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ABSTRACT
Learning classifier systems (LCSs) originated from artificial
cognitive systems research, but migrated such that LCS be-
came powerful classification techniques. Modern LCSs can
be used to extract building blocks of knowledge in order to
solve more difficult problems in the same or a related do-
main. The past work showed that the reuse of knowledge
through the adoption of code fragments, GP-like sub-trees,
into the XCS learning classifier system framework could pro-
vide advances in scaling. However, unless the pattern un-
derlying the complete domain can be described by the LCS’s
representation of the problem, a limit of scaling will eventu-
ally be reached. This is due to LCSs’ ‘divide and conquer’
approach utilizing rule-based solutions, which entails an in-
creasing number of rules (subclauses) to describe a problem
as it scales. Inspired by human problem-solving abilities,
the novel work in this paper seeks to reuse learned knowl-
edge and learned functionality to scale to complex prob-
lems by transferring them from simpler problems. Progress
is demonstrated on the benchmark Multiplexer (Mux) do-
main, albeit the developed approach is applicable to other
scalable domains. The fundamental axioms necessary for
learning are proposed. The methods for transfer learning in
LCSs are developed. Also, learning is recast as a decom-
position into a series of sub-problems. Results show that
from a conventional tabula rasa, with only a vague notion of
what subordinate problems might be relevant, it is possible
to learn a general solution to any n-bit Mux problem for the
first time. This is verified by tests on the 264, 521 and 1034
bit Mux problems.

CCS Concepts
•Computing methodologies → Machine learning al-
gorithms;
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1. INTRODUCTION
Learning Classifier Systems (LCSs), first introduced by

Holland, were originally cognitive systems designed to evolve
a set of rules; LCSs were inspired by the principles of stimulus-
response in cognitive psychology [3], [4], [9], [10], [24]. LCSs
migrated away from being platforms to study cognition and
instead have been developed to be powerful classification
techniques [20]. One of the strengths of LCSs is their ca-
pability of subdividing the problem into niches that can be
solved efficiently. This is accomplished by integrating gener-
ality in the rules produced. This pressure towards general-
ity means that a single classifier could be a solution to more
than one problem instance. In other words LCSs can di-
vide the problem space into niches thereby creating smaller
‘problems’ from the whole [2].

Even with these advantages certain problems are difficult
to solve, e.g. the multiplexer problem, due to underlying
problem characteristics such as epistasis (the importance of
certain bits depends on the values of other bits) and hetero-
geneity (when individual solutions or groups of individuals
are independently predictive of the same phenotype). These
phenomena were studied by Urbanowicz et al. [26] who in-
troduced attribute tracking as a method for characterizing
heterogeneity and interaction in Michigan style LCSs ap-
plied to supervised learning problems. Although this ap-
proach is useful and potentially far-reaching, it considers a
complete supervised instance, whereas this work seeks to
extend the reinforcement learning ‘divide the problem into
subordinate parts’ approach.

Reusing learned knowledge has been shown to increase
scalability and could provide ‘shortcuts’ that decrease the
search space of the problem at hand [16]. Keeping scalabil-
ity at the forefront of the proposed work, one of the major
aims is to discover ontologies of functions that will map to
numerous, heterogeneous structures. This will aid in obtain-
ing a compact and optimal set of classifiers at each of the
proposed steps [23].

In the field of Developmental Learning there is a term
known as the Threshold Concept [6]. This idea conveys the
fact that in human learning there exist concepts that are
very influential in advocating the learning of a task. These
concepts need to be learned in a certain order to enable
the person to progress towards learning more difficult ideas



at a faster pace than otherwise. For instance, humans are
taught mathematics in a certain progression; arithmetic is
taught before trigonometry and these two are taught before
calculus. The empirical evidence points to the fact that this
sequence will be more effective in fostering the learning of
progressively more difficult mathematics [6].

