
 

  
Abstract-- In this paper, Strength Pareto Evolutionary 

Algorithm (SPEA) for optimal reactive power (VAR) dispatch 
problem is presented. The optimal VAR dispatch problem is 
formulated as a nonlinear constrained multiobjective 
optimization problem where the real power loss and the voltage 
stability are to be optimized simultaneously. The proposed 
approach handles the problem as a true multiobjective 
optimization problem. A hierarchical clustering algorithm is 
imposed to provide the decision maker with a representative and 
manageable Pareto-optimal set. Moreover, fuzzy set theory is 
employed to extract the best compromise solution over the trade-
off curve. The results demonstrate the capabilities of the 
proposed approach to generate true and well-distributed Pareto-
optimal solutions of the multiobjective VAR dispatch problem in 
one single run. In addition, the effectiveness of the proposed 
approach and its potential to solve the multiobjective VAR 
dispatch problem are confirmed. 
 

Index Terms— Optimal VAR dispatch, Evolutionary 
algorithms, Multiobjective optimization 

I.  INTRODUCTION 
N the past two decades, the problem of reactive power 
control for improving economy and security of power 
system operation has received much attention. Generally, 

the voltage stability can be enhanced by reallocating reactive 
power generations in the system. This can be achieved by 
adjusting transformer taps, generator voltages, and switchable 
VAR sources. In addition, the system losses can be minimized 
via redistribution of reactive power in the system. Therefore, 
the problem of the reactive power dispatch can be optimized 
to enhance the voltage stability and minimize the system 
losses as well. 

Several methods to solve the optimal reactive power 
dispatch problem have been proposed in the literature. 
Generally, there are three approaches to solve this complex 
problem. The first approach employs nonlinear programming 
technique [1]. However, nonlinear programming based 
procedures have many drawbacks, such as insecure 
convergence properties, long execution time, and algorithmic 
complexity. The second approach uses sensitivity analysis and 
gradient-based optimization algorithms by linearizing the 
objective function and the system constraints around an 
operating point [2]. Obviously, this problem is highly complex 
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optimization problem and may have several local minima. In 
this case, the gradient-based methods are susceptible to be 
trapped in local minima and the solution obtained will not be 
the optimal one. Moreover, calculation of the sensitivity 
factors is a time consuming process and inefficient for large-
scale system applications. The third approach utilizes the 
heuristic methods to search for the optimal solution in the 
problem space [3-6]. It has been theoretically proved that 
these methods converge to the optimal solution with 
probability one provided that certain conditions are satisfied. 
These heuristic methods have been applied to solve the 
optimal VAR dispatch problem with impressive success.  

Recently, the VAR dispatch problem is formulated as a 
multiobjective optimization problem. However, the problem is 
not treated as a true multiobjective problem [7-8]. It was 
converted to a single objective problem by linear combination 
of different objectives as a weighted sum [7]. Unfortunately, 
this requires multiple runs as many times as the number of 
desired Pareto-optimal solutions. Furthermore, this method 
cannot be used to find Pareto-optimal solutions in problems 
having a non-convex Pareto-optimal front. In addition, there is 
no rational basis of determining adequate weights and the 
objective function so formed may lose significance due to 
combining non-commensurable objectives. To avoid this 
difficulty, the ε-constraint method for multiobjective 
optimization was presented in [8]. This method is based on 
optimization of the most preferred objective and considering 
the other objectives as constraints bounded by some allowable 
levels ε. These levels are then altered to generate the entire 
Pareto-optimal set. The most obvious weaknesses of this 
approach are that it is time-consuming and tends to find 
weakly nondominated solutions. 

On the contrary, the studies on evolutionary algorithms, 
over the past few years, have shown that these methods can be 
efficiently used to eliminate most of the difficulties of 
classical methods [9-11]. Since they use a population of 
solutions in their search, multiple Pareto-optimal solutions 
can, in principle, be found in one single run. Recently, some 
preliminary successful results of optimal VAR dispatch have 
been reported [12] where minimizing voltage differences has 
been considered as an objective. This could be detrimental 
since it utilizes scarce reactive resources for no stability or 
operational benefit. 

