
AmbieGen tool at the SBST 2022 Tool Competition
Dmytro Humeniuk

dmytro.humeniuk@polymtl.ca
Polytechnique Montréal

Montréal, Canada

Giuliano Antoniol
giuliano.antoniol@polymtl.ca

Polytechnique Montréal
Montréal, Canada

Foutse Khomh
foutse.khomh@polymtl.ca
Polytechnique Montréal

Montréal, Canada

Abstract
AmbieGen is a tool for generating test cases for cyber-physical
systems (CPS). In the context of SBST 2022 CPS tool com-
petition, it has been adapted to generating virtual roads to
test a car lane keeping assist system. AmbieGen leverages a
two objective NSGA-II algorithm to produce the test cases. It
has achieved the highest final score, accounting for the test
case efficiency, effectiveness and diversity in both testing
configurations.

CCS Concepts: • Software and its engineering → Object
oriented frameworks; • Theory of computation→ Theory
of randomized search heuristics.

Keywords: test cases, virtual roads, competition, genetic
algorithm

ACM Reference Format:
Dmytro Humeniuk, Giuliano Antoniol, and Foutse Khomh. 2022.
AmbieGen tool at the SBST 2022 Tool Competition. In The 15th
Search-Based Software Testing Workshop (SBST’22), May 9, 2022,
Pittsburgh, PA, USA. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3526072.3527531

1 Introduction
Self-driving cars have a perspective of becoming a part of our
lives in the near future. These systems are safety-critical and
should undergo a rigorous testing process. One of the stages
is testing in a virtual environment. However, manually de-
signing all the possible scenarios in the virtual environment
is a tedious task.

In this paper we describe the principle of operation of the
AmbieGen tool for automated generation of test cases, sub-
mitted to the SBST2022 tool competition. You can can find a
more detailed information about AmbieGen as a test genera-
tion framework in our previous work [5]. To generate the
test cases for the vehicle lane-keeping assist system (LKAS),

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SBST’22 , May 9, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9318-8/22/05. . . $15.00
https://doi.org/10.1145/3526072.3527531

AmbieGen leverages a two objective NSGA-II genetic algo-
rithm. The goal of the genetic algorithm is to increase the
fault revealing power of test cases, preserving their diversity.
We further provide a more detailed description of the tool
operation. The detailed results of the performance of the
AmbieGen tool are outlined in the competition report [6].

2 AmbieGen tool description
The goal of the competition is to generate test cases for an
autonomous vehicle, with a lane-keeping assist system, that
should follow a road lane of the given trajectory, without go-
ing out of its bounds. The testing approach should generate
a virtual road that forces the car to go out of the road. The
road is represented as a sequences of points, defining the
road spine. To generate the virtual roads the AmbienGen tool
leverages a search based approach. Each run of the search
algorithm produces a set of Pareto optimal solutions, which
are then used as the test cases for the LKAS system. It starts
by generating an initial population of the individuals. Fol-
lowing the crossover, mutation and selection operators, the
fitter individuals are produced, which correspond to more
challenging test cases to test the LKAS. Below we provide a
more detailed description of our tool.

Table 1. Example of individual representation

𝑆1 𝑆2 𝑆3 𝑆4 𝑆5
𝐴1, 𝑟𝑜𝑎𝑑 𝑡𝑦𝑝𝑒 0 1 1 1 0

𝐴2, 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑟𝑜𝑎𝑑 𝑙𝑒𝑛𝑔𝑡ℎ 15 - - - 5
𝐴3, 𝑡𝑢𝑟𝑛𝑖𝑛𝑔 𝑎𝑛𝑔𝑙𝑒 0 60 60 75 0

Figure 1. An example of the test case represented by an
individual in Table 1 with a demonstration of a turning angle
parameter

https://orcid.org/0000-0002-2983-8312
https://doi.org/10.1145/3526072.3527531
https://doi.org/10.1145/3526072.3527531
https://doi.org/10.1145/3526072.3527531

SBST’22 , May 9, 2022, Pittsburgh, PA, USA Humeniuk et al.