Related to the benefits of the threshold concept are Lay-
ered Learning (LL) and Transfer Learning (TL). In LL a se-
quence of knowledge is learned [25] in self-contained stages.
In TL, learned knowledge from a source domain is trans-
ferred to a similar or related target domain 1. LL transfers
the complete solutions of sub-problems, where TL can also
transfer part-solutions [7].

Modern LCSs can be used to extract building blocks of
knowledge in order to solve more difficult problems in the
same or a related domain. The past work showed that the
reuse of knowledge through the adoption of code fragments
(CFs), GP-like sub-trees, into the XCS learning classifier
system framework could provide dividends in scaling.

A series of systems using CFs have been developed. XC-
SCFC is a system that has extended XCS by replacing the
condition of the classifiers with a number of CFs. The action
part of the classifiers remains the same. Although XCSCFC
exhibits better scalability than XCS, eventually, a compu-
tational limit in scalability will be reached [14]. The reason
for this is that multiple CFs can be used at the terminals, as
the problem increases in size, then any depth of tree could
be created.

Another type of CF system is XCSCFA. In this type the
condition part retains its original ternary alphabet repre-
sentation but the action part of the classifier is replaced by
a CF. The terminals in the CF tree can be replaced with
either the corresponding bits from the environment message
or with bits from the classifier condition [16]. This method
produced optimal populations in discrete domain problems
as well as in continuous domain problems [16]. This how-
ever lacked scaling to very large problems, even if they had
repeated patterns in the data. XCS with State-Machine Ac-
tion (XCSSMA) was introduced with the ability to generate
state machines to encapsulate repeating patterns. This was
accomplished by replacing the numeric action in XCS with a
Finite State Machine. XCSSMA evolved compact and eas-
ily interpretable general solutions for the even-parity and
the carry problem domains, however it could not improve
the generalization for the multiplexer (Mux) domain. This
was because the state machines needed for this domain are
more complex than the other domains mentioned above [14].

One representation (an alphabet for the condition/action
encoding) for solving Mux problems is by using Disjunctive
Normal Form (DNF). However DNF presents some limita-
tions; as the problem grows, the DNF grows very large as
well. The 6-bit multiplexer can be solved but is verbose, see
equation 1 (the primes indicate negation and ‘X’ the features
(bits) in a multiplexer string) [27]:

F6 = X0′X1′X2+X0′X1X3+X0X1′X4+X0X1X5 (1)

A human would solve the problem differently, they would
realize that there is a relationship between the address bits
and the data bit even if presented with just a binary input
string and no prior knowledge of the underlying problem

1Some fields define TL as transferring the underlying model
[22]

structure. It is hypothesized that humans scale to complex
problems by considering the underlying patterns in such
problems that are generated from previous, smaller scale
problems thus transferring knowledge and skills from related
problems. This learned knowledge could be from different
domain(s) as some of the functionality that is needed may
not exist within the problem itself. It is anticipated that
when this approach is adapted into evolutionary computa-
tional approaches it will lead to advances in scalability of
these techniques.

The aim of this work is to adapt the notion of thresh-
old concepts coupled with TL into LCSs to produce gen-
eral solutions to large scale problems, this will be demon-
strated through the often used benchmark Multiplexer prob-
lem. The Multiplexer problem is one that lends itself for
research because it is difficult, highly non-linear and has
epistasis, e.g. the importance of the data bits is dependent
on the address bits. A multiplexer can be viewed as a logic
circuit where a certain number of bits provide the address
of the output bit. If L is the length of the input then the
equation:

L = k + 2K (2)

defines the relationship between the length of the input and
the number of address bits required. For example, for the
6-bit multiplexer problem 110001, the number of bits that
determine the output bit would be 2 and the remaining 4
are the data bits. In this case the address bits convert to
3 in decimal, which gives us the fourth data bit counting
from the left, and an output of 1. Importantly, in order
to compute the above formula, the software agent would
need to be aware of the power base two function as well
as real number addition. These functions are not part of
the boolean domain, but humans have already learned these
functions, therefore they can readily include them in their
reasoning of this domain.

