 Dataset

The fitness evolution of the best networks across the gener-
ations is depicted in Figure 6. An inspection of the results
shows that the performance of the networks is steadily in-
creasing, and evolution converges around the 80th genera-
tion. It is possible to see that a change in behaviour occurs
around the 60th generation: before, the increase in fitness
is followed by a decrease in the number of hidden-layers;
after, the increase in fitness is accompanied by an increase
in the number of hidden-layers. To support this analysis
we compute the Pearson correlation between the fitness
values of the best individuals, and the average number of
layers, per generation. Until the 60th generation the Pearson
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Figure 6. Evolution of the fitness (left) and number of hidden-layers (right) of the best individuals across generations. Results are averages
of 10 independent runs.

correlation reports a coefficient of −0.7166 (moderate neg-
ative correlation); after the 60th generation the correlation
coefficient is 0.9204 (strong positive correlation).

The change in behaviour around the 60th generation is easily
explainable. At first, the candidate solutions are randomly
generated and have approximately 22.44 hidden-layers (pop-
ulation average). These initial solutions have their param-
eters generated at random, and thus, it is highly unlikely
that a stochastic parameterisation of 22 layers will have any
meaningful results. As time passes, the networks decrease
in complexity and their parameters are tuned, until a point
where to increase the performance of the networks more
layers are necessary (60th generation).

Once the evolutionary process is over, the best network of
each run is re-trained 5 times during 400 epochs. The best
network of each run is selected according to the accuracy
values on the validation set. All the accuracy values reported
from this point onwards are averages of 5 independent trains;
this is done because the initial weights are different. This
training conditions lead to an average classification accuracy
on the test set of 88.41%.

The comparison of this result with the ones reported by
other approaches (check Table 1) seems to indicate that
DENSER performs worse. However, different approaches
use different training policies, data augmentation, or predic-
tion techniques. For example, (Snoek et al., 2015) for each
instance of the test set generate 100 augmented images, and
the prediction of the image class is based on the class that
has the maximum average confidence on the 100 augmented
images. By doing this the average accuracy on the test set
increases to 89.93%.

To check if it is still possible to enhance the performance of
the best networks we test a different learning rate policy. In
(Suganuma et al., 2017) the authors use a varying learning
rate policy: it starts at 0.01; on the 5th epoch it is increased
to 0.1; by the 250th epoch it is decreased to 0.01; and finally
at the 375th it is reduced to 0.001; Nesterov momentum is
used. The previous changes lead to an average test accuracy
of 92.51%, not using data augmentation on the test set.

Applying data augmentation to the test set, further increases
the average accuracy to 93.29%.

Recall that all the previous results are averages of the 10
best networks, one from every of the performed evolutionary
runs. Each network is trained 5 times. The average accuracy
on the test set of the network that has the highest accuracy
on 5 trains is 93.37% (not using data augmentation on the
test set), or 94.13% (using data augmentation of the test set).
These results are with the learning rate policy of (Suganuma
et al., 2017).

Focusing on the structure of the best evolved networks, the
most puzzling characteristic is the importance and number
of the fully-connected layers. On average, the best net-
works have 2.2 fully-connected layers that are placed before
the softmax layer. We conducted preliminary experiments
where some of the fully-connected layers were removed;
results show that the performance of the networks generated.
This outcome of the evolution is remarkable, since the ma-
jority of hand-designed networks only have one dense layer,
i.e., the classification layer. Figure 7 depicts the network
that reports the best accuracy on the test set over all the
conducted experiments.

4.4. MNIST, Fashion-MNIST, and CIFAR-100

To test the generalisation and scalability of the evolved
networks we take the best network generated by DENSER
on the CIFAR-10 and apply it to the classification of the
MNIST, Fashion-MNIST, and CIFAR-100. Except for the
CIFAR-100, all the others have the same number of classes
as CIFAR-10; in order for the best CNN to work on the
CIFAR-100 we just need to adapt the softmax layer to have
100 units instead of 10.

To re-train the best networks we use the training policy that
in the previous experiments reported the best results, i.e.,
we train during 400 epochs, with the same learning rate
of CGP-CNN (Suganuma et al., 2017): a varying learning
rate that starts at 0.01, and that on the 5th, 250th and 375th
epochs changes to 0.1, 0.01, and 0.001, respectively. We do
5 independent trains of the network, and as above we report
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Figure 7. Topology of the CNN that reports the best results.

average results.

On the MNIST the CNN attains an average classification
accuracy of 99.65% without data augmentation over the test
set, and 99.70% when data augmentation is used. Nowa-
days MNIST is known to be an easy to solve problem, where
simple Multilayer Perceptrons (MLPs) attain very high accu-
racies, close to 99% (Simard et al., 2003). That is the reason
why we have also opted for testing the networks found with
DENSER on the Fashion-MNIST (Xiao et al., 2017), where
we obtain average accuracies of 94.23% (and 94.70%), not
using (and using) data augmentation on the test set.

