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Abstract: Deep neural networks (DNNs) are sensitive to adversarial data in a variety of scenarios,
including the black-box scenario, where the attacker is only allowed to query the trained model
and receive an output. Existing black-box methods for creating adversarial instances are costly,
often using gradient estimation or training a replacement network. This paper introduces Qu
ery-Efficient Evolutionary Attack—QuEry Attack—an untargeted, score-based, black-box attack.
QuEry Attack is based on a novel objective function that can be used in gradient-free optimization
problems. The attack only requires access to the output logits of the classifier and is thus not affected
by gradient masking. No additional information is needed, rendering our method more suitable
to real-life situations. We test its performance with three different, commonly used, pretrained
image-classifications models—Inception-v3, ResNet-50, and VGG-16-BN—against three benchmark
datasets: MNIST, CIFAR10 and ImageNet. Furthermore, we evaluate QuEry Attack’s performance on
non-differential transformation defenses and robust models. Our results demonstrate the superior
performance of QuEry Attack, both in terms of accuracy score and query efficiency.

Keywords: deep learning; computer vision; adversarial attack; evolutionary algorithm

1. Introduction

Deep neural networks (DNNs) have become the central approach in modern-day
artificial intelligence (AI) research. They have attained superb performance in multifarious
complex tasks and are behind fundamental breakthroughs in a variety of machine-learning
tasks that were previously thought to be too difficult. Image classification, object detec-
tion, machine translation, and sentiment analysis are just a few examples of domains
revolutionized by DNNs.

Despite their success, recent studies have shown that DNNs are vulnerable to ad-
versarial attacks. A barely detectable change in an image, for example, can cause a mis-
classification in a well-trained DNN. Targeted adversarial examples can even evoke a
misclassification of a specific class (e.g., misclassify a car as a cat). Researchers have demon-
strated that adversarial attacks are successful in the real world and may be produced for
data modalities beyond imaging, e.g., natural language and voice recognition [1–4]. DNNs’
vulnerability to adversarial attacks has raised concerns about applying these techniques to
safety-critical applications.

To discover effective adversarial instances, most past work on adversarial attacks has
employed gradient-based optimization [5–9]. Gradient computation can only be executed if
the attacker is fully aware of the model architecture and weights. Thus, these approaches are
only useful in a white-box scenario, where an attacker has complete access and control over
a targeted DNN. Attacking real-world AI systems, however, might be far more arduous.
The attacker must consider the difficulty of implementing adversarial instances in a black-
box setting, in which no information about the network design, parameters, or training data
is provided. In this situation, the attacker is exposed only to the classifier’s input-output
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pairs. In this context, a typical strategy has been to attack trained replacement networks
and hope that the generated examples transfer to the target model [10]. The substantial
mismatch of the model between the alternative model and the target model, as well as the
significant computational cost of alternative network training, often renders this technique
ineffective.

In our work we assume a real-world, black-box attack scenario, wherein a DNN’s
input and output may be accessed but not its internal configuration. We focus on a scenario
in which a specific DNN is an image classifier, specifically, a convolutional neural network
(CNN), which accepts an image as input and outputs a probability score for each class.

Herein, we present an evolutionary, gradient-free optimization approach for generat-
ing adversarial instances, more suitable for real-life scenarios, because usually there is no
access to a model’s internals, including the gradients; thus, it is important to craft attacks
that do not use gradients. Our proposed attack can deal with either constrained (ε value
that constrains the norm of the allowed perturbation) or unconstrained (no constraint on
the norm of the perturbation) problems, and focuses on constrained, untargeted attacks.
We believe that our framework can be easily adapted to the targeted setting.

In the next section we review the literature on adversarial attacks. Section 3 summa-
rizes the threat model we assume for our proposed evolutionary attack algorithm. The
algorithm itself—QuEry Attack (for Query-Efficient Evolutionary Attack)—is delineated in
Section 4. The experiments conducted to test the method, along with results, are described
in Section 5. We discuss our findings and present concluding remarks in Section 6.