The specific research objectives are as follows:

∗ Develop methods such that learned knowledge and learned
functionality can be reused for Transfer Learning of
Threshold Concepts.

∗ Determine the necessary axioms of knowledge, functions
and skills needed for any system from which to com-
mence learning.

∗ Demonstrate the efficacy of the introduced methods in
one complex domain, i.e. Mux. Although the under-
lying methods are applicable to many domains, page
limitations prevent more than one domain being inves-
tigated here.

2. BACKGROUND
The original description of the LCS was of a cognitive sys-

tem [9]. The implication was that this type of system could
learn about its environment and about its state in order to
execute beneficial actions on its environment. Cognition is
a term from psychology that is defined as the things persons
know about themselves, about their behavior, and about
their surroundings [8]. This implies the ability to factor
seemingly disparate information and then apply it towards
a desired goal.



Since the original inception of LCSs, the number of ap-
plicable alphabets has been expanded to include more rep-
resentations such as S-Expressions and Code Fragments. S-
Expressions are LISP-like expressions which have been used
to express the LCS condition or action [19]. A Code Frag-
ment (CF) is an expression, similar to a tree generated in
Genetic Programming [13]. CFs generate small blocks of
code in binary trees with an initial maximum depth of two.
This depth was chosen, based on empirical evidence, to limit
bloating caused by the introduction of large numbers of in-
trons. Analysis suggests that there is an implicit pressure
for parsimony [15].

LCSs can reuse learned knowledge to scale to problems
beyond the capabilities of non-scaling techniques, i.e. those
that do not reuse learned information from smaller prob-
lems. One such technique is XCSCFC [16]. This approach
uses CFs to represent each condition bit enabling feature
construction in the condition of rules. The action part uses
the binary alphabet {0, 1}.

XCSSMA can find repetitions and loops in order to re-
peat useful behaviors. This type of system has been able to
evolve general solutions for the n-bit parity problem and n-
bit carry problem. It uses a Finite State Machine (FSM) in
the action of the classifiers instead of the original alphabet
[14]. Repeating patterns, which could also be represented as
loops, is an important concept of this technique and will be
needed for many domains suited to the proposed approach.
The Mux problem does not have direct loops and hence XC-
SSMA is not well suited for this purpose.

It has been shown previously that rule-sets learned by an
LCS system, termed XCSCF2, can be re-used in a manner
akin to functions and their parameters in a procedural pro-
gramming language [1]. These learned functions, termed X,
then become available to any further tasks. These are com-
posed of learned rule-sets that map inputs to outputs, and
skills, both would compute actions from given inputs and
would manipulate inputs.

XCSCF2 places the emphasis on user-specified problems,
rather than user-specified instances, which is a subtle but
important change in emphasis in EC approaches. This tech-
nique however, lacks a rich representation at the action part,
which will need adjusting due to the different types of action
values expected in this work, e.g. binary, integer, string.

The multiplexer problem is a complex and difficult prob-
lem due to epistasis and its large search space. An early
attempt at scaling was the S-XCS system that utilizes opti-
mal populations of rules, which are learned in the same way
as classical XCS [12]. These optimal rules are then fed to
S-XCS as messages thus enabling abstraction. The system
uses human constructed functions such as Multiply, Divide,
PowerOf, ValueAt, AddrOf, among others [12]. Although
these key functions provide the system with the building
blocks to piece together the necessary knowledge blocks,
they have an inherent bias and might not be available to
the system in large problem domains. It also assumes com-
pletely accurate populations whereas the system to be de-
veloped here is required to learn both the population and
functionality from scratch. If supervised learning is per-
mitted (unlike in this work), the heterogeneous approach of
ExSTraCS scales well; up to the 135 Bit Mux [26].