In this paper, the Strength Pareto Evolutionary Algorithm 
(SPEA) based approach is proposed for solving the 
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multiobjective VAR dispatch optimization problem. The 
problem is formulated as a nonlinear constrained 
multiobjective optimization problem where the real power loss 
and voltage stability objectives are optimized simultaneously. 
A hierarchical clustering technique is implemented to provide 
the power system operator with a representative and 
manageable Pareto-optimal set. Moreover, a fuzzy-based 
mechanism is employed to extract the best compromise 
solution over the trade-off curve. The effectiveness and 
potential of the proposed approach to solve the multiobjective 
VAR dispatch problem are demonstrated. 

II.  PROBLEM FORMULATION 
The optimal VAR dispatch problem is to optimize the 

steady state performance of a power system in terms of one or 
more objective functions while satisfying several equality and 
inequality constraints. Generally the problem can be 
formulated as follows. 

A.  Objective Functions 
Real Power Loss (PL): This objective is to minimize the 

real power loss in transmission lines that can be expressed as 
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where nl is the number of transmission lines; gk is the 
conductance of the kth line; iiV δ∠  and jjV δ∠  are the 
voltages at the end buses i and j of the kth line respectively. 

Voltage Stability Index: In this study, voltage stability 
enhancement is achieved through minimizing the voltage 
stability indicator L-index [13-14] values at every bus of the 
system and consequently the global power system L-index. 
The indicator value varies in the range between 0 (the no load 
case) and 1 which corresponds to voltage collapse. For multi-
node system 

bus bus busI Y V= ×                                (2) 
By segregating the load buses (PQ) from generator buses 
(PV), Eq. (2) can write as 
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VL, IL: Voltages and Currents for PQ buses 
VG, IG: Voltages and Currents for PV buses 
Where, H1, H2, H3, H4: submatrices generated from Ybus partial 
inversion. Let 
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Lk: L-index voltage stability indicator for bus k. Stability 
requires that Lk< 1 and must not be violated on a continuous 
basis. Hence a global system indicator describing the stability 
of the complete system is Lmax=max{Lk}, where in {Lk} all 
load bus indices are listed. 

The objective is to minimize Lmax, that is,  
J2 = max{Lk; k=1,2,…,number of buses}                      (8) 

B.  Problem Constraints 
Equality Constraints: These constraints represent typical 

load flow equations as follows. 
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where i= 1,…NB, NB is the number of buses; PG and QG are 
the generator real and reactive power respectively; PD and QD 
are the load real and reactive power respectively; Gij and Bij 
are the transfer conductance and susceptance between bus i 
and bus j respectively.  

Inequality Constraints: These constraints represent the 
system operating constraints as follows. 

Generation constraints: Generator voltages VG and reactive 
power outputs QG are restricted by their lower and upper limits 
as follows: 

NGiVVV
iii GGG ,...,1maxmin =≤≤    ,                         (11) 

NGiQQQ
iii GGG ,...,1maxmin =≤≤    ,                         

(12) 
where NG is number of generators. 

Transformer constraints: Transformer tap T settings are 
bounded as follows: 

NTiTTT iii ,...,1maxmin =≤≤    ,                          (13) 
where NT is the number of transformers. 

Switchable VAR sources constraints: Switchable VAR 
compensations QC are restricted by their limits as follows: 

NCiQQQ cicici ,...,1maxmin =≤≤    ,                        
(14) 
where NC is the number of switchable VAR sources. 