Figure 1 shows examples of successful and unsuccessful instances of images generated
by QuEry Attack, evaluated against ImageNet, CIFAR10, and MNIST.

Original image Successful attack Failed attack

Figure 1. Examples of adversarial attacks generated by QuEry Attack. With higher resolution the
attack becomes less visible to the naked eye. The differences between images that successfully attack
the model and those that do not are subtle. (Top row): Imagenet (l∞ = 6/255). ( Middle row):
CIFAR10 (l∞ = 6/255). ( Bottom row): MNIST (l∞ = 60/255). (Left): the original image. (Middle):
a successful attack. (Right): A failed attack.

2. Related Work

Adversarial attacks against DNNs have become an important research field in the last
few years. For a comprehensive survey, we refer the reader to [11].

An important distinction is between ‘white box’ and ‘black box’ attacks. In white-
box attacks, the attacker has knowledge of the attacked model’s internal structure and
parameters, and exploits that knowledge. It is commonly performed by using the model’s
gradients [5,7,12].

Although white-box methods achieved good results they usually do not represent
a real-world scenario. More realistic is a black-box attack, where the attacker has no
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knowledge of the model’s structure and parameters. The attacker can only query the
model—and act upon its outputs. We can further distinguish between the more common
‘light black box’ attacks, where the model gives the prediction’s confidence (which can
be exploited), and ‘dark black box’ attacks where the model only gives the final class
prediction (e.g., [10]).

The first effective black-box attack traded a priori information of the model with ex-
tensive runtime querying [10]. Using a large number of queries it builds a substitute model,
and attacks it with traditional white-box methods. It uses the transferability property,
namely, an attack that succeeds on one model will likely succeed on a similar—though not
identical—model.

Other works used the more permissive ‘light black-box’ scenario, which can use the
prediction’s confidence value. Some works estimate the gradient with this information and
then use traditional gradient-based attacks [13].

All these black-box methods rely on gradients, and, thus, are sensitive to many defense
methods that obscure gradients [14–16]. This has given rise to methods that do not rely on
gradients at all, e.g., [17], which uses random search and is also query-efficient.

Instead of randomness, one can use evolutionary methods. In Evolutionary Algo-
rithms (EAs), core concepts from evolutionary biology—inheritance, random variation, and
selection—are harnessed in algorithms that are applied to complex computational problems.
EA techniques have been shown to solve numerous difficult problems from widely di-
verse domains, and also to produce human-competitive machine intelligence [18]. EAs also
present many important benefits over popular Machine Learning methods, including [19]:
less reliance on the existence of a known or discoverable gradient within the search space;
ability to handle design problems, where the objective is to design new entities from scratch;
fewer required a priori assumptions about the problem at hand; seamless integration of
human expert knowledge; ability to solve problems where human expertise is very limited;
support of interpretable solution representations; and support of multiple objectives.

The evolutionary method GenAttack is a targeted attack (thus not directly compa-
rable to ours, which is untargeted) that used a fitness function that tries to increase the
probability of the target class and decrease the probability of the other classes [20]. Its
fitness function ignored the distance between the images. Interestingly, GenAttack uses
fitness-proportionate selection, which is employed less often nowadays due to known
problems. It uses an adaptive mutation rate to balance between exploration in early phases
and exploitation in later phases.

Ref. [21] treated the adversarial problem as one of multi-objective optimization:
minimize the class prediction’s score on one hand, and the distance between the original
image and a perturbed one on the other hand.

Another attack method changes a single pixel [22]. This method uses differential
evolution (DE) [23] without crossover. However, it sometimes required thousands of
queries.

Ref. [24] also uses DE, but unlike the other evolutionary computation (EC) methods
reviewed, it uses EC to approximate the gradients.

Unlike the above methods, which tried to minimize the perturbation as much as
possible and make it as unnoticeable to the human eye as possible, [25] makes a small but
noticeable change, which looks like a regular scratch (a similar approach in the domain
of Natural Language Processing creates sentences that do not make sense to a human
reader [26]). The approach uses DE as well, and also Covariance-Matrix Adaptation Evolu-
tion Strategies (CMA-ES) [27]. Unlike most attacks, which use the l∞ or l2 norms, this one
is based on the l0 norm.