2.1 Individual representation
Each individual corresponds to one test case, i.e., one road
topology. We suggest representing the road topology as a
combination of road segments of different length and cur-
vature. We encode each individual as a matrix of size 𝑛𝑥𝑚,
where 𝑚 corresponds to the number of road segments 𝑆 𝑗
and 𝑛 to the number of attributes 𝐴𝑖 describing their shape
and type. In the context of LKAS testing, we define three
attributes: 𝐴1, 𝐴2 and 𝐴3. 𝐴1 corresponds to the road type
and it is sampled from the three possible values 0, 1, and 2
corresponding to the straight road, turning right and turning
left road respectively. 𝐴2 corresponds to the straight road
length in meters and is sampled from the interval [5, 50]. 𝐴3
corresponds to the road turning angle in degrees sampled
from the interval [5, 85]. In Table 1 you can see an example of
encoding a road topology shown in Fig. 1. This road consists
of 5 road segments of straight and turning right types.

2.2 Initial population generation
The initial population is generated by assigning values to the
cells of the test case matrix, such as in Table 1. The attribute
values can be randomly sampled from the allowable value
ranges.

2.3 Fitness function evaluation
To evaluate the test case we are using two fitness functions
𝐹1 accounting for the test case fault revealing power and 𝐹2
accounting for the test case diversity. More precisely, 𝐹1 is
evaluated as the maximum deviation from the lane center
after executing the test case. For the test cases, that violate
the established requirements, i.e., produce road topologies
that go out of the map bounds, are too sharp or intersect, the
fitness value is set to 0.

First fitness function. To calculate 𝐹1 we first transform
the test case matrix, such as shown in Table 1, to a set of
points, defining the road topology. This procedure is de-
scribed in a more detail in our previous work [3]. In brief,
we start with building a base vector, located in the center
of the map with a norm equal to the road width. Further,
we apply affine transformations to this vector, such as par-
allel transitions, for straight road segments, and rotations
for curved road segments. After the road topology is gener-
ated, we use a simplified car model to evaluate its maximal
deviation from the road lane center given this road topology.
We built the simplified car model based on the bicycle car
model and a Stanley controller path tracking [7]. To execute
this model, the simulator environment is not needed and
the model behaviour, i.e., the maximum deviation from the
road lane is estimated based on the equations describing the
car movement. During the evaluation of the test case 𝑇𝐶 ,
the deviation from the lane 𝐷 = 𝑑1, 𝑑2, ..., 𝑑𝑛 is recorded at
regular time intervals. 𝐹1 is evaluated as follows:

𝐹1 =𝑚𝑎𝑥 (𝐷,𝑇𝐶),

where 𝐷 is a list of car model distance from the lane center
during the test case 𝑇𝐶 execution.
Second fitness function. From our experience, it’s im-

portant to add the diversity preservation during the test
generation, otherwise a high number of similar test cases
is produced. To this end, we added a second objective func-
tion accounting for diversity. We compute it as the Jaccard
distance between a given test case 𝑇𝐶 and a reference test
case 𝑇𝐶𝑟𝑒 𝑓 . Given that the test cases represent a set of road
segments with certain properties, Jaccard distance can be
evaluated as [2]:

𝐹2 =
𝑆

𝑇
,

where 𝑇 corresponds to the total number of road segments
in 𝑇𝐶 and 𝑇𝐶𝑟𝑒 𝑓 and S - to the number of similar or same
segments in 𝑇𝐶 and 𝑇𝐶𝑟𝑒 𝑓 . As a reference test case we can
use the fittest individual in terms of the 𝐹1 fitness function,
for instance.

2.4 Crossover operator
We are using a one point crossover operator, which is one of
the commonly used operators for variable-length solution
representation. This operator creates two new test cases by
exchanging information between two existing test cases𝑇𝐶1
(parent 1) and 𝑇𝐶2 (parent 2), with corresponding lengths
of 𝑚1 and 𝑚2. An illustration of the crossover operation
between two individuals is shown in Fig. 2. Individual 𝑇𝐶1
length is 4 elements and individual𝑇𝐶2 is 3. Both individuals
have three attributes𝐴1 (road type),𝐴2 (straight road length)
and 𝐴3 (turning angle). The crossover point is chosen to be
2 and is shown as a dotted line.