Load Bus Voltage: These include the constraints of 
voltages at load buses VL as follows: 

NLiVVV
iii LLL ,...,1maxmin =≤≤    ,                                    (15) 

C.  Formulation 
Aggregating the objectives and constraints, the problem 

can be mathematically formulated as a nonlinear constrained 
multiobjective optimization problem as follows. 
Minimize [J1, J2]                                  (16) 
Subject to: 
g(x,u) = 0                                             (17) 
h(x,u) ≤ 0                                              (18) 
where: 
x: is the vector of dependent variables consisting of load bus 

voltages VL, generator reactive power outputs QG, and 
transmission line loadings Sl. Hence, x can be expressed as 

731



 

1 1
x [ ... ,  ... ]

NL NG

T
L L G GV V Q Q=                                  (19) 

u: is the vector of control variables consisting of generator 
voltages VG, transformer tap settings T, and shunt 
compensations Qc. Hence, u can be expressed as 

]..., ... , ...[u 111 NCNG ccNTGG
T QQTTVV=                        (20) 

g:   is the equality constraints. 
h:   is the inequality constraints. 

III.  MULTIOBJECTIVE OPTIMIZATION 
Many real-world problems involve simultaneous 

optimization of several objective functions. Generally, these 
functions are non-commensurable and often competing 
objectives. Multiobjective optimization with such objective 
functions gives rise to a set of optimal solutions, instead of 
one optimal solution. The reason for the optimality of many 
solutions is that no one can be considered to be better than any 
other with respect to all objective functions. These optimal 
solutions are known as Pareto-optimal solutions. 

A general multiobjective optimization problem consists of 
a number of objectives to be optimized simultaneously and is 
associated with a number of equality and inequality 
constraints. It can be formulated as follows: 

obji NixfMinimize ,...,1  )(  =                               (21) 
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where fi is the ith objective functions, x is a decision vector that 
represents a solution, and Nobj is the number of objectives. 

For a multiobjective optimization problem, any two 
solutions x1 and x2 can have one of two possibilities- one 
covers or dominates the other or none dominates the other. In 
a minimization problem, without loss of generality, a solution 
x1 dominates x2 iff the following two conditions are satisfied: 
1. )()(:}..., ,2 ,1{ 21 xfxfNi iiobj ≤∈∀                       (23) 

2. )()(:}..., ,2 ,1{ 21 xfxfNj jjobj <∈∃                       (24) 
If any of the above conditions is violated, the solution x1 

does not dominate the solution x2. If x1 dominates the solution 
x2, x1 is called the nondominated solution. The solutions that 
are nondominated within the entire search space are denoted 
as Pareto-optimal and constitute the Pareto-optimal set or 
Pareto-optimal front. 

IV.  THE PROPOSED APPROACH 

A.  Overview 
Recently, the studies on evolutionary algorithms have 

shown that these algorithms can be efficiently used to 
eliminate most of the difficulties of classical methods that can 
be summarized as: 
• An algorithm has to be applied many times to find multiple 

Pareto-optimal solutions. 
• Most algorithms demand some knowledge about the 

problem being solved. 
• Some algorithms are sensitive to the shape of the 

Pareto-optimal front. 
• The spread of Pareto-optimal solutions depends on 

efficiency of the single objective optimizer. 
In general, the goal of a multiobjective optimization 

algorithm is not only guide the search towards the 
Pareto-optimal front but also maintain population diversity in 
the set of the nondominated solutions. 

B.  Strength Pareto Evolutionary Algorithm (SPEA) 
The proposed SPEA based approach has the following 

features [11]: - 
• It stores externally those individuals that represent a 

nondominated front among all solutions considered so far. 
• It uses the concept of Pareto dominance in order to assign 

scalar fitness values to individuals. 
• It performs clustering to reduce the number of individuals 

externally stored without destroying the characteristics of 
the trade-off front. 
Generally, the algorithm can be described in the following 

steps. 
Step 1 (Initialization): Generate an initial population and 

create an empty external Pareto-optimal set. 
Step 2 (External set updating): The external Pareto-optimal 

set is updated as follows.  
(a) Search the population for the nondominated 

individuals and copy them to the external Pareto set.  
(b) Search the external Pareto set for the nondominated 

individuals and remove all dominated solutions from 
the set.  

(c) If the number of the individuals externally stored in 
the Pareto set exceeds the prespecified maximum 
size, reduce the set by clustering. 