In the EC methods seen so far, evolution is run against a single image, and each
individual is a perturbation added to that image. Ref. [28], on the other hand, used the
transferability property mentioned earlier to evolve a universal perturbation. An individual
is an image mask that can be applied as a perturbation to any image.
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Our extensive scrutiny of the literature and software repositories revealed that many
authors compare their work to prior works that do not use the same threat model: there
might be a mismatch in norms (e.g., l2 vs. l∞), white box vs. black box, or other subtle
differences. Moreover, having investigated numerous software repositories, we found that
running the code of many papers is far from straightforward.

3. Threat Model

In the black-box attack setting, queries to the network are permitted but access to
internal states is prohibited (e.g., executing backpropagation). Hence, our threat model, or
scenario, is as follows:

• The attacker is unaware of the network’s design, settings, or training data.
• The attacker has no access to intermediate values in the target model.
• The attacker can only use a black-box function to query the target model.

Note that the above threat model determines the comparisons we perform, which
focus on attacks that are:

1. Black-box,
2. Untargeted,
3. l∞-norm bounded.

We can consider a network model to be a function:

f : [0, 1]d → RC, (1)

where d is the number of input features and C is the number of classes. The c-th value
fc(x) ∈ R specifies the predicted score of classifying input image x as class c. The classifier
assigns class y = argmaxc=1,...,C fc(x) to the input x.

A targeted attack aims to create an image that will be incorrectly classified into a
given (incorrect) class. An untargeted attack aims to create an image that will be incorrectly
classified into any class except the correct one. An image x̂ is termed an adversarial example,
with an lp-norm bound of ε for x, if:

argmax
c=1,...,C

fc(x̂) 6= y,

s.t. ‖x̂− x‖p ≤ ε and x̂ ∈ [0, 1]d. (2)

To wit, the model should classify x̂ incorrectly, while preserving similarity between x
and x̂ under an lp distance metric.

We focus on a black-box, score-based attack, wherein the only information of the threat
model is the raw output (logits).

Our suggested black-box approach may theoretically be used in conjunction with
classic machine-learning models, with the same input–output relationship. Because DNNs
have reached state-of-the-art performance in a variety of image tasks, we focus on them in
this paper.

4. QuEry Attack

QuEry Attack is an evolutionary algorithm (EA) that explores a space of images,
defined by a given input image and a given input model, in search of adversarial instances.
It ultimately generates an attacking image for the given input image. Unlike white-box
approaches, we make no assumptions about the targeted model, its architecture, dataset,
or training procedure. We assume that we have an image x, which a black-box neural
network, f , classifies by outputting a probability distribution over the set of classes, as
stated in Section 3. The actual label y is computed as y = argmax f (x).
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Our objective is to find a perturbed image, x̂, of image x, such that, ‖x̂ − x‖∞ ≤ ε,
which causes the network to predict y′ = argmax f (x̂), such that y′ 6= y. Finding x̂ may be
cast as a constrained optimization problem:

min
x̂∈[0,1]d

L( f (x̂), y), s.t. ‖x̂− x‖∞ ≤ ε, (3)

for a given loss function L.
We use loss L as the fitness function, defined in our case as:

fitness(x̂) = fy(x̂)−max
c 6=y

fc(x̂) + λ‖x̂− x‖2, (4)

where x̂ is a perturbed image, fy is the predicted score that x̂ belongs to class y, fc is the
predicted score that x̂ belongs to class c 6= y. In order to guarantee that the adversarial
perturbation is as imperceptible as possible we penalize the l2 distortion of the perturbation
by including a regularization component in the fitness function. We use l2 regularization
because we noticed that most of the evolved adversarial examples were on the edges of the
ε-ball, and we wanted to give precedence to examples which were closer to the original
input. This penalization is determined by the λ value, which is the regularization strength.
In our experiments we used λ = 1.

The ultimate goal is to minimize the fitness value: Essentially, the lower the logit of the
correct class, and the higher the maximum logit of the other classes, the better the value.