Previous work has considered constructing general solu-
tions to Boolean problems, e.g. Parity problem, from non-
domain specific instructions (equivalent to functions here)

[11]. This top-down approach predefined the instruction
set, including loop mechanisms, for a virtual register ma-
chine, which successfully created general solutions occasion-
ally with ineffectual instructions and the need for domain-
specific knowledge as input. The system developed here is
to be bottom-up with the ability to learn functions plus as-
sociated knowledge to improve compactness and flexibility.

3. THE METHOD
This work disrupts the standard learning paradigms in

EC by aligning it with LL. Instead of the EC researcher
specifying the format of an individual domain and manu-
ally adjusting the paradigms (using human knowledge to
define the algorithm’s parameter values, terminal set and
function set), the method here is to specify the order of
problems/domains (together with robust parameter values)
while allowing the system to automatically adjust the ter-
minal set through feature construction and selection, and
ultimately develop the function set. This is different to the
self-contained stages of LL, and closer to TL in this respect,
as part-solutions (CFs) can be propagated. Similarly, com-
plete solutions (learned functions) can form part-solutions
for future problems. This is analogous to a school teacher
determining the order of threshold concepts for a student
in a curricula [21]. The system can use learned rule-sets as
functions along with the associated building blocks, i.e. CFs,
that capture any associated patterns, which is an advantage
over pre-specifying functionality in EC and LL.

This method changes the fundamental problem from find-
ing an overarching ‘single’ solution that covers all instances
or features of a problem to finding the structure (links) of
sub-problems that construct the overall solution. Learning
the underlying patterns that describe the domain is antici-
pated to be more compact and reusable as they do not grow
as the domain scales (unlike individual solutions that can
grow impractically large as the problem grows, e.g. DNF
solutions to the multiplexer problem).

3.1 n-bit Multiplexer Problem
In the multiplexer problems the number of address bits

is a function of the length of the message string and grows
along with the length. The search space of the problem is
also adequate to show the benefits of the proposed work.
For example, for the 135-bit multiplexer the search space
consists of 2135 combinations, which is vastly beyond enu-
merated search [18].

An example of a 6 bit multiplexer is shown in Figure 1.
Determining the number of address bits 2 k requires the use
of the log function, as shown in equation 3, in this case k is 2.
Then k bits must be extracted from the bit string to produce
the two address bits. The next step is to convert the address
bits into decimal form; this requires knowledge of the power
base 2 function as well as rudimentary looping, addition and
subtraction functions. Depending on the approach to this
step, multiplication may also become a requirement. The
two address bits translate to 2 in decimal form, as shown
in figure 1, i.e. A0 and A1. The decimal number points to
the data bit D2 that contains the value to be returned. The

2It is possible to have a Multiplexer with address bits that
are not the first k bits from the left, so the system learns
this pattern without assumptions



index begins at 0 and proceeds from the left towards the
right, as shown in figure 1.

1     0    1     0    1     0     :     1

A0  A1  D0  D1  D2  D3

Condition                 :  Action

Index:

0     1    2     3     4    5

Figure 1: 6 Bit Multiplexer showing the address bits and the
data bits of the condition, this distinction is not provided to
the learning system.

One of the underlying reasons for choosing the multi-
plexer problem domain for the work is because humans can
solve this type of problem by naturally combining functions
from other related domains along with functionality from
the Boolean domain. For instance, a human can reason that
there is a correspondence between the address bits and the
data bits without being given any a priori knowledge about
the problem. Humans are also able to reason that some
functions in their ‘experiential toolbox’ may be appropri-
ate for solving the problem. The experiential toolbox is the
totality of learned functionality for the agent. These func-
tions include multiplication, addition, power, and the notion
of a number line. Thus the agent here must build-up its
own toolbox of functions and associated blocks of knowledge
(CFs). Therefore, the agent will have to be guided in its
learning so that it may have enough cross-domain functions
to successfully solve the problem. It will need to perform
well with more functions than necessary as the exact useful
functions may not be known a priori, but at this stage of
paradigm development is not expected to be able to adjust
to fewer functions than necessary.