Step 3 (Fitness assignment): Calculate the fitness values of 
individuals in both external Pareto set and the 
population as follows. 

(a) Assign a real value )1,0[∈s  called strength for each 
individual in the Pareto optimal set. The strength of 
an individual is proportional to the number of 
individuals covered by it. The strength of a Pareto 
solution is at the same time its fitness. 

(b) The fitness of each individual in the population is the 
sum of the strengths of all external Pareto solutions 
by which it is covered. In order to guarantee that 
Pareto solutions are most likely to be produced, a 
small positive number is added to the resulting value. 

Step 4 (Selection): Combine the population and the external 
set individuals. Select two individuals at random and 
compare their fitness. Select the better one and copy 
it to the mating pool. 

Step 5 (Crossover and Mutation): Perform the crossover and 
mutation operations according to their probabilities to 
generate the new population. 

Step 7 (Termination): Check for stopping criteria. If any one 
is satisfied then stop else copy new population to old 
population and go to Step 2. In this study, the search 
will be stopped if the generation counter exceeds its 
maximum number.  

C.  Reducing Pareto Set by Clustering 
In some problems, the Pareto optimal set can be 

extremely large. In this case, reducing the set of nondominated 
solutions without destroying the characteristics of the trade-off 
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front is desirable from the decision maker’s point of view. An 
average linkage based hierarchical clustering algorithm [15] is 
employed to reduce the Pareto set to manageable size. It works 
iteratively by joining the adjacent clusters until the required 
number of groups is obtained. It can be described as: given a 
set P which its size exceeds the maximum allowable size N, it 
is required to form a subset P* with the size N. The algorithm 
is illustrated in the following steps. 
Step 1: Initialize cluster set C; each individual Pi ∈  

constitutes a distinct cluster. 
Step 2: If number of clusters ≤ N, then go to Step 5, else go 

to Step 3. 
Step 3: Calculate the distance of all possible pairs of clusters. 

The distance dc of two clusters c1 and c2 C∈  is 
given as the average distance between pairs of 
individuals across the two clusters 

∑
∈∈

=
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where n1 and n2 are the number of individuals in the 
clusters c1 and c2 respectively. The function d reflects 
the distance in the objective space between 
individuals i1 and i2. 

Step 4: Determine two clusters with minimal distance dc. 
Combine them into a larger one. Go to Step 2. 

Step 5: Find the centroid of each cluster. Select the nearest 
individual in this cluster to the centroid as a 
representative individual and remove all other 
individuals from the cluster.  

Step 6: Compute the reduced nondominated set P* by uniting 
the representatives of the clusters. 

D.  Best Compromise Solution 
Upon having the Pareto-optimal set of nondominated 

solution, the proposed approach presents one solution to the 
decision maker as the best compromise solution. Due to 
imprecise nature of the decision maker’s judgment, the i-th 
objective function Fi is represented by a membership function 
µi defined as [16] 
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where min
iF  and max

iF are the minimum and maximum value 
of the i-th objective function among all nondominated 
solutions, respectively.  

For each nondominated solution k, the normalized 
membership function µk is calculated as 
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where M is the number of nondominated solutions. The best 
compromise solution is that having the maximum value of µk. 

V.  IMPLEMENTATION OF THE PROPOSED APPROACH 

A.  The Computational Flow 
In this study, the basic SPEA has been developed in order 

to make it suitable for solving real-world nonlinear 
constrained optimization problems. The following 
modifications have been incorporated in the basic algorithm. 
(a) A procedure is imposed to check the feasibility of the 

initial population individuals and the generated children 
through GA operations. This ensures the feasibility of 
Pareto-optimal nondominated solutions. 

(b) A procedure for updating the Pareto-optimal set is 
developed. In every generation, the nondominated 
solutions in the first front are combined with the existing 
Pareto-optimal set. The augmented set is processed to 
extract its nondominated solutions that represent the 
updated Pareto-optimal set. 