Algorithm 1 provides the pseudo-code of QuEry Attack. The original image x, along
with a number of hyperparameters, are given as input to the algorithm. QuEry Attack
generates an adversarial image x̂, with the model classifying x̂ as y′, such that y′ 6= y and
‖x̂− x‖∞ ≤ ε.

The main goal of QuEry Attack is to produce a successful attack, using as few queries
to the model as possible. The maximal number of queries equals generation count (G) ×
population size (N).

4.1. Initialization

Initialization is crucial for optimization problems, e.g., in deep-learning training, gra-
dient descent reaches a local minimum that is significantly determined by the initialization
technique [29,30]. QuEry Attack generates an initial population of perturbed images by
randomly selecting images from the edges of the sphere centered on the original image x
with radius = ε. This is accomplished by adding vertical stripes of width 1 along the image,
with the color of each stripe sampled uniformly at random from {−ε, ε} per channel (i.e.,
the pixels of each stripe can be either −ε or ε); in [17], they discovered that convolutional
neural networks (CNNs) are especially vulnerable to such perturbations.

4.2. Mutation

Considering the use of (square-shaped) convolutional filters by convolutional neural
networks, we used square-shaped perturbations. Specifically, we employed [17]’s technique
for determining square size. Let p ∈ [0, 1] be the proportion of elements to be perturbed for
an image of shape h×w. The nearest positive integer to

√
p · h · w determines the length of

the square’s edge, with p being a hyperparameter. We set it initially to p = 0.1, then halved
it after {40, 200, 800, 4000, 8000, 16,000, 24,000, 32,000} queries, respectively (similar to [17]).

4.3. Crossover

We experimented both with single-point and two-point crossover, eventually settling
on the latter as it performed better. The operator works by flattening both (two-dimensional
image) parents, randomly picking two indices, then swapping the pixels between the
chosen pixels.

The EA then proceeds by evaluating the fitness of each individual, selecting parents,
and performing crossover and mutation to generate the next generation. This latter is
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obtained by adding one elite individual from the current generation, with all other next-
generation individuals derived through crossover and mutation. The process is repeated
until a successful perturbation is found or until the termination condition is met.

A major advantage of QuEry Attack is its amenability to parallelization—due to being
evolutionary—in contrast to most other adversarial, iterative (non-evolutionary) attacks in
this field.

Algorithm 1 QuEry Attack
Input:

x← original image
y← original label
ε←maximum l∞ distance
p← proportion of elements in x to be perturbed
N← population size
G←maximum number of generations
T← tournament size

Output:

x̂← adversarial image

# Main loop
1: gen← 0
2: pop← INIT()
3: while not TERMINATION_CONDITION(pop, gen) do
4: for x̂ ∈ pop do
5: compute fitness of x̂ using Equation (4)

6: new_pop← ∅
7: elite← ELITISM(pop)
8: add elite to new_pop
9: for i← 1 to P−1

3 do
10: parent1 ← SELECTION(pop)
11: parent2 ← SELECTION(pop)
12: offspring1, offspring2 ← CROSSOVER(pop)
13: mut1 ← SQUARE_MUTATION(offspring1)
14: mut2 ← SQUARE_MUTATION(offspring2)
15: add offspring1, mut1, mut2 to new_pop

16: pop← new_pop
17: gen← gen + 1

18:
19: return best x̂ from pop # QuEry Attack’s final output

20: function INIT( )
21: pop← ∅
22: for i← 1 to N do
23: x̂ ← STRIPES_INIT(x)
24: add x̂ to pop

25: return pop

26: function ELITISM(pop)
27: return best x̂ from pop
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Algorithm 1 Cont.