Besides functions, the experiential toolbox will also con-
tain skills. These are capabilities that the agent will have
learned or will have been given a priori ; one example is the
looping skill. These skills are subtly hidden from the agent
and together with the functions provide a fertile ground from
which to sprout useful knowledge. For example, a human un-
derstands all the operations required for counting k number
of bits, starting from the left of the input string. Then the
human would have to reason how to convert the address bits
to decimal, which requires the ability to multiply and add.
If we wanted to make it even more difficult we could have
the human determine the number of k address bits required
for a particular problem. In this case the formula:

k = blog2 Lc (3)

provides the functionality for determining the number of k
address bits by using the length of the input. In this case
the person would have to be conversant with the natural log
function as well as the floor function. A human would even-
tually be able to determine the address bits with increasing
difficulty but a software system would have to learn this
functionality before even attempting to solve the n-bit mul-
tiplexer.

3.2 Proposed system
The proposed system, termed XCSCF*, consists of a num-

ber of components. Since different types of actions are ex-
pected, e.g., Binary, Integer, Real; it is proposed that the

functions be created by XCSCFA based systems, although
any rule production system can also be used, e.g. XCS, SC-
SCFC, etc. This will facilitate the use of real and integer
values for the action as well as enabling it to represent com-
plex functionality. The proposed solution will reuse learned
functionality at the terminal nodes as well as the root nodes
of the CFs since this has been shown to be beneficial for
scaling. XCSR would not be helpful here because on a num-
ber of the steps, the possible actions are not a number but
a string e.g., kbitstring. Moreover, XCSR with Computed
Continuous Action would present unnecessary complications
to the work because the condition of the classifiers do not
require continuous values [13].

The inputs and outputs of the overall system consist of a
Mux instance (bit string) and its integer length L, which is
known to standard techniques addressing the Mux problem,
and an output of binary type at the very end. Base func-
tionality will have to be provided for the system; we call
these Axioms, e.g. log. For example, it is anticipated that
basic functions like addition, subtraction, multiplication, di-
vision, natural log, power base 2 will have to be provided to
the systems to bootstrap learning of the target problem.

The decomposition of the system is reminiscent of the
layered learning paradigm proposed in [25]. As such, the
proposed system is separated into several hierarchical parts;
each part facilitates the learning of the subsequent one. This
is accomplished at each layer by providing a population of
previously learned CF-based rules and CFs linked to those
rules. This complement constitutes one learned function.

Axiomatic
Functions

Skills

Experiential Toolbox

General

Mux Specific ?

Mux Problem

Environment
Constant

?

Code
Fragments

Floor Ceiling

Loop

Move 

Right

L

Move 

Left

Constant

LCS

?

?

?

Figure 2: Training encompasses different types of functions,
skills and axioms. The experiential toolbox will contain gen-
eral as well as multiplexer specific learned functionality. The
question marks indicate the next domain and functionality
learned from it.

3.3 Individual Detailed Components
One plausible way of separating the Mux problem into

subordinate problems has five parts. Each subsequent part
builds upon the rules learned from the previous step as well
as from the Axioms provided. Figure 2 depicts the inter-
play between the Axioms, skills and learned functionality
and their CF representation. The figure also depicts how
the type of problem tackled can feed domain specific func-
tionality into the experiential toolbox of the system. This is
shown by the arrow flowing from the Mux problem towards
the Experiential Toolbox.