(c) A fuzzy-based mechanism is employed to extract the best 
compromise solution over the trade-off curve and assist the 
decision maker to adjust the VAR sources efficiently. 
The computational flow of the proposed SPEA based 

approach is shown in Fig. 1. 

B.  Settings of the Proposed Approach 
The techniques used in this study were developed and 

implemented using FORTRAN language. On all optimization 
runs, the population size and the maximum number of 
generations were selected as 200 and 500 respectively. The 
maximum size of the Pareto-optimal set was set as 30 
solutions. If the number of the nondominated Pareto optimal 
solutions exceeds this bound, the clustering technique is 
called. Crossover and mutation probabilities were selected as 
0.9 and 0.01 respectively in all optimization runs.  

VI.  RESULTS AND DISCUSSIONS 

A.  Wale and Hale 6-bus Test System 
In this study, the proposed approach was tested on the 

Wale and Hale 6 bus test system shown in Fig. 2. The detailed 
line data, bus data, and control variable limits are given in 
[17]. The system has two generators, two transformers, and 
two capacitor banks as shown. The number of constraints in 
this case is 24. At first, the PL and Lindex objectives are 
optimized individually in order to explore the extreme points 
of the trade-off surface and evaluate the diversity 
characteristics of the Pareto optimal solutions obtained by the 
proposed approach. The best results of PL and Lindex when 
optimized individually are given in Table 1. Convergence of 
PL and Lindex objectives are shown in Fig. 3.  

The problem is handled as a multiobjective optimization 
problem and the proposed approach has been implemented to 
optimize both objectives simultaneously. The size of Pareto 
optimal set is selected 30 nondominated solutions in this work. 
Unlike the traditional techniques such as the weighted sum 
and the epsilon-constraint methods, the proposed approach 
obtains these solutions in one single run. The diversity of the 
Pareto optimal set over the trade-off surface is shown in Fig. 
4. Out of them, two nondominated solutions that represent the 
best PL and best Lindex are given in Table 2. It is worth 
mentioning that the initial load flow indicates voltage 
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violation at bus 3 where V3=0.855 pu. After optimization, no 
violations have been observed. 
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Fig. 1: Strength Pareto Evolutionary Algorithm 
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Fig. 2: Single line diagram of the 6-bus system  

TABLE 1: THE BEST SOLUTIONS FOR INDIVIDUAL OPTIMIZATION 
 Initial [21] Best PL Best Lindex 

VG1 1.050 1.098 1.086 
VG2 1.100 1.137 1.150 
T3-4 1.025 0.949 0.973 
T5-6 1.100 0.982 0.997 
Qc4 0.0 0.049 0.049 
Qc6 0.0 0.055 0.055 

PL (MW) 11.609 8.683 8.906 
Lindex 0.2720 0.2348 0.2304 

 
TABLE 2: THE RESULTS OF PROPOSED APPROACH 

 Best PL Best Lindex Best Compromise 
VG1 1.096 1.081 1.091    
VG2 1.139 1.150 1.150     
T3-4 0.949 1.027 0.957     
T5-6 0.982 0.985 0.984    
Qc4 0.050 0.050 0.050     
Qc6 0.055 0.055 0.055   

PL (MW) 8.688 9.192 8.730 
Lindex 0.2344 0.2306 0.2308 

 
The comparison of the average value of the run time per 

Pareto-optimal solution over 10 different optimization runs of 
the traditional weighted sum method and the proposed 
approach is given in Table 3. It is quiet evident that the run 
time of proposed approach is much less than that of the 
weighted sum method as it produces all the Pareto-optimal 
solutions in one single run. 
 