28: function TERMINATION_CONDITION(pop, gen)
29: if gen = G then
30: return true
31: for x̂ ∈ pop do
32: ŷ← predicted label of x̂
33: if ŷ 6= y then
34: return true
35: return false

36: function SELECTION(pop)
37: tournament← randomly and uniformly pick T individuals from pop
38: return best x̂ from tournament

39: function STRIPES_INIT(x̂)
40: for i← 1 to c do # c is the image’s number of channels
41: stripe ← create a vertical stripe of width 1, randomly positioned, with random values

∈ {−ε, ε}
42: x̂← x̂ + stripe

43: x̂← Πε(x̂) # Πε: clipping operator to ensure pixel values are within ε-ball
44: return x̂

45: function SQUARE_MUTATION(x̂)
46: c← number of channels
47: f ← number of features (h× w) # h: height, w: width
48: k← d

√
p · f e

49: δ← array of ones of size k× k× c.
50: row, col ← U ({0, . . . , w− h}) # U randomly and uniformly selects from given set
51: for i← 1 to c do
52: τ← U ({−2ε, 2ε})
53: δrow+1:row+h,col+1:col+h,i ← τ · δ
54: x̂ ← x̂ + δ

55: x̂ ← Πε(x̂)
56: return x̂

57: function CROSSOVER(parent1, parent2)
58: Flatten parent1 and parent2
59: Perform standard two-point crossover (as explained in text), creating offspring1, offspring2
60: offspring1, offspring2 ← Πε(offspring1), Πε(offspring2)

61: return offspring1, offspring2

5. Experiments and Results

To evaluate QuEry Attack we set out to collect commonly used algorithms for com-
parative purposes. A somewhat disconcerting reality we then encountered involved our
struggle to find good benchmarks and software for comparison purposes. Sadly, we found
ourselves wasting many a day (which, alas, turned into weeks) trying to run buggy soft-
ware, chasing down broken links, issuing GitHub issues, and so forth. Perhaps this is due
in part to the field of adversarial attacks being young.

Our experimental results are summarized in Table 1. The code is available at
https://github.com/razla/QuEry-Attack, accessed on 13 September 2022.

https://github.com/razla/QuEry-Attack
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Table 1. Experimental results. ASR: Attack Success Rate. Queries: Number of model queries. Each
value represents the median of 200 runs (images). Epsilon: E ∈ {0 . . . 255} (8-bits pixel values). Top
results are marked in boldface.

ImageNet

Model E
QuEry Attack Square AdversarialPSO

ASR Queries ASR Queries ASR Queries

Inception-v3

24 100% 1 100% 5 98.5% 51
18 100% 2 100% 8 98.5% 69
12 100% 22 95.5% 32 97% 102
6 99.5% 276 99.0% 263 95% 285

ResNet-50

24 100% 1 99.5% 5 98.5% 51
18 100% 1 100% 5 98.5% 69
12 100% 13 100% 26 97% 102
6 100% 211 99.0% 248 95% 285

VGG-16-BN

24 100% 1 100% 5 98.5% 51
18 100% 1 100% 5 98.5% 69
12 100% 1 100% 5 97% 102
6 100% 77 100% 86 95% 285

CIFAR10

Model E
QuEry Attack Square AdversarialPSO

ASR Queries ASR Queries ASR Queries

Inception-v3

24 100% 1 89.5% 5 97.5% 31
18 100% 2 92.5% 17 96.0% 41
12 97.5% 20 94.5% 77 95.0% 54
6 91.0% 428 95.5% 776 94.5% 223

ResNet-50

24 100% 2 92.0% 8 97.5% 31
18 100% 8 91.0% 23 96.0% 41
12 100% 96 87.0% 110 95.0% 54
6 99.0% 565 87.0% 449 94.5% 223

VGG-16-BN

24 100% 1 89.5% 5 97.5% 31
18 99.0% 2 87.0% 14 96.0% 41
12 98.0% 60 87.0% 86 95.0% 54
6 95.5% 741 88.5% 890 94.5% 223