At each step, the system has available the environmental
message, constants and hand-coded functions, as well as the
learned CFs and functions. To bootstrap the learned CF
functions the NAND boolean operator will be learned in a



Value At

Address Of

Bin To Int

K Address

k Bits

Mux

Int (D)

Int (d)

String (A)

Int (k)

k

A

d

D

: Length of address bits

: Address bits only

: Data bit number

: Address of data bit

Int (k)

Message, 

Length

of message 

(L)

Data Bit

Figure 3: Multiplexer training flow - the message is utilized
at three steps, while the k bits are used in two steps when
learning.

standard XCS and the resulting rules will be available to
the n-Bits system to formulate a bootstrap for the learning
process. Table 1 depicts a listing of all the skills provided for
the system along with their tags (used to interpret results)
and their input/output data types. Table 2 shows a listing
of the constant(s) provided to the system, note that these
were provided in order as a curricula, but a system could
be developed to address all problems in parallel, such that
as each problem is solved it becomes available (CFs and
function) to the remaining problems. Table 3 shows a listing
of the functions to be learned.

It is important to note that the work presented here does
not seek to provide a recipe for a system to follow to just
arrive at the solution to a given multiplexer problem. The
aim here is to facilitate learning in a series of steps, where
in this case the learned functionality could potentially help
a system to arrive at a general solution of any Multiplexer
problem. In other words, it is important for the system to
learn to combine the different learned functions in a way
conducive to learning, a way that will produce a general
solution. The number of subordinate problems can always
be increased in the future, e.g. learning basic functions such
as an adder or a multiplier via Boolean functions or even
learning the log function from training data.

3.3.1 Sub-Problem - kBits
The first stage is to determine the number of k address

bits that will contribute to the solution for the n-bit mul-
tiplexer. The constant LEN provides the system with the
length of the environment message, where LEN is an envi-
ronment constant that is normally hard-coded in a learning
system rather than input as a constant. The training data-
set used consists of instances of possible Mux lengths and
the corresponding number of address bits.

3.3.2 Sub-Problem - kBit String
This part extracts the first k bits from a given input string.

The data-set will be random bit strings, say length 6, and a
given k length where the action is the first k bits.

3.3.3 Sub-Problem - Bin2Int
The third part entails converting a binary number to an

integer. This is important because the system requires this
information to be able to determine the position of the data
bit. However, this is not a trivial task as the system would
need to be aware of many functions that a human would

Table 1: Functionality Provided (Hard-coded functions)
Function Tag Input Output

Floor [ Float Integer

Ceiling ] Float Integer

Log { Float Float

BinaryString $ Integer String

Power 2 Loop @ String Variant

Add + Variant Integer

Subtract - Float Float

Multiply * Float Integer

Divide / Float Integer

ValueAt = Integer Binary

Table 2: Constant(s) Provided
Constant Tag Input Output

LEN L NA Variant: any type

Table 3: Functions to be learned
Function Tag Input Output

KBits [ Float Integer

KBitString ] Float Integer

Bin2Int { Float Float

AddressOf - Float Float

ValueAt = Integer Binary

potentially already have in their experiential toolbox. The
data-set will be random strings, say length 6, with action
being the equivalent integer number.

3.3.4 Sub-Problem - AddressOf
This functionality determines the location of the data bit

from an input string and known address [this is a harder
problem than learning addition of address length and de-
coded length]. The data-set will be random strings (length
6) and decoded address with the integer action.

3.3.5 Sub-Problem - ValueAt
The functionality to be learned is to return the bit ref-

erenced from a bit string. The system is trained using a
dataset of bit strings of known length (again length 6) with
a reference integer and corresponding output bit.

4. RESULTS

4.1 Experimental Setup
The experiments were run 30 times with each having an in-

dependent random seed. The stopping criteria was when the
agent completed the allotted number of training instances,
which were chosen based on preliminary empirical tests on
the convergence of systems. The proposed systems were
compared with XCSCFC and with XCS. The settings for
the experiments are common to the LCS field. They were
as follows: Payoff 1,000; the learning rate β = 0.1− 0.2; the
Probability of applying crossover to an offspring χ = 0.8;
the probability of using a don’t care symbol when covering
P don′tCare = 0.33 − 0.95; the experience required for a
classifier to be a subsumer Θsub = 20; the initial fitness value
when generating a new classifier FI = 0.01; the fraction of
classifiers participating in a tournament from an action set
0.4. In addition, error threshold ε0 has been set to 10.0.
This range became necessary as the problems increased in
complexity.