TABLE 3: RUN TIME OF DIFFERENT ALGORITHMS 
 Weighted Sum Method Proposed Approach 

Run time (s) 11.44 1.171 
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Fig. 3: Convergence of the objectives in individual optimization for the 6-bus 

test system 

The membership functions given in (26) and (27) were 
used to evaluate each member of the Pareto-optimal set. Then, 
the best compromise solution was extracted. The best 
compromise solution is shown in Fig. 3 and given in Table 2. 
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Fig. 4: Pareto-optimal front of the proposed approach for the 6-bus test system 

B.  IEEE 30-bus 6-generator Test System 
The proposed approach was tested on the standard IEEE 

30-bus 6-generator test system in order to investigate its 
effectiveness. The single-line diagram of the IEEE test system 
is shown in Fig. 5 and the detailed data are given in [18]. The 
system has six generators at buses 1, 2, 5, 8, 11, and 13 and 
four transformers with off-nominal tap ratio in lines 6-9, 6-10, 
4-12, and 27-28. The lower voltage magnitude limits at all 
buses are 0.95 pu and the upper limits are 1.1 pu for generator 
buses 2, 5, 8, 11, and 13, and 1.05 pu for the remaining buses 
including the reference bus 1. The lower and upper limits of 
the transformer tappings are 0.9 and 1.1 pu respectively. The 
initial settings of the control variables and the initial values of 
objective functions are given in Table 4. The number of 
constraints in this case is 100. 

At first, the PL and Lindex objectives are optimized 
individually and the best results of PL and Lindex are given in 
Table 4. Convergence of both objectives is shown in Fig. 6. 

The problem was handled as a multiobjective optimization 
problem where both objectives were optimized simultaneously 
with the proposed approach. The diversity of the Pareto 
optimal set over the trade-off surface is shown in Fig. 7. It is 
worth mentioning that the Pareto optimal set has 30 
nondominated solutions. Out of them, two nondominated 
solutions that represent the best PL and best Lindex are given in 
Table 5. In addition, the best compromise solution is shown in 
Fig. 7 and given in Table 5. 

VII.  CONCLUSION 
In this paper, a new approach based on the strength Pareto 

evolutionary algorithm has been presented and applied to 
multiobjective VAR dispatch optimization problem. The 
problem has been formulated as multiobjective optimization 
problem with real power loss and voltage stability objectives. 
A hierarchical clustering technique is implemented to provide 
the operator with a representative and manageable Pareto-
optimal set without destroying the characteristics of the trade-

off front. Moreover, a fuzzy-based mechanism is employed to 
extract the best compromise solution over the trade-off curve. 
The results show that the proposed approach is efficient for 
solving multiobjective VAR dispatch problem where multiple 
Pareto optimal solutions can be found in one simulation run. 
In addition, the nondominated solutions obtained are well 
distributed and have satisfactory diversity characteristics. 
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Fig. 5: Single-line diagram of IEEE 30-bus system 

 
TABLE 4: THE BEST SOLUTIONS FOR INDIVIDUAL OPTIMIZIZATION 

 Initial [18] Best PL Best Lindex 
VG1 1.050 1.050 1.044 
VG2 1.045 1.041 1.045 
VG5 1.010 1.018 1.063 
VG8 1.010 1.017 1.015 
VG11 1.050 1.084 1.031 
VG13 1.050 1.079 1.046 
T6-9 0.978 1.002 0.963 
T6-10 0.969 0.951 0.912 
T4-12 0.932 0.990 0.929 
T27-28 0.968 0.940 0.933 

PL (MW) 5.3786 5.117 6.002 
Lindex 0.1453 0.1418 0.1397 
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Fig. 6: Convergence of the objectives in individual optimization for the 30-bus 

test system 

TABLE 5: THE RESULTS OF PROPOSED APPROACH 
 Best PL Best Lindex Best Compromise 

VG1 1.050 1.050 1.050 
VG2 1.044 1.050 1.044 
VG5 1.025 1.074 1.026 
VG8 1.026 1.018 1.028 
VG11 1.095 1.025 1.026 
VG13 1.060 1.068 1.058 
T6-9 1.048 0.961 0.961 
T6-10 0.915 0.919 0.919 
T4-12 0.962 0.956 0.956 
T27-28 0.944 0.938 0.940 

PL (MW) 5.123 6.071 5.258 
Lindex 0.1411 0.1397 0.1399 
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Fig. 7: Pareto-optimal front of the proposed approach for the 30-bus test 
system 
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