MNIST

Model E
QuEry Attack Square AdversarialPSO

ASR Queries ASR Queries ASR Queries

Conv Net
80 100% 5 86.0% 14 76% 2675
60 93.5% 72 93.0% 77 99% 292

We evaluated QuEry Attack by executing experiments against three different pre-
trained image-classification models, taken from PyTorch [31]—Inception-v3 [32],
ResNet-50 [33], and VGG-16-BN [34]—over three image datasets: ImageNet, CIFAR-10,
and MNIST. We employed 200 randomly picked and correctly classified images from the
test sets. For ImageNet, Inception-v3 has an accuracy of 78.8%, ResNet-50 has an accu-
racy of 76.1%, and VGG-16-BN has an accuracy of 73.3% (these are top-1 accuracy values;
for ImageNet, top-5 accuracy values are also sometimes given, which in our case are:
Inception-v3—94.4%, ResNet-50–92.8%, VGG-16-BN—91.5%). CIFAR10 accuracy values
are: Inception-v3—93.7%, ResNet-50—93.6%, and VGG-16-BN—94.0%. For the MNIST
dataset we trained a convolutional neural network (CNN), whose architecture is delineated
in Table 2, which attained 98.9% accuracy.

We chose to use the above models since they are the most commonly used CNN
architectures. QuEry Attack exploits the nature of convolution layers by using square
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mutations and stripes initialisation, which were shown to be very effective [17]. Further,
these architectures serve as a backbone for many other downstream tasks, such as object
detection [35], semantic segmentation [36], and image captioning [37]. Recently, vision
transformers have beaten CNNs in image classification tasks [38], but they require huge
amounts of data and resources that are not available too many (including us). Future work
will be dedicated to expand the attack to vision transformers.

All accuracy values are over test images. We used the Adversarial Robustness Toolbox
(ART) [39] to evaluate QuEry Attack against other attacks. We restricted all attacking
algorithms to a maximum of 42K queries to the model (N = 70, G = 600) for MNIST
and CIFAR10, and 84K queries (N = 70, G = 1200) for ImageNet. A query refers to a
prediction supplied by the model for a given image. To make the most of the computational
resources we had available we prioritized actual, experimental runs over hyperparameter
runs, so hyperparameters were chosen through limited trial and error. In the future, we
plan to perform a more thorough hyperparameter sweep using Optuna [40]. The only
hyperparameters we set were the population size N = 70, tournament size T = 25, and
p = 0.1; these are used for all experiments reported herein. The number of generations (G)
was derived from the query budget.

AdversarialPSO [41] results were obtained by running the code in the GitHub reposi-
tory referred to in their paper. Due to technical difficulties it was run against the original
models that this attack was planned to run against, namely, Inception-v3 for ImageNet,
and their own trained networks for CIFAR-10 and MNIST. We duplicated these results in
the table for all models.

Table 2. CNN used for MNIST.

Conv Block Hyperparameters

Layer Layer type Hyperparameter Value

1 Convolution Epochs 300
2 BatchNorm2d Batch size 64
3 ReLU Optimizer Adam

Learning rate 0.01
Weight decay 1 × 10−6

CNN Architecture

Layer Layer type No. channels Filter size Stride

1 Conv Block 32 3× 3 1
2 Max Pooling N/A 2× 2 2
3 Conv Block 64 3× 3 1
4 Max Pooling N/A 2× 2 2
5 Conv Block 128 3× 3 1
6 Max Pooling N/A 2× 2 2
7 Dropout (p = 0.5) N/A N/A N/A
8 Fully Connected 128 N/A N/A
9 Fully Connected 10 N/A N/A

5.1. Attacking Defenses

We show how QuEry Attack breaks a collection of defense strategies designed to boost
the robustness of models against adversarial attacks.

5.1.1. Attacking Non-Differentiable Transformations

Gradient masking is achieved via non-differentiable input transformations, which rely
on manipulating gradients to defeat gradient-based attackers [42,43]. Further, randomized
transformations make it more difficult for the attacker to be certain of success. It is possible
to foil such a defense by altering the defense module that performs gradient masking,
but this is not an option within the black-box scenario. Herein, we investigated three
non-differentiable transformations against QuEry Attack: JPEG compression, bit-depth
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reduction (also known as feature squeezing), and spatial smoothing. We show that QuEry
Attack can defeat these input modifications, due to its gradient-free nature.