The previous experiments prove that the CNNs evolved
by DENSER generalise: the networks are evolved for one

dataset and are robust enough to correctly classify others.
Further, they do so without the need to change any hyper-
parameter (nor from the structure, nor learning). Nonethe-
less, we still do not know if the networks scale, i.e., if
despite evolved for distinguishing between 10 independent
classes, they are able to separate a larger number of classes.
To investigate this we use the CIFAR-100.

On the CIFAR-100, the average accuracy is of 73.32% when
not augmenting the test data; the average accuracy increases
to 74.94% when using data augmentation. The results on
CIFAR-100 demonstrate that the CNN that are not evolved
for solving problems with a higher dimensionality are able
to do so, with state-of-the-art performances.

The train of each network is stochastic; the initial condi-
tions (i.e., initial weights) are different and they are trained
using different instances of the dataset, because of the data
augmentation methodology. Thus, and in order to further
improve the results, we investigate if the approach proposed
in (Graham, 2014) to test the performance of the fractional
max-pooling increases the performance reported by our net-
work. In brief words, instead of a single network, an ensem-
ble is used, where each network that is part of the ensemble
is the result of an independent train of the network.

We apply the previous methodology to all datasets; the
accuracies on the MNIST, Fashion-MNIST, and CIFAR-
100 are 99.70%, 95.11%, and 77.51%, respectively. That
is, the results of ensembling the 5 trains are at least equal,
and often superior to the reported by just a single network.
Moreover, and instead of forming ensembles with the same
network structure we also test the performance of building
an ensemble formed by the two best network topologies
found by DENSER, similarly to what is done in (Real et al.,
2017). This way, we obtain accuracy values of 99.70%,
95.26%, and 78.75%, respectively.

4.5. Discussion

In the above sections we have demonstrated that DENSER
is able to successfully evolve CNNs for the CIFAR-10, and
that the networks that are found by evolution generalise to
the MNIST, and Fashion-MNIST, and scale to the CIFAR-
100.

The test classification accuracy of the fittest CNN on the
CIFAR-10 is 93.29%, and on MNIST, Fashion-MNIST,
and CIFAR-100 are of 99.70%, 94.70%, and 74.94%, re-
spectively. The results of the ensemble formed by the two
fittest networks are of 94.13%, 99.70%, 95.26%, 78.75%,
respectively for the CIFAR-10, MNIST, Fashion-MNIST,
and CIFAR-100. Therefore, the ensemble provides results
that are consistently superior (or at least equal) to the single
highest performing CNN.

The comparison with the state-of-the-art is carried out based
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on Table 1. The best results for CIFAR-10, MNIST, Fashion-
MNIST, and CIFAR-100 are 96.53%, 99.68%, 94.90, and
77%, respectively. Based on all the previous results it is
possible to conclude that only considering the single fittest
CNN, DENSER is highly competitive with the state-of-the-
art results on MNIST and Fashion-MNIST. Notwithstanding,
not all results reported on Table 1 are generated by automatic
search methods. On the CIFAR-10, and CIFAR-100 if con-
straining to automatic methods, the best results are 95.60%,
and 77%, respectively, and are both obtained by (Real et al.,
2017), which use ensembles. If we compare their results
with our ensembling ones we note that on CIFAR-10 they
perform slightly better (difference of 1.47%), but on CIFAR-
100 DENSER is the method that stands out (difference of
1.75%). The reason for that is related with the a-priori
knowledge provided to the systems, that enables (Real et al.,
2017) to find superior results on CIFAR-10; however, we
note that the results that DENSER reports on the CIFAR-
100 are not the result of evolution, and are an outcome of
generalisation, robustness, and scalability.

5. Conclusions and Future Work
The current paper describes DENSER: a general-purpose
framework for automatically searching for deep networks.
The representation of the candidate solutions is made at two
different levels: (i) the GA-level that encapsulates the ge-
netic material, thus facilitating the application of the genetic
operators; and (ii) the DSGE-level that makes the approach
easily generalisable to deal with different problems, and
network types or layers.

We test DENSER on the evolution of CNNs for the CIFAR-
10 dataset. The results show the effectiveness of the method,
which is capable to generate CNNs with a classification
accuracy of up to 94.13%. To analyse the generalisation and
scalability of the CNNs found by DENSER we take the best
networks found during evolution and apply them to the clas-
sification of the MNIST, Fashion-MNIST, and CIFAR-100.
Without further evolution we are able to classify the datasets
with high performances, competitive with the state-of-the-
art. The most striking result is the performance of 78.75%
on the CIFAR-100, which to the best of our knowledge sets
a new state-of-the-art on automatically discovered CNNs.

Notwithstanding the obtained results, there is still room for
improvement. We need to come up with better ways for
assessing the performance of the networks. The networks
are only being trained for 10 epochs, which may bias search
towards networks that train fast; however, longer trains mean
longer evaluation cycles. The resolution of this limitation
makes it possible to optimise the learning parameters more
effectively, and also introduce other types of layers (e.g.,
dropout), that have no effect on such short trains.
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