2.5 Mutation operator
We define two mutation operators:

• exchange operator : two randomly selected segments
of the individual are exchanged the positions. You can
see an example in Fig. 3.

• change of variable operator: a road segment 𝑆 𝑗 in the
individual is randomly selected, then for one of the
attributes𝐴𝑖 the value is changed according to its type
and maximum as well as minimum values. An example
is shown in Fig. 4.

2.6 Evaluation setup
We used the following genetic algorithm configuration: pop-
ulation size: 100, number of generations: 75, mutation rate:
0.4, crossover rate: 1, algorithm type: generational.

3 Evaluation results
In this section we report the evaluation results provided by
SBST2022 tool competition team [6]. The tool was evaluated
on the two subject systems in two different experimental se-
tups: BeamNG.AI and Dave-2. Each setup was given 1 hour

AmbieGen tool at the SBST 2022 Tool Competition SBST’22 , May 9, 2022, Pittsburgh, PA, USA

Figure 2. An example of the crossover operator functioning,
crossover point is selected equal to 2

Figure 3. An example of the exchange mutation operator,
where segments 2 and 4 are exchanged

Figure 4. An example of the change of variable mutation
operator, where the value of the third attribute of the third
segment is changed

Figure 5. Number of failures revealed

test generation budget and 2 hour test execution budget.
BeamNG.AI configuration features the BeamNG.AI agent

Figure 6. The diversity of the revealed failures

Figure 7. Effectiveness of the generated test cases

driving up to 70Km/h, an OOB (out of bound episodes) toler-
ance value of 0.85, meaning that the the failure is detected
when more than 0.85 of the car area goes out of the road
bounds. BeamNG.AI knows the geometry of the whole road
and utilizes a complex optimization process to plan trajecto-
ries that drive the ego-car as close as possible to the speed
limit while keeping the vehicle inside the lane.

Dave-2, instead, is an end-to-end approach that uses a deep
learning (DL) architecture consisting of three convolutional
layers, followed by five fully-connected layers [1] to predict
steering angles from camera images. Dave-2 was trained at
low speed, therefore this configuration’s maximum speed
is 35Km/h. Consequently, a lower tolerance value (0.1) was
used to make the OBB monitor more sensible.
In Fig. 5 - Fig, 7 you can see results for evaluating such

metrics as the number of failures revealed, OOB coverage
(test case diversity) and test case effectiveness after running
the tool for 10 times.
Number of failures corresponds to the number of test

cases, where the car went out of the lane. From Fig. 5 we
can see that in BeamNg setup our tool reveals 90.4 OOBs on
average, while in Dave-2 - 15.3.
OOB coverage captures the effectiveness of the gener-

ated tests to expose as many different failures as possible.
First, structural and behavioral features of the tests portion
relevant to the OOBs is extracted. Then a feature map is pop-
ulated with the extracted values. Finally, the OOB coverage
is defined by counting the cells in the map covered by the
exposed OOB. Larger values of OOB coverage identify better
test generators. From Fig. 6 we can see that our tool produces

SBST’22 , May 9, 2022, Pittsburgh, PA, USA Humeniuk et al.

test cases with average diversity of 0.585 for BeamNG setup
and 0.231 for Dave-2.

Test case effectiveness corresponds to the ratio of valid
tests over all the generated tests. Effective test generators
produce valid tests, i.e., they do not waste the generation
budget in generating invalid tests. From Fig. 7 we can see that
our tool has a similar effectiveness of 0.966 in both BeamNG
and Dave-2 setups.

4 Discussion
We can see from the results that our tool is able to reveal the
failures of both models used in the setups. For the BeamNg
setup on average 6 times more failures are revealed, than
for the Dave-2. We attribute it to the fact that the Dave-2
agent maximal driving speed is twice smaller than that of
the BeamNg, reducing the chance to go out of the bounds.