JPEG compression [44] tries to generate patterns in color values to minimize the
amount of data that has to be captured, resulting in a smaller file size. Some color values
are estimated to match those of surrounding pixels in order to produce these patterns. This
compression means that slight imperfections in the quality of the image will not be as
noticeable. The degree of compression may be tweaked, providing a customizable trade-off
between image quality and storage space. An example of the different compression degrees
is shown in Figure 2. The results in Table 3 were evaluated with image quality q = 70.

Figure 2. JPEG compression examples, sorted from left to right by quality value, ranging from 10 to
100 (original image). (Top) images: from ImageNet, (middle): CIFAR10, and (bottom): MNIST.

Bit-depth reduction [45] can be done both by reducing the color depth of each pixel in
an image and using spatial smoothing to smooth out individual pixel discrepancies. By
merging samples that correspond to many different feature vectors in the original space into
a single sample, bit-depth reduction decreases the search space accessible to an opponent.
An example of different bit-depth values is shown in Figure 3. The results in Table 3 were
evaluated with bit depth d = 3.

Figure 3. Bit-depth compression examples, sorted from left to right by bit-depth values, ranging from
1 to 8 (original image). (Top) images: from ImageNet, (middle): CIFAR10, and (bottom): MNIST.

The term “spatial smoothing“ refers to the averaging of data points with their neigh-
bors [46]. This has the effect of a low-pass filter, with high frequencies of the signal being
eliminated from the data while low frequencies are enhanced. As a result, an image’s crisp
“edges” are softened, and spatial correlation within the data becomes more prominent, as
shown in Figure 4. Data averaging is determined according to a given window size. The
results in Table 3 were evaluated with window w = 5.

Our results are delineated in Table 3. For this experiment we used a total budget of 82K
queries to the model (N = 70, G = 1200)—which was Inception-v3. For each given image,
we first checked that it was correctly classified after applying the defense on the image,
then we applied QuEry Attack on it. The different input values for the transformations
were chosen such that applying them would not be destructive.

For these experiments we used the same budget of queries as in the previous experi-
ments. For both CIFAR-10 and ImageNet, QuEry Attack has a high success rate against all
non-differentiable transformations.



Algorithms 2022, 15, 407 11 of 16

Table 3. QuEry Attack’s resistance to non-differentiable transformation defenses. JPEG compression,
bit-depth reduction, and spatial smoothing were tested on CIFAR10 and ImageNet.

Defense E
CIFAR10 ImageNet

ASR Queries ASR Queries

JPEG Compression (q = 70)
18 100% 2 100% 2
12 98.0% 13 97.5% 14
6 93.5% 287 99.5% 311

Bit-Depth Reduction (d = 3)
18 100% 2 100% 2
12 99.5% 5 100% 27
6 96.0% 72 99.5% 145

Spatial Smoothing (w = 5)
18 100% 1 100% 1
12 100% 1 100% 2
6 99.0% 6 99.5% 144

Figure 4. Examples of spatial-smoothing compression, sorted from left to right by window-size
values, ranging from 10 to 1 (original image). (Top) images: from ImageNet, (middle): CIFAR10, and
(bottom): MNIST.

5.1.2. Attacking Robust Models

A model is considered to be robust when some of the input variables are largely
perturbed, but the model still makes correct predictions. Recently, several techniques have
been proposed to render the models more robust to adversarial attacks. One commonly
used technique to improve model robustness is adversarial training. Adversarial training
integrates adversarial inputs—generated with other trained models—into the models’
training data. Adversarial training has been proved to be one of the most successful
defense mechanisms for adversarial attacks [47–50].

We conducted an experiment to see how well QuEry Attack performs on robust models.
For CIFAR10 we used the robust model, WideResNet-70-16 [51], wherein they used gener-
ative models trained only on the original training set in order to enhance adversarial ro-
bustness to lp norm-bounded perturbations. For ImageNet we used WideResNet-50-2 [52],
which is a variant of ResNet wherein the depth of the network is decreased and the width of
the network is increased. This is achieved through the use of wide residual blocks. Both of
these top models were taken from the RobustBench repository [53]. We used the same 200
randomly selected images from our previous experiments, a budget of 84K queries (N = 70,
G = 1200) for CIFAR10, and a budget of 126K queries (N = 70, G = 1800) for ImageNet.
As seen in Table 4, QuEry Attack succeeds at breaking those strongly defended models.