4.2 Experimental Tests
Figures 4a - 4e, show that training was successful in Sub-

problems, which enabled the Mux problem to reuse the learned
functionality and CFs. The number of rules and CFs gen-
erated by the fundamental parts, i.e. kBits, kBitString,
Bin2Int, AddressOf and ValueAt was small. In certain cases
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Figure 4: Training results for the five Mux Sub-problems.

the number of rules produced was one, as was the case with
run 8 of the kBits sub-problem. This is plausible as the
rule is general and will work for any length input string.
This same trend continued with the more difficult problems.
The condition was composed of don’t cares, although it may
appear counter-intuitive, this is normal as the rules were an-
ticipated to be maximally general. It is considered that part
of the reason that there were so many don’t cares in the con-
dition was that the setting for P don′tCare for this problem
was 0.95 to enable matching of conditions, plus no niching
was needed with CF-based actions in this domain.

Figure 5 shows that only the proposed system XCSCF*
and XCSCFC were able to solve the 135 bit Multiplexer.
These experiments followed the standard explore and exploit
phases as in XCS. This shows scaling by relearning, but it is
the capturing of the underlying patterns without retraining
that is the aim of this work.

Tests were conducted on the final rules produced by the
6 bit multiplexer to determine if they were general enough
to solve more complex problems. Figure 6 shows that the
rules produced by the 6 bit multiplexer were able to solve
the 264 bit, 521 bit and 1034 bit multiplexer problems. The
system used to test the generality of the rules was a version
of XCSCFA with certain modifications; there was only the
exploit phase and no covering was allowed.

Note that 21034 is a vast number, meaning that testing a
million instances is a fractionally small sub-sample, but will
identify many deficiencies.
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Figure 5: 135 Bit Multiplexer Solution. Note: Wilcoxon
signed rank test comparing XCSCF* with XCSCFC shows
no evident difference between both techniques.
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Figure 6: 264, 521 and 1034 Bit Multiplexer Solution. These
results with XCSCF* did not involve any training, just the
test phase.

4.3 Sub-Trees Generated
The solution tree for a 6 bit Multiplexer is shown in Fig-

ure 7. The fully expanded tree is shown in Figure 8. It is
clear that the underlying chains of CFs are very long and
are composed of functional blocks that are repeated in differ-
ent branches. This presented an opportunity for the system
to store these computed values for later usage. This also
shows that while the final rules for the difficult problems
can appear simple at first glance (Figure 7), the underlying
functionality is quite complex and is composed of the neces-
sary combinations of skills and learned functions that were
determined by the system to provide a viable solution to the
problem.

=

M

CF_28 CF_16

CF Tree

Output

Figure 7: 6 Bit Multiplexer Solution Rule. Where ‘=’ is the
ValueAt function, ‘M’ is the AddressOf function and CF 16,
CF 28 are Code Fragments.

5. DISCUSSION
It can be argued that the reason this approach can solve

problems to a much larger scale than previously is that hu-
man knowledge separated the problem into appropriate, sim-
pler sub-problems – noting that it is still a difficult task to
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Figure 8: 6-bit Mux Solution Tree: boxes depict func-
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learn each sub-task – in such a way that learned knowl-
edge/functionality can be transferred. However, it is im-
portant to keep in mind that the system still has to learn

to combine these blocks effectively. The way that humans
select sub-problems is similar to that of humans selecting
function sets in standard EC approaches where too few or
inappropriate selection prevents effective learning, while se-
lecting too many unnecessary components inhibits training.
In these experiments the ceiling function was available, but
never used by the final solutions.

Another consideration is the impact that layered learning
may have had in the performance of the proposed work.
It is not clear, at this time, what benefits were provided
by the decomposition of the problem versus reusing learned
knowledge. It would be naive to attribute all the credit to
one or the other technique without further considerations
[25].