In both setups the tool allowed to explore diverse failures.
We surmise that promoting explicitly the test case diversity
plays an important part. Moreover, we are using a simplified
system model, allowing to faster evaluate the solutions and
run more iterations of the search algorithm. While using
the tool, the algorithm can be run for a number of times.
Each run starts from producing a new initial population of
candidate solutions. This allows our tool to continuously
explore the search space and escape the local minima. For
BeamNG setup, the diversity score was around 2.5 higher
than for the Dave-2. We assume that for the BeamNg model
a broader space of possible failures was explored as more
failures were detected.
Finally, our tool achieves a high effectiveness, i.e., valid

to total test case ratio of 0.96. We have internal verification
mechanisms that assign a low fitness function to the test
cases not satisfying the established requirements, preventing
the production of invalid test cases.

5 Conclusions
In this paper we present our tool, AmbieGen, applied to
the generation of test cases for a vehicle LKAS system. It
leverages evolutionary search guided by two objectives ac-
counting for the test case fault revealing power and diversity.
To evaluate the first fitness function we use the simplified
model of the system, which does not require running the
system model in the driving simulator.
Using a simplified system model is effective in revealing

faults of the real systemmodel. In two hour execution budget
our tool could reveal on average 90 failures for the BeamNG
setup and 15 failures for the Dave-2 setup.
Adding a fitness function to promote diversity improves

the diversity of the test cases produced by the search algo-
rithm. AmbieGen achieved the average diversity of 0.585 for
BeamNG setup and 0.231 for Dave-2.

In our future work we plan to extend the test generation
to produce more complex scenarios, that include static and
moving obstacles, various weather conditions.

6 Using the tool
The tool is open source and available at [4], where the in-
structions on how to run it are provided. Currently it is
integrated in the SBST 2022 CPS competition pipeline.

References
[1] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard

Firner, Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort,
Urs Muller, Jiakai Zhang, et al. 2016. End to end learning for self-driving
cars. arXiv preprint arXiv:1604.07316 (2016).

[2] Alessio Gambi, Marc Mueller, and Gordon Fraser. 2019. Automatically
testing self-driving cars with search-based procedural content genera-
tion. In Proceedings of the 28th ACM SIGSOFT International Symposium
on Software Testing and Analysis. 318–328.

[3] Dmytro Humeniuk, Giuliano Antoniol, and Foutse Khomh. 2021. SWAT
tool at the SBST 2021 Tool Competition. In 2021 IEEE/ACM 14th In-
ternational Workshop on Search-Based Software Testing (SBST). 42–43.
https://doi.org/10.1109/SBST52555.2021.00019

[4] Dmytro Humeniuk, Giuliano Antoniol, and Foutse Khomh. 2022. Am-
bieGen tool. https://github.com/dgumenyuk/tool-competition-av.git.

[5] Dmytro Humeniuk, Foutse Khomh, and Giuliano Antoniol. 2022. A
Search-Based Framework for Automatic Generation of Testing Envi-
ronments for Cyber-Physical Systems. https://arxiv.org/a/0000-0002-
2983-8312.html.

[6] Vicenzo Riccio andAlessio Gambi. 2022. SBST Tool Competition 2022. In
International Conference on Software Engineering, Workshops, Pittsburgh,
PA, USA, 2022. ACM.

[7] JarrodM Snider et al. 2009. Automatic steeringmethods for autonomous
automobile path tracking. Robotics Institute, Pittsburgh, PA, Tech. Rep.
CMU-RITR-09-08 (2009).

https://doi.org/10.1109/SBST52555.2021.00019
https://github.com/dgumenyuk/tool-competition-av.git
https://arxiv.org/a/0000-0002-2983-8312.html
https://arxiv.org/a/0000-0002-2983-8312.html

	Abstract
	1 Introduction
	2 AmbieGen tool description
	2.1 Individual representation
	2.2 Initial population generation
	2.3 Fitness function evaluation
	2.4 Crossover operator
	2.5 Mutation operator
	2.6 Evaluation setup

	3 Evaluation results
	4 Discussion
	5 Conclusions
	6 Using the tool
	References