Table 4. QuEry Attack’s performance on robust models over CIFAR10 and ImageNet.

Model E
ImageNet

ASR Queries

Wide ResNet-50-2 12 98.0% 98
6 93.5% 1187

CIFAR10

Wide ResNet-70-16 18 94.5% 156
12 85.0% 487
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5.2. Transferability

An adversarial example for one model can often serve as an adversarial example for
another model, even if the two models were trained on different datasets, using different
techniques; this is known as transferability [54]. White-box attacks may overfit on the source
model, as evidenced by the fact that black-box success rates for an attack are almost always
lower than those of white-box attacks [7,13,55,56]. Herein, we checked transferability of our
proposed black-box attack on 200 correctly classified ImageNet images by both the source
model and the target model, using different ε values. The results, summarized in Table 5,
show a positive correlation between the ε values and the transferability success rate. We
noted that attacks are better transferred between ResNet-50 to VGG-16-BN models and
surmise this is due to the fact that ResNets models were mostly inspired by the philosophy
of VGG models, wherein they use relatively small 3× 3 convolutional layers.

Table 5. QuEry Attack’s transferability on ImageNet models. TSR: Transferability Success Rate.

Source Model → Target Model E TSR

Inception-v3→ ResNet-50

24 67.0%
18 47.5%
12 33.5%
6 13.5%

ResNet-50→ VGG-16-BN

24 90.0%
18 81.5%
12 61.5%
6 28.5%

VGG-16-BN→ Inception-v3

24 59.0%
18 46.5%
12 30.0%
6 12.5%

6. Discussion and Concluding Remarks

We presented an evolutionary, score-based, black-box attack, showing its superiority in
terms of ASR (attack success rate) and number-of-queries over previously published work.
QuEry Attack is a strong and fast attack that employs a gradient-free optimization strategy.
We tested QuEry Attack against MNIST, CIFAR10, and ImageNet models, comparing it to
other commonly used algorithms. We evaluated QuEry Attack’s performance against non-
differential transformations and robust models, and it proved to succeed in both scenarios.

As noted, we discovered that the software scene in adversarial attacks is a tad bit
muddy. We encourage researchers to place executable code on public repositories—code
that can be used with ease. Furthermore, we feel that the field lacks standard means of
measuring and comparing results. We encourage the community to establish common
baselines for these purposes.

We came to realize the importance of a strong initialization procedure. Although this is
true of many optimization algorithms, it seems doubly so where adversarial optimization is
concerned. Table 1 shows that successful attacks are sometimes found during initialization—
the vertical-stripes initialization in particular proved highly potent—and even if not, the
number of queries (and generations) is significantly curtailed.

Figures 5 and 6 show that adversarial examples are barely distinguishable to the
human eye. Clearly, neural networks function quite differently than humans, capturing
entirely different features. More work is needed to create networks that are robust in a
human sense.

We think that evolutionary algorithms are well-suited for this kind of optimization
problems and our findings imply that evolution is a potential research avenue for develop-
ing gradient-free black-box attacks. Furthermore, evolution needs to be evaluated against a
fully black-box model.
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Figure 5. Adversarial examples generated by QuEry Attack on MNIST, with ε = 60/255. An image
at row, col = i, i shows the original image for class i. An image at row, col = i, j, i 6= j shows a targetted
attack on class i, with the target being class j.

Figure 6. Adversarial examples generated by QuEry Attack on CIFAR10, with ε = 12/255. An image
at row, col = i, i shows the original image for class i. An image at row, col = i, j, i 6= j shows a targetted
attack on class i, with the target being class j.

Evolution may also be a solution for rendering models more robust. In [57] it was
shown that combining different activation functions could be used to increase model
accuracy; this approach might also be used for obtaining robustness.
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