A system can be imagined where each sub-problem is ad-
dressed in parallel with the resulting functionality and build-
ing blocks becoming available in a shared repository. Simple
(low-level) problems would complete first enabling higher-
order functions to be consecutively solved. The links and
order of solved problems would contain interesting meta-
knowledge; a form of learning curricula.

It is clear that the work has benefited from the transfer of
learned information from each of the components. Although
a defined recipe was not given to the system, it was able to
form logical determinations as to the flow of the accrued
functionality, see Figure 8. This property of the system is
akin to the derivation of a set of Threshold Concepts where
significant learning towards the final target problem only
progresses once the proper chain of functionality is formed
and evaluated. Besides the structural similarities to layer
learning, the solution tree shares an unexpected similarity
with policy trees, such as the ones developed in [5]. The sys-
tem also shares similarities with Run Transferable Libraries
in the sense that each growing function represents a block
of reusable code. Analogies could also be drawn to the con-
cept of the Dynamic Linked Library (DLL), in essence all
three constitute reusable program code that contains domain
knowledge useful to the problem at hand [17].

The comparisons with XCS may appear unfair at face
value, however they serve to highlight XCS’ important role
as the control system in the experiments. Furthermore, al-
though the results are encouraging, it is not apparent that
this technique will be effective in related domains such as the
Hidden Multiplexer. Preliminary experiments have shown
that the rules produced by the ValueAt stage can in fact
solve the 18-bit Hidden Multiplexer, however they were in-
effective with the 33-bit Hidden Multiplexer.

5.1 Additional Observations
Unlike the execution of XCSCFC, where the terminal nodes

have a direct impact on the final answer returned by the CF
sub-tree, it was discovered that for XCSCF* this does not
appear to be the case. A full trace of the 6 bit multiplexer
was conducted for one of the solutions, see Figure 8. It was
discovered that repeating patterns of learned knowledge are
interspersed throughout the chain of CFs. This suggests
that it was beneficial to store the computed values of said
functional blocks for later usage. It was also observed that
for the general solution, the two main branches: CF 28 and
CF 16 feed their outputs into the function M but they are
not used directly when M is evaluated. The reason is that
the learned function M relies on its own set of rules to com-
pute its output, disregarding the inputs from its two child



branches. It is apparent that if both sub-branches were to
be ignored, M would still furnish the correct answer as it
has the relevant CF knowledge in its learned functions.

6. CONCLUSIONS
This paper has shown that starting from a conventional

tabula rasa and using related problems, it is possible to
learn a general solution to a complex problem domain, i.e.
the multiplexer domain, through analogies to a human-like
approach. By decomposing the problem domain into com-
ponent sub-problems, providing the necessary axioms and
transferring learned functionality plus knowledge, it is pos-
sible to discover general rules that can be applied to any size
problem in the domain.

This was demonstrated by using XCSCF* to solve very
difficult problems like the 264, 521 and 1034 bit multiplexer,
which were previously insolvable by any other method. Al-
though the aforementioned problems are comprised of a very
large search space, the proposed technique successfully dis-
covered a minimal number of general rules. One of the rules
for a simple problem was traced fully and certain repeating
patterns were discovered. Benefits to scaling are achieved
by the system storing computed values of seen patterns, so
they do not need to be recalculated. One important point
to note is that it is not possible to verify each possible state
of the more difficult Mux problems, such as the 1034 Mux,
due to the very large search space.

Another very important observation was that not all of
the available functionality was utilized in the final solutions.
Thus, this style of learning system can have access to more
functionality than necessary for a single problem. Future
work will create a system with base axioms and a number
of problems, including possible sub-problems, to be solved
in a parallel architecture simultaneously. The ‘toolbox’ of
functions (learned functions and axioms) plus the comple-
mentary knowledge (code fragments) will grow as problems
become solved and will be available for addressing future
problems.
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